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The “sample amplification” problem formalizes the following question:
Given n i.i.d. samples drawn from an unknown distribution P , when is it pos-
sible to produce a larger set of n+m samples which cannot be distinguished
from n + m i.i.d. samples drawn from P ? In this work, we provide a firm
statistical foundation for this problem by deriving generally applicable am-
plification procedures, lower bound techniques and connections to existing
statistical notions. Our techniques apply to a large class of distributions in-
cluding the exponential family, and establish a rigorous connection between
sample amplification and distribution learning.

1. Introduction. Consider the following problem of manufacturing more data: an am-
plifier is given n samples drawn i.i.d. from an unknown distribution P , and the goal is to
generate a larger set of n+m samples which are indistinguishable from n+m i.i.d. sam-
ples from P . How large can m be as a function of n and the distribution class in question?
Are there sound and systematic ways to generate a larger set of samples? Is this task strictly
easier than the learning task, in the sense that the number of samples required for generating
n+ 1 samples is smaller than that required for learning P ?

In our preliminary work [2], we formalized this problem as the sample amplification prob-
lem, considering total variation (TV) as the measure for indistinguishability.

DEFINITION 1.1 (Sample Amplification). Let P be a class of probability distributions
over a domain X . We say that P admits an (n,n+m,ε) sample amplification procedure if
there exists a (possibly randomized) map TP,n,m,ε :X n→X n+m such that

sup
P∈P
‖P⊗n ◦ T−1

P,n,m,ε − P
⊗(n+m)‖TV ≤ ε.(1.1)

An equivalent formulation to view Definition 1.1 is as a game between two parties: an am-
plifier and a verifier. The amplifier gets n samples drawn i.i.d. from the unknown distribution
P in the class P , and her goal is to generate a larger dataset of n+m samples which must be
accepted with good probability by any verifier that also accepts a real dataset of n+m i.i.d.
samples from P with good probability. Here, the verifier is computationally unbounded and
knows the distribution P , but does not observe the amplifier’s original set of n samples.

Along with being a natural statistical task, the sample amplification framework is also
relevant from a practical standpoint. Currently, there is an enormous trend in the machine
learning community to train models on datasets that have been enlarged in various ways.
There are relatively transparent and classical approaches to achieve this, such as leveraging
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Distribution Class Amplification Procedure

Gaussian with unknown mean and fixed covariance
(n,n+ Θ(nε/

√
d)) Sufficiency/Learning

(UB: Example 4.1, 4.2, A.8; LB: Theorem 6.2, 6.5)

Gaussian with unknown mean and covariance
(n,n+ Θ(nε/d)) Sufficiency

(UB: Example A.1, A.3; LB: Example A.20)

Gaussian with s-sparse mean and identity covariance
(n,n+ Θ(nε/

√
s logd)) Learning

(UB: Example A.12; LB: Example A.18)

Discrete distributions with support size at most k
(n,n+ Θ(nε/

√
k)) Learning

(UB: Example A.9; LB: [2, Theorem 1])

Poissonized discrete distributions with support at most k
(n, n+ Θ(

√
nε+ nε/

√
k)) Learning

(UB: Example A.16; LB: Example A.16)

d-dim. product of Exponential distributions
(n,n+ Θ(nε/

√
d)) Sufficiency/Learning

(UB: Example A.5, A.11; LB: Theorem 6.5)

Uniform distribution on d-dim. rectangle
(n,n+ Θ(nε/

√
d)) Sufficiency/Learning

(UB: Example A.6, A.10; LB: Theorem 6.5)

d-dim. product of Poisson distributions
(n,n+ Θ(nε/

√
d)) Sufficiency+Learning

(UB: Example A.14; LB: Theorem 6.5)
TABLE 1

Sample amplification achieved by the presented procedures. Results include matching upper bounds (UB) and
lower bounds (LB), with appropriate pointers to specific examples or theorems for details.

known invariances such as rotation or translation invariance to augment the dataset by includ-
ing transformed versions of each original datapoint [22, 23, 29, 44, 45]. More recently, deep
generative models have been used to both directly enlarge training data and construct larger
datasets consisting of samples with properties that are rare in naturally occurring datasets
[1, 3, 18, 19, 20, 21, 25, 26, 35, 36, 38, 43, 53, 54]. More opaque approaches such as MixUp
[56] and related techniques [28, 47, 50, 55] which add a significant fraction of new datapoints
that are explicitly not supported in the true data distribution are also very popular since they
seem to improve the performance of the trained models. Given this current zoo of widely im-
plemented approaches to enlarging datasets, there is a clear motivation for bringing a more
principled statistical understanding to such approaches. One natural starting point is the sta-
tistical setting we consider that asks the extent to which datasets can be enlarged in a perfect
sense—where it is not possible to distinguish the enlarged dataset from a set of i.i.d. draws.
Moreover, this work lays a foundation for the ambitious broader goal of understanding how
various amplification techniques interact with downstream learning algorithms and statistical
estimators, and developing amplification techniques that are optimal for certain classes of
such algorithms and estimators.

In [2], a subset of the authors introduced the sample amplification problem, and studied
two classes of distributions: the Gaussian location model and discrete distribution model.
For these examples, they characterized the statistical complexity of sample amplification and
showed that it is strictly smaller than that of learning. In this paper, we work towards a
general understanding of the statistical complexity of the sample amplification problem, and
its relationship with learning. The main contributions of this paper are as follows:

1. Amplification via sufficiency. Our first contribution is a simple yet powerful procedure
for sample amplification, i.e. apply the sample amplification map only to sufficient statis-
tics. Specifically, the learner computes a sufficient statistic Tn from Xn, maps Tn prop-
erly to some Tn+m, and generates new samples X̂n+m from some conditional distribu-
tion conditioned on Tn+m. Surprisingly, this simple idea leads to a much cleaner pro-
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cedure than [2] under Gaussian location models which is also exactly optimal (cf. Theo-
rem 6.2). The range of applicability also extends to general exponential families, with rate-
optimal sample amplification performances. Specifically, for general d-dimensional expo-
nential families with a mild moment condition, the sufficiency-based procedure achieves
an (n,n+O(nε/

√
d), ε) sample amplification for large enough n, which by our matching

lower bounds in Section 6 is asymptotically minimax rate-optimal.
2. Amplification via learning. Our second contribution is another general sample ampli-

fication procedure that does not require the existence of a sufficient statistic, and also
sheds light on the relationship between learning and sample amplification. This procedure
essentially draws new samples from a rate-optimal estimate of the true distribution, and
outputs a random permutation of the old and new samples. The procedure achieves an
(n,n + O(ε

√
n/rχ2(P, n)), ε) sample amplification, where rχ2(P, n) denotes the min-

imax risk for learning P ∈ P under the expected χ2 divergence given n samples. This
shows that learning P to χ2 divergence O(n/ε2) is sufficient for non-trivial sample am-
plification.

In addition, we show that for the special case of product distributions, it is important
that the permutation step be applied coordinatewise to achieve the optimal sample amplifi-
cation. Specifically, ifP =

∏d
j=1Pj , this procedure achieves a better sample amplificationn,n+O

ε√ n∑d
j=1 rχ2(Pj , n)

 , ε

 .

We have summarized several examples in Table 1 where the sufficiency and/or learning
based sample amplification procedures are optimal. Note that there is no golden rule for
choosing one idea over the other, and there exists an example where the above two ideas
must be combined.

3. Minimax lower bounds. Complementing our sample amplification procedures, we pro-
vide a general recipe for proving lower bounds for sample amplification. This recipe is
intrinsically different from the standard techniques of proving lower bounds for hypothe-
sis testing, for the sample amplification problem differs significantly from an estimation
problem. In particular, specializing our recipe to product models shows that, for essen-
tially all d-dimensional product models, an (n,n+ Cnε/

√
d, ε) sample amplification is

impossible for some absolute constant C <∞ independent of the product model.
For non-product models, the above powerful result does not directly apply, but proper

applications of the general recipe could still lead to tight lower bounds for sample ampli-
fication. Specifically, we obtain matching lower bounds for all examples listed in Table 1,
including the non-product examples.

We now provide several numerical simulations to suggest the potential utility of sample
amplification. Recall that a practical motivation of sample amplification is to produce an
enlarged dataset that can be fed into a distribution-agnostic algorithm in downstream appli-
cations. Here, we consider the following basic experiments in that vein:

• Fourth moment estimation for one-dimensional Gaussian: here we observe X1, · · · ,Xn ∼
N (µ,1) with n= 100 and µ= 1, and we consider three estimators. The empirical estima-
tor operates in a distribution-agnostic fashion and is simply the empirical fourth moment
n−1

∑n
i=1X

4
i . The plug-in estimator uses the knowledge of Gaussianity: it first estimates

µ̂ = X̄ and then uses EX∼N (µ̂,1)[X
4] = µ̂4 + 6µ̂2 + 3. The amplified estimator first am-

plifies the sample Xn into Y n+m via sufficiency (cf. Example 4.1), and then uses the
empirical estimator (n+m)−1

∑n+m
j=1 Y 4

j based on the enlarged sample Y n+m. The plots
of the mean absolute errors (MAEs) are displayed in Figure 1a. We observe that although
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(a) Mean absolute errors for estimation of the fourth moment E[X4] in a one-dimensional Gaussian
location model X1, · · · ,Xn ∼N (µ,1) with n= 100, µ= 1.
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(b) Mean absolute errors for estimation of the squared L2 norm E[‖X‖22] in a d-dimensional Gaussian
location model X1, · · · ,Xn ∼N (µ, Id) with n= 50, d= 100, µ= 1/
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(c) Classification errors for binary classification between two clusters of covariates X1, · · · ,Xn/2 ∼
N (e1, Id) and Xn/2+1, · · · ,Xn ∼N (−e1, Id), with n= 50 and d= 10.

Fig 1: Sample amplification experiments. The x-axis corresponds to the amount of amplifica-
tion, m, and the shaded area depicts the 95% confidence interval based on 5,000 simulations.
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the empirical estimator based on the original sample Xn has a large MAE, its performance
is improved based on the amplified sample Y n+m.

• SquaredL2 norm estimation for high-dimensional Gaussian: here we observeX1, · · · ,Xn ∼
N (µ, Id) with n= 50, d= 100 and µ= 1/

√
d, and we again consider three estimators for

E[‖X‖22]. As before, the empirical estimator is simply n−1
∑n

i=1 ‖Xi‖22, and the plug-in
estimator uses the knowledge EX∼N (µ̂,Id)[‖X‖22] = ‖µ̂‖22 +d and estimates µ̂= X̄ . As for
the amplified estimator, it first amplifies the sample Xn into Y n+m via sufficiency (cf. Ex-
ample 4.1), and then uses the empirical estimator based on Y n+m. The plots of the mean
absolute errors are displayed in Figure 1b. Here the empirical estimator outperforms the
plug-in estimator due to a smaller bias, while the sample amplification further reduces the
MAE as long as the size of amplification m is not too large. This could be explained by the
bias-variance tradeoff, where the amplified estimator interpolates between the empirical
estimator (with no bias) and the plug-in estimator (with the smallest asymptotic variance).

• Binary classification: here we observe two clusters of covariatesX1, · · · ,Xn/2 ∼N (e1, Id)
(with label 1) andXn/2+1, · · · ,Xn ∼N (−e1, Id) (with label−1), with n= 50, d= 10 and
e1 being the first basis vector. The target is to train a classifier with a high classification
accuracy on the test data with the same distribution. The standard classifier is via logistic
regression, which does not use the knowledge of Gaussianity. To apply sample amplifi-
cation, we first amplify the sample in each class via either sufficiency (cf. Example 4.1)
or learning (cf. Example A.8), and then run logistic regression on the amplified datasets.
Figure 1c displays the classification errors of all three approaches, and shows that both
amplification procedures help reduce the classification error even for small values of m.

The above experiments demonstrate the potential for sample amplification to leverage
knowledge of the data distribution to produce a larger dataset that is then fed into downstream
distribution-agnostic algorithms. Some experiments (e.g. Figure 1b) also suggest a limit be-
yond which the amplification procedure alters the data distribution too much. We believe that
rigorously examining amplification through the lens of the performance of downstream esti-
mators and algorithms, including those illustrated in our numerical simulations, would be a
fruitful direction for future work.

2. Connections, limitations and future work. As discussed above, it is commonplace
in machine learning to increase the size of datasets using various heuristics, often resulting in
large gains in downstream learning performance. However, a clear statistical understanding
of when this is possible and what techniques are useful for this is missing. A natural starting
point to get a better understanding is the formulation we consider that asks the extent to
which datasets can be amplified in a perfect sense—where any verifier who knows the true
distribution is not able to distinguish the amplified dataset from a set of i.i.d. draws.

A limitation of the sample amplification formulation described above is that the additive
amplification factor m is rather small (e.g., O(nε/

√
d) for d dimensional exponential fam-

ilies). Moreover, we show matching lower bounds demonstrating that this factor can not be
improved even when n is large enough to learn the distribution to non-trivial accuracy. How-
ever, it might be possible to achieve larger amplification factors with restricted verifiers, for
instance, the class of verifiers corresponding to learning algorithms used for downstream
tasks (see [2] for other possible classes of verifiers). Investigating the sample amplification
problem with such restricted verifiers may be a practically fruitful future direction.

Despite this limitation, the sample amplification formulation does yield high-level insights
that can inform the way datasets are amplified in practice. For instance, from the results in this
paper, we know that sample amplification is possible for a broad class of distributions even
when learning is not possible. Moreover, both our sufficiency or learning based approaches
modify the original data points in general, conforming to the lower bound in [2] that optimal
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amplification may be impossible if the amplifier returns a superset of the input dataset. These
observations show that the folklore way of enlarging datasets by learning the data distribution
and adding more samples from the learned distribution can be far from optimal.

Connections with other statistical notions. An equivalent view of Definition 1.1 is
through Le Cam’s distance [31], a classical concept in statistics. The formal definition of
Le Cam’s distance ∆(M,N ) is summarized in Definition 3.1; roughly speaking, it measures
the fundamental difference in power in the statistical modelsM and N , without resorting to
specific estimation procedures. The sample amplification problem is equivalent to the study
of Le Cam’s distance ∆(P⊗n,P⊗(n+m)) between product models, where (1.1) is precisely
equivalent to ∆(P⊗n,P⊗(n+m))≤ ε. However, in the statistics literature, Le Cam’s distance
was mainly used to study the asymptotic equivalence, where a typical target is to show that
limn→∞∆(Mn,Nn) = 0 for certain sequences of statistical models. For example, showing
that localized regular statistical models converge to Gaussian location models is the funda-
mental idea behind the Hájek–Le Cam asymptotic statistics; see [31, 32, 33] and [16, Chapter
9]. In nonparametric statistics, there is also a rich line of research [15, 16, 17, 42] establishing
asymptotic (non-)equivalences, based on Le Cam’s distance, between density models, regres-
sion models, and Gaussian white noise models. In the above lines of work, only asymptotic
results were typically obtained with a fixed dimension and possibly slow convergence rate. In
contrast, we aim to obtain a non-asymptotic characterization of ∆(P⊗n,P⊗(n+m)) in (n,m)
and the dimension of the problem, a task which is largely underexplored in the literature.

Another related angle is from reductions between statistical models. Over the past decade
there has been a growing interest in constructing polynomial-time reductions between various
statistical models (typically from the planted clique) to prove statistical-computational gaps,
see, e.g. [10, 13, 14, 37]. The sample amplification falls into the reduction framework, and
aims to perform reductions from a product model P⊗n to another product model P⊗(n+m).
While previous reduction techniques were mainly constructive and employed to prove com-
putational lower bounds, in this paper we also develop general tools to prove limitations of
all possible reductions purely from the statistical perspective.

Organization. The rest of this paper is organized as follows. Section 3 lists some nota-
tions and preliminaries for this paper, and in particular introduces the concept of Le Cam’s
distance. Section 4 introduces a sufficiency-based procedure for sample amplification, with
asymptotic properties for general exponential families and non-asymptotic performances in
several specific examples. Section 5 is devoted to a learning-based procedure for sample am-
plification, with a general relationship between sample amplification and the χ2 estimation
error, as well as its applications in several examples. Section 6 presents the general idea of
establishing lower bounds for sample amplification, with a universal result specializing to
product models. Section 7 discusses more examples in sample amplification and learning,
and shows that these tasks are in general non-comparable. More concrete examples of both
the upper and lower bounds, auxiliary lemmas, and proofs are relegated to the appendices in
the supplementary material.

3. Preliminaries. We use the following notations throughout this paper. For a random
variable X , let L(X) be the law (i.e. probability distribution) of X . For a probability distri-
bution P on a probability space Ω and a measurable map T : Ω→ Ω′, let P ◦ T−1 denotes
the pushforward probability measure, i.e. L(T (X)) with L(X) = P . For a probability mea-
sure P , let P⊗n be the n-fold product measure. For a positive integer n, let [n] , {1, · · · , n},
and xn , (x1, · · · , xn). We adopt the following asymptotic notations: for two non-negative
sequences (an) and (bn), we use an = O(bn) to denote that lim supn→∞ an/bn < ∞,
and an = Ω(bn) to denote bn = O(an), and an = Θ(bn) to denote both an = O(bn) and
bn = O(an). We also use the notations Oc,Ωc,Θc to denote the respective meanings with
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hidden constants depending on c. For probability measures P,Q defined on the same prob-
ability space, the total variation (TV) distance, Hellinger distance, Kullback–Leibler (KL)
divergence, and the chi-squared divergence are defined as follows:

‖P −Q‖TV =
1

2

∫
|dP − dQ|, H(P,Q) =

(
1

2

∫
(
√

dP −
√

dQ)2

) 1

2

,

DKL(P‖Q) =

∫
dP log

dP

dQ
, χ2(P‖Q) =

∫
(dP − dQ)2

dQ
.

We will frequently use the following inequalities between the above quantities [15, Chapter
2]:

H2(P,Q)≤ ‖P −Q‖TV ≤H(P,Q)
√

2−H2(P,Q),(3.1)

‖P −Q‖TV ≤
√

1

2
DKL(P‖Q)≤

√
1

2
log(1 + χ2(P‖Q)).(3.2)

Next we define several quantities related to Definition 1.1. For a given distribution class P
and sample sizes n and m, the minimax error of sample amplification is defined as

ε?(P, n,m) , inf
T

sup
P∈P
‖P⊗(n+m) − P⊗n ◦ T−1‖TV,(3.3)

where the infimum is over all (possibly randomized) measurable mappings T :X n→X n+m.
For a given error level ε, the maximum size of sample amplification is the largest m such that
there exists an (n,n+m,ε) sample amplification, i.e.

m?(P, n, ε) , max{m ∈N : ε?(P, n,m)≤ ε}.(3.4)

For the ease of presentation, we often choose ε to be a small constant (say 0.1) and abbreviate
the above quantity as m?(P, n); we remark that all our results work for a generic ε ∈ (0,1).
Finally, we also define the sample amplification complexity as the smallest n such that an
amplification from n to n+ 1 samples is possible:

n?(P) , min{n ∈N :m?(P, n)≥ 1}.(3.5)

Note that all the above notions are instance-wise in the distribution class P .
The minimax error of sample amplification (3.3) is precisely known as the Le Cam’s dis-

tance in the statistics literature. We adopt the standard framework of statistical decision the-
ory [51]. A statistical model (or experiment)M is a tuple (X , (Pθ)θ∈Θ) where an observation
X ∼ Pθ is drawn for some θ ∈Θ. A decision rule δ is a regular conditional probability kernel
from X to the family of probability distributions on a general action space A, and there is a
(measurable) loss function L : Θ×A→ R+. The risk function of a given decision rule δ is
defined as

RM(θ, δ,L) , Eθ[L(θ, δ(X))] =

∫
X

∫
A
L(θ, a)δ(da | x)Pθ(dx).(3.6)

Based on the definition of risk functions, we are ready to define a metric, known as Le
Cam’s distance, between statistical models.

DEFINITION 3.1 (Le Cam’s distance; see [31, 32, 33]). For two statistical modelsM=
(X , (Pθ)θ∈Θ) and N = (Y, (Qθ)θ∈Θ), Le Cam’s distance ∆(M,N ) is defined as

∆(M,N ) = max

{
sup
L

sup
δN

inf
δM

sup
θ∈Θ
|RM(θ, δM,L)−RN (θ, δN ,L)|,
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Algorithm 1 SAMPLE AMPLIFICATION VIA SUFFICIENCY

1: Input: samples X1, · · · ,Xn, a given transformation f between sufficient statistics
2: Compute the sufficient statistic Tn = Tn(X1, · · · ,Xn).
3: Apply f to the sufficient statistic and compute T̂n+m = f(Tn).
4: Generate (X̂1, · · · , X̂n+m)∼ PXn+m|Tn+m

(· | T̂n+m).

5: Output: amplified samples (X̂1, · · · , X̂n+m).

sup
L

sup
δM

inf
δN

sup
θ∈Θ
|RM(θ, δM,L)−RN (θ, δN ,L)|

}
= max

{
inf
T1

sup
θ
‖Pθ ◦ T−1

1 −Qθ‖TV, inf
T2

sup
θ
‖Qθ ◦ T−1

2 − Pθ‖TV

}
,

where the loss function is taken over all measurable functions L : Θ×A→ [0,1].

In the language of model deficiency introduced in [30], Le Cam’s distance is the smallest
ε > 0 such that the modelM is ε-deficient to the modelN , andN is also ε-deficient toM. In
the sample amplification problem, (Pθ)θ∈Θ = {P⊗n : P ∈ P}, (Qθ)θ∈Θ = {P⊗(n+m) : P ∈
P}. Here, choosing T2(xn+m) = xn in Definition 3.1 shows that N is 0-deficient toM, and
the remaining quantity involving T1 exactly reduces to the minimax error of sample ampli-
fication in (3.3). Therefore, studying the complexity of sample amplification is equivalent to
the characterization of the quantity ∆(P⊗n,P⊗(n+m)).

4. Sample amplification via sufficient statistics. The first idea we present for sample
amplification is the classical idea of reduction by sufficiency. Albeit simple, the sufficiency-
based idea reduces the problem of generating multiple random vectors to a simpler problem
of generating only a few vectors, achieves the optimal complexity of sample amplification in
many examples, and is easy to implement.

4.1. The general idea. We first recall the definition of sufficient statistics: in a statistical
modelM= (X , (Pθ)θ∈Θ) and X ∼ Pθ , a statistic T = T (X) ∈ T is sufficient if and only if
both θ −X − T and θ − T −X are Markov chains. A classical result in statistical decision
theory is reduction by sufficiency, i.e. only the sufficient statistic needs to be maintained to
perform statistical tasks as PX|T,θ does not depend on the unknown parameter θ. In terms of
Le Cam’s distance, letM◦ T−1 = (T , (Pθ ◦ T−1)θ∈Θ) be the statistical experiment associ-
ated with T , then sufficiency of T implies that ∆(M,M◦ T−1) = 0. Hereafter, we will call
M◦ T−1 the T -reduced model, or simply reduced model in short.

Reduction by sufficiency could be applied to sample amplification in a simple way, with a
general algorithm displayed in Algorithm 1. Suppose that both modelsP⊗n andP⊗(n+m) ad-
mit sufficient statistics Tn = Tn(Xn) and Tn+m = Tn+m(Xn+m), respectively. Algorithm 1
claims that it suffices to perform sample amplification on the reduced models P⊗n ◦T−1

n and
P⊗(n+m) ◦ T−1

n+m, i.e. construct a randomization map f from Tn to Tn+m. Concretely, the
algorithm decomposes into three steps:

1. Step I: mapXn to Tn. This step is straightforward: we simply compute Tn = Tn(X1, · · · ,Xn).
2. Step II: apply a randomization map in the reduced model. Upon choosing the map f ,

we simply compute T̂n+m = f(Tn) with the target that the TV distance ‖L(T̂n+m) −
L(Tn+m)‖TV is uniformly small. The concrete choice of f depends on specific models.

3. Step III: map Tn+m to Xn+m. By sufficiency of Tn+m, the conditional distribution
PXn+m|Tn+m

does not depend on the unknown model. Therefore, after replacing the true
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statistic Tn+m by T̂n+m, it is feasible to generate X̂n+m ∼ PXn+m|Tn+m
(· | T̂n+m). To

simulate this random vector, it suffices to choose any distribution P0 ∈ P and generate
X̂n+m ∼ (P

⊗(n+m)
0 | Tn+m(X̂n+m) = T̂n+m). This step may suffer from computational

issues which will be discussed in Section 4.2.

The validity of this idea simply follows from

∆(P⊗n,P⊗(n+m)) = ∆(P⊗n ◦ T−1
n ,P⊗(n+m) ◦ T−1

n+m),

or equivalently, under each P ∈ P ,

‖L(X̂n+m)−L(Xn+m)‖TV = ‖L(T̂n+m)× PXn+m|Tn+m
−L(Tn+m)× PXn+m|Tn+m

‖TV

(a)
= ‖L(T̂n+m)−L(Tn+m)‖TV = ‖L(f(Tn))−L(Tn+m)‖TV,

where (a) is due to the identity ‖PXPY |X −QXPY |X‖TV = ‖PX −QX‖TV. In other words,
it suffices to work on reduced models and find the map f between sufficient statistics.

This idea of reduction by sufficiency simplifies the design of sample amplification pro-
cedures. Unlike in original models where Xn and Xn+m typically take values in spaces of
different dimensions, in reduced models the sufficient statistics Tn and Tn+m are usually
drawn from the same space. A simple example is as follows.

EXAMPLE 4.1 (Gaussian location model with known covariance). Consider the obser-
vations X1, · · · ,Xn from the Gaussian location model Pθ =N (θ,Σ) with an unknown mean
θ ∈Rd and a known covariance Σ ∈Rd×d. To amplify to n+m samples, note that the sample
mean vector is a sufficient statistic here, with

Tn(X1, · · · ,Xn) =
1

n

n∑
i=1

Xi ∼N (θ,Σ/n).

Now consider the identity map between sufficient statistics T̂n+m = Tn used with algorithm
1. The amplified samples (X̂1, · · · , X̂n+m) are drawn fromN (0,Σ) conditioned on the event
that Tn+m(X̂n+m) = T̂n+m = Tn(Xn). For every mean vector θ ∈ Rd we can upper bound
the amplification error of this approach:

‖L(T̂n+m)−L(Tn+m)‖TV = ‖L(Tn)−L(Tn+m)‖TV

= ‖N (θ,Σ/n)−N (θ,Σ/(n+m))‖TV

(a)

≤
√

1

2
DKL(N (θ,Σ/n)‖N (θ,Σ/(n+m)))

=

√
d

4

(m
n
− log

(
1 +

m

n

))
=O

(
m
√
d

n

)
,

where (a) is due to (3.2), and the last step holds whenever m = O(n). Therefore, we could
amplify Ω(n/

√
d) additional samples based on n observations, and the complexity of sample

amplification in (3.5) is n? =O(
√
d). In contrast, learning this distribution within a small TV

distance requires n= Ω(d) samples, which is strictly harder than sample amplification. This
example recovers the upper bound of [2] with a much simpler analysis, and in later sections
we will show that this approach is exactly minimax optimal.

We make two remarks for the above example. First, the amplified samples X̂n+m are no
longer independent, either marginally or conditioned on Xn. Therefore, the above approach
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is fundamentally different from first estimating the distribution and then generating indepen-
dent samples from the estimated distribution. Second, the amplified samples do not contain
the original samples as a subset. In contrast, a tempting approach for sample amplification is
to add m fake samples to the original n observations. However, [2] showed that any sample
amplification approach containing the original samples cannot succeed if n= o(d/ logd) in
the above model, and our approach conforms to this result. More examples will be presented
in Appendix A.1.

4.2. Computational issues. A natural computational question in Algorithm 1 is how to
sample X̂n+m ∼ PXn+m|Tn+m

(· | T̂n+m) in a computationally efficient way. With an addi-
tional mild assumption that the sufficient statistic T is also complete (which is easy to find
in exponential families), the conditional distribution PX|T could be efficiently sampled if we
could find a statistic S = S(X) with the following two properties:

1. S is ancillary, i.e. L(S) is independent of the model parameter θ;
2. There is a (measurable) bijection g between (T,S) and X , i.e. X = g(T,S) almost surely.

In fact, if such an S exists, then under any θ ∈Θ,

L(X | T = t)
(a)
= L(g(T,S) | T = t)

(b)
= L(g(t,S)),

where (a) is due to the assumed bijection g between (T,S) andX , and (b) is due to a classical
result of Basu [7, 8] that S and T are independent. Therefore, by the ancillarity of S, we could
sampleX ∼ Pθ0 with any θ0 ∈Θ and compute the statistic S fromX , then g(t,S) follows the
desired conditional distribution PX|T=t. An example of this procedure is illustrated below.

EXAMPLE 4.2 (Computation in Gaussian location model). Consider the setting of Ex-
ample 4.1 where Pθ =N (θ,Σ)⊗(n+m), Tn+m = (n+m)−1

∑n+m
i=1 Xi, and the target is to

sample from the distribution PXn+m|Tn+m
. In this model, Tn+m is complete and sufficient,

and we choose S = S(Xn+m) = (S1, · · · , Sn+m−1) with Si =Xi+1 −X1 for all i. Clearly
S is ancillary, and Xn+m could be recovered from (Tn+m, S) via

X1 = Tn+m −
∑n+m−1

i=1 Si
n+m

, Xi+1 =X1 + Si, i ∈ [n+m− 1].

Therefore, the choice of S satisfies both conditions. Consequently, we can draw Zn+m ∼
N (0,Σ)⊗(n+m), compute S = S(Zn+m) (where Si = Zi+1 − Z1), and recover Xn+m from
(Tn+m, S).

The proper choice of S depends on specific models and may require some effort to find;
we refer to Appendix A.1 for more examples. We remark that in general there is no golden
rule to find S. One tempting approach is to find a maximal ancillary statistic S such that any
other ancillary statistic S′ must be a function of S. This idea is motivated by the existence of
the minimal sufficient statistic under mild conditions and a known computationally efficient
approach to compute it. However, for ancillary statistics there is typically no such a maximal
one in the above sense, and there may exist uncountably many “maximal” ancillary statistics
which are not equivalent to each other. From the measure theoretic perspective, this is due to
the fact that the family of all ancillary sets is not closed under intersection and thus not a σ-
algebra. In addition, even if a proper notion of “maximal” or “essentially maximal” could be
defined, there is no guarantee that such an ancillary statistic satisfies the bijection condition,
and it is hard to determine whether a given ancillary statistic is maximal or not. We refer to
[9, 34] for detailed discussions on ancillarity from mathematical statistics.
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There is also another sampling procedure of PXn|Tn in the conditional inference literature
[52]. Specifically, for each i ∈ [n], this approach sequentially generates the observation Xi

from the one-dimensional distribution PXi|Xi−1,Tn , which is a simple task as long as we know
its CDF. Although this works in simple models such as the Gaussian location model above,
in more complicated models exact computation of the CDF is typically not feasible.

4.3. General theory for exponential families. In this section, we show that a general
(n,n+ Ω(nε/

√
d), ε) sample amplification phenomenon holds for a rich class of exponential

families, and is achieved by the sufficiency-based procedure in Algorithm 1. Specifically, we
consider the following natural exponential family.

DEFINITION 4.3 (Exponential family). The exponential family (X , (Pθ)θ∈Θ) of proba-
bility measures is determined by

dPθ(x) = exp(θ>T (x)−A(θ))dµ(x),

where θ ∈Θ is the natural parameter with Θ = {θ ∈Rd :A(θ)<∞}, T (x) is the sufficient
statistic, A(θ) is the log-partition function, and µ is the base measure.

The exponential family includes many widely used probability distributions such as Gaus-
sian, Gamma, Poisson, Exponential, Beta, etc. In the exponential family, the statistic T (x) is
sufficient and complete, and several well-known identities include Eθ[T (X)] =∇A(θ), and
Covθ[T (X)] =∇2A(θ). We refer to [24] for a mathematical theory of the exponential family.

To establish a general theory of sample amplification for exponential families, we shall
make the following assumptions on the exponential family.

ASSUMPTION 1 (Continuity). The parameter set Θ has a non-empty interior. Under
each θ ∈ Θ, the probability distribution L(T (X)) is absolutely continuous with respect to
the Lebesgue measure.

ASSUMPTION 2 (Moment condition Mk). For a given integer k > 0, it holds that

sup
θ∈Θ

Eθ
[∥∥∥(∇2A(θ))−1/2(T (X)−∇A(θ))

∥∥∥k
2

]
<∞.

We call it the moment condition Mk.

Assumption 1 requires an exponential family of continuous distributions. The motivation
is that for continuous exponential family, the sufficient statistics Tn(X) and Tn+m(X) for
different sample sizes take continuous values in the same space, and it is easier to construct
a general transformation. We will propose a different sample amplification approach for dis-
crete statistical models in Section 5. Assumption 2 is a moment condition on the normalized
statistic (∇2A(θ))−1/2(T (X)−∇A(θ)), whose moments always exist as the moment gen-
erating function of T (X) exists around the origin. The moment condition Mk claims that
the above normalized statistic has a uniformly bounded k-th moment for all θ ∈ Θ, which
holds in several examples (such as Gaussian, exponential, Pareto) or by considering a slightly
smaller Θ0 ⊆Θ bounded away from the boundary. The following lemma presents a sufficient
criterion for the moment condition Mk.

LEMMA 4.4. If the log-partition function A(θ) satisfies

sup
θ∈Θ

sup
u∈Rd\{0}

|∇3A(θ)[u;u;u]|
(∇2A(θ)[u;u])3/2

≤M <∞,

then the exponential family satisfies the moment condition Mk for all k ∈ N. Here for a k-
tensor T and vectors u1, · · · , uk, T [u1; · · · ;uk] denotes the value of 〈T,u1 ⊗ · · · ⊗ uk〉.
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The condition in Lemma 4.4 is called the self-concordant condition, which is a key concept
in the interior point method for convex optimization [13]. For example, all quadratic functions
and logarithmic functions are self-concordant (which correspond to Gaussian, exponential,
and Pareto distributions), and the self-concordance is always fulfilled when Θ is compact.

Given any exponential family P satisfying Assumptions 1 and 2, we will show that a
simple sample amplification procedure gives a size Ω(n/

√
d) of sample amplification. Let

X1, · · · ,Xn be i.i.d. samples drawn from Pθ taking a general form in Definition 4.3, then it
is clear that the sample average

Tn(Xn) ,
1

n

n∑
i=1

T (Xi)

is a sufficient statistic by the factorization theorem. We will apply the general Algorithm 1
with an identity map between sufficient statistics, i.e. T̂n+m = Tn. The next theorem shows
the performance of this approach.

THEOREM 4.5. If the exponential family P satisfies Assumptions 1 and 2 with k = 3,
then for θ ∈Θ, it holds that

ε?(P, n,m)≤ ‖L(Tn)−L(Tn+m)‖TV ≤
C√
n

+
m
√
d

n
,

where C <∞ is an absolute constant depending only on d and the moment upper bound in
Assumption 2. In particular, for sufficiently large n, a sample amplification of size Ω(n/

√
d)

is achievable.

Theorem 4.5 shows that the above simple procedure could achieve a sample amplification
from n to n+ Ω(n/

√
d) samples in general continuous exponential families, provided that n

is large enough. The main idea behind the proof of Theorem 4.5 is also simple. We show that
the distribution of Tn is approximatelyGn ∼N (∇A(θ),∇2A(θ)/n) by CLT, apply the same
CLT for Tn+m, and then compute the TV distance between two Gaussians as in Example 4.1.
Theorem 4.5 is then a direct consequence of the triangle inequality:

‖L(Tn)−L(Tn+m)‖TV

≤ ‖L(Tn)−L(Gn)‖TV + ‖L(Gn)−L(Gn+m)‖TV + ‖L(Tn+m)−L(Gn+m)‖TV.

Note that Assumption 1 ensures a vanishing TV distance for the Gaussian approximation,
and Assumption 2 enables us to apply Berry–Esseen type arguments and obtain an O(1/

√
n)

convergence rate for the Gaussian approximation.
The main drawback of Theorem 4.5 is that there is a hidden constant C depending on the

dimension d, thus it does not mean that an (n,n+ 1, ε) sample amplification is possible as
long as n = Ω(

√
d/ε). To tackle this issue, we need to improve the first term in Theorem

4.5 and find the best possible dependence of the constant C on d. We remark that this is
a challenging task in probability theory: although the convergence rates of both TV [3, 4,
41, 46] and KL [6, 12] in the CLT result were studied, almost all of them solely focused
on the convergence rate on n, leaving the tight dependence on d still open. Moreover, direct
computation of the quantity ‖L(Tn)−L(Gn)‖TV shows that even if the random vector Tn has
independent components, this quantity is typically at least Ω(

√
d/n). Therefore, C = Ω(

√
d)

under this proof technique, and a vanishing first term in Theorem 4.5 requires that n= Ω(d),
which is already larger than the anticipated sample amplification complexity n=O(

√
d).

To overcome the above difficulties, we make the following changes to both the assumption
and analysis. First, to avoid the unknown dependence on d, we additionally assume a product
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exponential family, i.e. Pθ(dx) =
∏d
i=1 pθi(dxi), where each pθi(xi) is a one-dimensional

exponential family. Exploiting the product structure enables to find a constant C depending
linearly on d. Second, we improve the O(1/

√
n) dependence on n by applying a higher-

order CLT result to Tn and Tn+m, known as the Edgeworth expansion [11]. For any k ≥ 2
and n ∈N, the signed measure of the Edgeworth expansion on Rd is

Γn,k(dx) = γ(x)

1 +

bk/3c∑
`=1

K`(x)

n`/2

dx,(4.1)

where γ(x) is the density of a standard normal random variable on Rd, and Km(x) is a
polynomial of degree 3m which depends only on the first 3m moments of the distribution.
We note that unlike CLT, the general Edgeworth expansion is a signed measure with possibly
negative densities; however, it is close to Gaussian with an O(n−1/2) approximation error.
Such a higher-order expansion enables us to have better Berry-Esseen type bounds, but upper
bounding ‖Γn,k−Γn+m,k‖TV becomes more complicated and requires to handle the Gaussian
part and the correction part separately; see Appendix B.2 for details. In particular, we could
improve the error dependence on n from O(1/

√
n) to O(1/n2).

Formally, the next theorem shows a better sample amplification performance for product
exponential families.

THEOREM 4.6. Let (X ,P = (Pθ)θ∈Θ) be a product exponential family, where each one-
dimensional component satisfies Assumptions 1 and 2 with k = 10. Then for θ ∈Θ, it holds
that

ε?(P, n,m)≤ ‖L(Tn)−L(Tn+m)‖TV ≤C

(
d

n2
+
m
√
d

n

)
,

where C <∞ is an absolute constant independent of (n,d). In particular, as long as n =
Ω(
√
d/ε), an (n,n+m,ε) sample amplification of size m= Ω(nε/

√
d) is achievable.

Theorem 4.6 shows that for product exponential family, we not only achieve the ampli-
fication size m= Ω(nε/

√
d), but also attain a sample complexity n=O(

√
d/ε) for sample

amplification. This additional result on sample complexity is important in the sense that, even
if distribution learning is impossible, it is possible to perform sample amplification. Although
the independence or even the exponential family assumption could be strong practically, in
Appendix A.1 we show that both phenomena m = Ω(nε/

√
d) and n = O(

√
d/ε) hold in

many natural models.

5. Sample amplification via learning. The sufficiency-based approach of sample am-
plification is not always desirable. First, models outside the exponential family typically do
not admit non-trivial sufficient statistics, and therefore the reduction by sufficiency may not
be very helpful. Second, the identity map applied to the sufficient statistics only works for
continuous models, and incurs a too large TV distance when the underlying model is dis-
crete. Third, previous approaches are not directly related to learning the model, so a general
relationship between learning and sample amplification is largely missing. In this section, we
propose another sample amplification approach, and show that how a good learner helps to
obtain a good sample amplifier.
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5.1. The general result. For a class of distribution P and n i.i.d. observations drawn
from an unknown P ∈ P , we define the following notion of the χ2-estimation error.

DEFINITION 5.1 (χ2-estimation error). For a class of distributions P and sample size
n, the χ2-estimation error rχ2(P, n) is defined to be the minimax estimation error under the
expected χ2-divergence:

rχ2(P, n) , inf
P̂n

sup
P∈P

EP [χ2(P̂n, P )],

where the infimum is taken over all possible distribution estimators P̂n based on n samples.

Roughly speaking, the χ2-estimation error in the above definition characterizes the com-
plexity of the distribution class P in terms of distribution learning under the χ2-divergence.
The main result of this section is to show that, the error of sample amplification in (3.3) could
be upper bounded by using the χ2-estimation error.

THEOREM 5.2. For general P and n,m≥ 0, it holds that

ε?(P, n,m)≤
√
m2

n
· rχ2(P, n/2).

The following corollary is immediate from Theorem 5.2.

COROLLARY 5.3. An (n,n+m,ε) sample amplification is possible ifm=O(ε
√
n/rχ2(P, n/2)).

Moreover, the sample complexity of amplification in (3.5) satisfies

n?(P) =O (min{n ∈N : rχ2(P, n/2)≤ n}) .

REMARK 5.4. Although the error of sample amplification in (3.3) is measured under the
TV distance, the same result holds for the squared root of the KL divergence (which by (3.2)
is no smaller than the TV distance).

The above result provides a quantitative guarantee that the sample amplification is easier
than learning (under the χ2-divergence). Specifically, the sample complexity of learning is the
smallest n ∈ N such that rχ2(P, n) = O(1), while Corollary 5.3 shows that the complexity
for amplification is at most the smallest n ∈ N such that rχ2(P, n/2) =O(n). As rχ2(P, n)
is non-increasing in n, this means that the learning complexity is in general larger.

When the distribution class P has a product structure P =
∏d
j=1Pj , the next theorem

shows a better relationship between the amplification error and the learning error.

THEOREM 5.5. For P =
∏d
j=1Pj and n,m≥ 0, it holds that

ε?(P, n,m)≤

√√√√m2

n

d∑
j=1

rχ2(Pj , n/2).

COROLLARY 5.6. For product models, an (n,n+m,ε) sample amplification is achiev-
able if

m=O

ε√ n∑d
j=1 rχ2(Pj , n/2)

 .
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Algorithm 2 SAMPLE AMPLIFICATION VIA SHUFFLING: GENERAL MODEL

1: Input: samples X1, · · · ,Xn, a given class of distributions P .
2: Based on samples X1, · · · ,Xn/2, find an estimator P̂n such that

sup
P∈P

EP [χ2(P̂n, P )]≤C · rχ2(P, n/2).

3: Draw m additional samples Y1, · · · , Ym from P̂n.
4: Uniformly at random, shuffle the pool of Xn/2+1, · · · ,Xn, Y1, · · · , Ym to obtain (Z1, · · · ,Zn/2+m).
5: Output: amplified samples (X1, · · · ,Xn/2,Z1, · · · ,Zn/2+m).

Moreover, the sample complexity of amplification in (3.5) satisfies

n?(P) =O

min

n ∈N :

d∑
j=1

rχ2(Pj , n/2)≤ n


 .

We observe that the result of Theorem 5.5 typically improves over Theorem 5.2 for product
models. In fact, since

χ2

 d∏
j=1

Pj ,

d∏
j=1

Qj

=

d∏
j=1

(1 + χ2(Pj ,Qj))− 1≥
d∑
j=1

χ2(Pj ,Qj),

the inequality
∑d

j=1 rχ2(Pj , n/2) ≤ rχ2(P, n/2) typically holds. Moreover, there are sce-
narios where we have

∑d
j=1 rχ2(Pj , n/2)� rχ2(P, n/2), thus Theorem 5.5 provides a sub-

stantial improvement over Theorem 5.2. For example, when P = (N (θ, Id))θ∈Rd , it could be
verified that rχ2(Pj , n/2) =O(1/n) for each j ∈ [d], while rχ2(P, n/2) = exp(Ω(d/n))−1.
Hence, in the important regime

√
d� n� d where learning is impossible but the sample

amplification is possible, Theorem 5.5 is strictly stronger than Theorem 5.2.

REMARK 5.7. In the above Gaussian location model, there is an alternative way to con-
clude that Theorem 5.5 is strictly stronger than Theorem 5.2. We will see that the shuffling
approach achieving the bound in Theorem 5.2 keeps all the observed samples, whereas [2]
shows that all such approaches must incur a sample complexity n= Ω(d/ logd) for the Gaus-
sian model. In contrast, Theorem 5.5 and Corollary 5.6 give a sample complexity n=O(

√
d)

of amplification in the Gaussian location model.

5.2. The shuffling approach. This section presents the sample amplification approaches
to achieve Theorems 5.2 and 5.5. The idea is simple: we find a good distribution learner P̂n
which attains the rate-optimal χ2-estimation error, draw additional m samples Y1, · · · , Ym
from P̂n, and shuffle them with the original samples X1, · · · ,Xn uniformly at random. This
approach suffices to achieve the sample amplification error in Theorem 5.2, while for The-
orem 5.5 an additional trick is applied: instead of shuffling the whole vectors, we indepen-
dently shuffle each coordinate instead. For technical reasons, in both approaches we apply
the sample splitting: the first n/2 samples are used for the estimation of P̂n, while the second
n/2 samples are used for shuffling. The algorithms are summarized in Algorithms 2 and 3.

The following lemma is the key to analyze the performance of the shuffling approach.

LEMMA 5.8. Let X1, · · · ,Xn be i.i.d. drawn from P , and Y1, · · · , Ym be i.i.d. drawn
from Q independent of (X1, · · · ,Xn). Let (Z1, · · · ,Zn+m) be a uniformly random permu-
tation of (X1, · · · ,Xn, Y1, · · · , Ym) , and Pmix be the distribution of the random mixture
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Algorithm 3 SAMPLE AMPLIFICATION VIA SHUFFLING: PRODUCT MODEL

1: Input: samples X1, · · · ,Xn, a given class of product distributions P =
∏d
j=1Pj

2: for j = 1,2, · · · , d do
3: Based on samples X1,j , · · · ,Xn/2,j , find an estimator P̂n,j such that

sup
Pj∈Pj

EPj
[χ2(P̂n,j , Pj)]≤C · rχ2(Pj , n/2).

4: Draw m additional samples Y1,j , · · · , Ym,j from P̂n,j .
5: Uniformly at random, shuffle Xn/2+1,j , · · · ,Xn,j , Y1,j , · · · , Ym,j to obtain (Z1,j , · · · ,Zn/2+m,j).
6: end for
7: For each i ∈ [n/2 +m], form the vector Zi = (Zi,1, · · · ,Zi,d).
8: Output: amplified samples (X1, · · · ,Xn/2,Z1, · · · ,Zn/2+m).

(Z1, · · · ,Zn+m). Then

χ2
(
Pmix, P

⊗(n+m)
)
≤
(

1 +
m

n+m
χ2(Q,P )

)m
− 1.

Based on Lemma 5.8, the advantage of random shuffling is clear: if we simply append
Y1, · · · , Ym to the end of the original sequence X1, · · · ,Xn, then the χ2-divergence is exactly
(1 + χ2(Q,P ))m − 1. By comparing with the upper bound in Lemma 5.8, we observe that
a smaller coefficient m/(n+m) is applied to the individual χ2-divergence after a random
shuffle. The proofs of Theorems 5.2 and 5.5 are then clear, where we simply take Q = P̂n
and apply the above lemma. Note that the statement of Lemma 5.8 requires that Y1, · · · , Ym
be independent of X1, · · · ,Xn, which is exactly the reason why we apply sample splitting
in Algorithms 2 and 3. The proof of Lemma 5.8 is presented in Appendix C, and the com-
plete proofs of Theorems 5.2 and 5.5 are relegated to Appendix B. We also include concrete
examples of the shuffling approach in Appendix A.2.

6. Minimax lower bounds. In this section we establish minimax lower bounds for sam-
ple amplification in different statistical models. Section 6.1 presents a general and tight ap-
proach for establishing the lower bound, which leads to an exact sample amplification result
for the Gaussian location model. Based on this result, we show that for d-dimensional con-
tinuous exponential families, the sample amplification size cannot exceed ω(nε/

√
d) for suf-

ficiently large sample size n. Section 6.2 provides a specialized criterion for product models,
where we show that n= Ω(

√
d/ε) and m=O(nε/

√
d) are always valid lower bounds, with

hidden constants independent of all parameters. Section A.3 lists several concrete examples
where our general idea could be properly applied to provide tight and non-asymptotic results.

6.1. General idea. The main tool to establish the lower bound is the first equality in the
Definition 3.1 of Le Cam’s distance. Specifically, for a class of distributions P = (Pθ)θ∈Θ,
let µ be a given prior distribution on Θ, and L : Θ×A→ [0,1] be a given non-negative loss
function upper bounded by one. Given n i.i.d. samples from an unknown distribution in P ,
define the following Bayes risk and minimax risk:

rB(P, n,L,µ) = inf
θ̂

∫
Θ
Eθ[L(θ, θ̂(Xn))]µ(dθ),

r(P, n,L) = inf
θ̂

sup
θ∈Θ

Eθ[L(θ, θ̂(Xn))],

where the infimum is over all possible estimators θ̂(·) taking value inA. The following result
is a direct consequence of Definition 3.1.
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LEMMA 6.1. For any integer n,m > 0, any class of distributions P = (Pθ)θ∈Θ, any
prior µ on Θ, and any loss function L : Θ×A→ [0,1], the minimax error of sample ampli-
fication ε?(P, n,m) in (3.3) satisfies that

ε?(P, n,m)≥ rB(P, n,L,µ)− rB(P, n+m,L,µ),

ε?(P, n,m)≥ r(P, n,L)− r(P, n+m,L).

Based on Lemma 6.1, it suffices to find an appropriate prior distribution µ and a loss func-
tion L, and then compute (or lower bound) the difference between the Bayes or minimax risks
with different sample sizes. We note that the lower bound technique in [2], albeit seemingly
different, is a special case of Lemma 6.1. Specifically, the authors of [2] designed a set-valued
mapping An : θ→P(X n) for each n ∈ N such that Pθ(Xn+m ∈ An+m(θ)) ≥ 0.99 for all
θ ∈Θ, while there is a prior distribution µ on Θ such that

EXn

[
sup
xn∈Xn

Pθ|Xn(xn ∈An(θ))

]
≤ 0.5.(6.1)

If the above conditions hold, then an (n,n+m) sample amplification is impossible. Note that
the probability term in (6.1) is the maximum coverage probability of the sets An(θ) where θ
follows the posterior distribution Pθ|Xn , which is a well-defined geometric object when both
An(θ) and the posterior are known. To see that the above approach falls into our framework,
consider the loss function L : Θ×∪n≥1X n→ [0,1] with L(θ,Xn) = 1(Xn /∈An(θ)). Then
the first condition ensures that rB(P, n + m,L,ν) ≤ 0.01 for each prior ν, and the second
condition (6.1) exactly states that rB(P, n,L,µ)≥ 0.5 for the chosen prior µ.

A first application of Lemma 6.1 is an exact lower bound in Gaussian location models.

THEOREM 6.2. For the Gaussian location model P = {N (θ,Σ)}θ∈Rd with a fixed co-
variance Σ ∈Rd×d, the minimax error of sample amplification in (3.3) is exactly

ε?(P, n,m) =

∥∥∥∥N (0,
Id
n

)
−N

(
0,

Id
n+m

)∥∥∥∥
TV
.

In particular, the sufficiency-based approach in Example 4.1 is exactly minimax optimal.

Theorem 6.2 shows that an exact error characterization for the Gaussian location model is
possible through the general lower bound approach in Lemma 6.1. This result is also asymp-
totically useful to a rich family of models: note that by CLT, the sufficient statistic in a con-
tinuous exponential family follows a Gaussian distribution asymptotically, with a vanishing
TV distance. This idea was used in Section 4.3 to establish the O(nε/

√
d) upper bound,

and the same observation could lead to an Ω(nε/
√
d) lower bound as well, under slightly

different assumptions. Specifically, we drop Assumption 2 while introducing an additional
assumption.

ASSUMPTION 3 (Linear independence). The components of sufficient statistic T (x) are
linearly independent, i.e. a>T (x) = 0 for µ-almost all x ∈ X implies a= 0.

Assumption 3 ensures that the true dimension of the exponential family is indeed d. When-
ever Assumption 3 does not hold, we could transform it into a minimal exponential family
with a lower dimension fulfilling this assumption. Note that when Assumptions 1 and 3 hold,
the mean mapping θ 7→ ∇A(θ) is a diffeomorphism between Θ and ∇A(θ); see, e.g. [12,
Theorem 1.22]. Therefore, ∇A(·) is an open map, and the set {∇A(θ) : θ ∈ Θ} contains a
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d-dimensional ball. This fact enables us to obtain a d-dimensional Gaussian location model
after we apply the CLT.

The following theorem characterizes an asymptotic lower bound for every exponential
family satisfying Assumptions 1 and 3.

THEOREM 6.3. Given a d-dimensional exponential family P satisfying Assumptions 1
and 3, for every n,m ∈N, the minimax error of sample amplification satisfies

ε?(P, n,m)≥ c ·

(
m
√
d

n
∧ 1

)
−C ·

(
logn

n

) 1

3

,

where c > 0 is an absolute constant independent of (n,m,d,P), and constant C > 0 depends
only on the exponential family (and thus on d).

Theorem 6.3 shows that there exists some n0 > 0 depending only on the exponential fam-
ily, such that sample amplification from n to n + ω(nε/

√
d) samples is impossible for all

n > n0. However, similar to the nature of the upper bound in Theorem 4.5, this asymptotic
result does not imply that the sample amplification is impossible if n= o(

√
d/ε). Neverthe-

less, in the following sections we show that the sample complexity lower bound n= Ω(
√
d/ε)

indeed holds in product families, as well as several other concrete examples.

6.2. Product models. Although Lemma 6.1 presents a lower bound argument in general,
the computation of exact Bayes or minimax risks could be very challenging, and the usual
rate-optimal analysis (i.e. bounding the risks within a multiplicative constant) will not lead
to meaningful results. In addition, choosing the right prior and loss is a difficult task which
may change from instance to instance. Therefore, it is helpful to propose specialized versions
of Lemma 6.1 which are easier to work with. Surprisingly, such a simple version exists for
product models, which is summarized in the following theorem.

THEOREM 6.4. Let ε ∈ (0,1) and Pθ =
∏d
j=1 pθj be a product model with (θ1, · · · , θd) ∈∏d

j=1 Θj . Suppose for each j ∈ [d], there exist two points θj,+, θj,− ∈Θj such that

‖p⊗nθj,+ − p
⊗n
θj,−
‖TV ≤ αj −

ε√
d
,(6.2)

‖p⊗(n+m)
θj,+

− p⊗(n+m)
θj,−

‖TV ≥ αj +
ε√
d
,(6.3)

with αj ∈ (α,α), where α,α ∈ (0,1) are absolute constants. Then there exists an absolute
constant c= c(α,α)> 0 such that

ε?(P, n,m)≥ cε.

Theorem 6.4 leaves the choices of the prior and loss function in Lemma 6.1 implicit, and
provides a simple criterion for product models. The usual routine of applying Theorem 6.4 is
as follows: fix any constant α and a target error ε, find for each j ∈ [d] two points θj,+, θj,− ∈
Θj such that the condition (6.2) holds for a given sample size n. Then the condition (6.3)
becomes an inequality solely for m, from which we could solve the smallest mj ∈ N such
that (6.3) holds along the j-th coordinate. Finally, the sample amplification from n to n+m
samples is impossible by the above theorem, where m = maxj∈[d]mj . Although Theorem
6.5 is only for product models, similar ideas could also be applied to non-product models;
we refer to Section A.3 for concrete examples.
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Theorem 6.4 also provides some intuition on why the sample complexity lower bound for
amplification is typically smaller than that of learning. Specifically, for learning under the TV
distance, a small TV distance ‖

∏d
j=1 p

⊗n
θj,+
−
∏d
j=1 p

⊗n
θj,−
‖TV between product distributions is

required. This requirement typically leads to a much smaller individual TV distance ‖p⊗nθj,+ −
p⊗nθj,−‖TV, e.g. O(1/

√
d) for many regular models. In contrast, the conditions (6.2) and (6.3)

only require a constant individual TV distance, which leads to a smaller sample complexity n
in the sample amplification lower bound. To understand why a larger individual TV distance
works for sample amplification, in the proof of Theorem 6.4 we consider the uniform prior on
2d points

∏d
j=1{θj,+, θj,−}. Under this prior, the test accuracy for each dimension is precisely

(1 + TVj)/2, which is slightly smaller than (1 + α)/2 with n samples, and slightly larger
than (1 + α)/2 with n+m samples (assuming αj ≡ α). Therefore, if a unit loss is incurred
when the fraction of correct tests does not exceed (1+α)/2, the current scaling in (6.2), (6.3)
shows that there is an Ω(ε) difference in the expected loss under different sample sizes. In
other words, such an aggregate voting test helps to have a larger individual TV distance. The
details of the proof are deferred to Appendix B.

Theorem 6.4 has a far-reaching consequence: with almost no assumption on the product
model P , for any c > 0 it always holds that ε?(P, n, dcεn/

√
de)≥ c′ε for some absolute con-

stant c′ > 0 independent of the product model P . The only assumption (besides the product
structure) we make on P is as follows (here n ∈N is a given sample size):

ASSUMPTION 4. LetP possess the product structure as in Theorem 6.4. For each j ∈ [d],
there exists two points θj,+, θj,− ∈Θj such that 1/(10n)≤H2(pθj,+ , pθj,−)≤ 1/(5n).

Assumption 4 is a mild assumption that requires that for each coordinate, the map θj 7→
pθj is continuous under the Hellinger distance. This assumption is satisfied for almost all
practical models, either discrete or continuous, and is invariant with model reparametrizations
or bijective transformation of observations. We note that the coefficients 1/10 and 1/5 are
not essential, and could be replaced by any smaller constants. The next theorem states that if
Assumption 4 holds, we always have a lower bound n= Ω(

√
d) for the sample complexity

and an upper bound m=O(n/
√
d) for the size of sample amplification.

THEOREM 6.5. Let P be a product model satisfying Assumption 4. Then for any c > 0,
there is some c′ > 0 depending only on c (thus independent of n,d, ε,P) such that

ε?
(
P, n,

⌈
cεn√
d

⌉)
≥ c′ε.

Theorem 6.5 is a general lower bound for sample amplification in product models, with
intriguing properties that it is instance-wise in the model P , while the constants c and c′

are independent of P . As a result, the sample complexity is uniformly Ω(
√
d/ε), and the

maximum size of sample amplification is uniformly O(nε/
√
d) for all product models. In

comparison, the matching upper bound in Theorem 4.6 for product models has a hidden
constant depending on the statistical model. We note that it is indeed natural to have sam-
ple amplification results independent of the underlying statistical model. For example, it is
clear by definition that sample amplifications are invariant with bijective transformation of
observations. However, Assumption 2 depends on such transformations, so it possibly con-
tains some redundancy. In contrast, Assumption 4 remains invariant, which is therefore more
natural.

The proof idea of Theorem 6.5 is best illustrated for the case d= 1. Using the two points
θ+, θ− in Assumption 4, one could show that the TV distance between n copies of pθ+ and
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pθ− is bounded from above by a small constant. Similarly, for a large C > 0, the TV dis-
tance between Cn copies of them is lower bounded by a large constant. Consequently, if
m= (C − 1)n, Theorem 6.4 applied with d= 1 gives an Ω(1) lower bound on ε?(P, n,m).
What happens if m= cεn with a small c? The idea is to consider the TV distances between
n,n+ cεn,n+ 2cεn, · · · ,Cn copies of pθ+ and pθ− , which is an increasing sequence. Now
by the pigeonhole principle, there must be two adjacent TV distances differing by at least
Ω(cε/C) = Ω(ε), and Theorem 6.4 could be applied to this pair of sample sizes. This idea is
easily generalized to any dimensions, with the full proof in Appendix B.

We note that the lower bounds in Theorem 6.3 (as well as 6.2) and Theorem 6.5 are on two
different ends of the spectrum. In Theorems 6.2 and 6.3, an asymptotic setting (i.e. d fixed
and n→∞) is essentially considered, and a Gaussian limit is crucially used as long as there
is local asymptotic normality. In comparison, Theorem 6.5 deals with a high-dimensional
scenario (n,d can grow together) but restricts to a product model. However, looking at prod-
uct submodels and/or exploiting its proof techniques could still lead to tight lower bounds for
several non-product models, as shown in the examples in Appendix A.3.

7. Discussions on sample amplification versus learning. In all the examples we have
seen in the previous sections, there is always a squared root relationship between the statisti-
cal complexities of sample amplification and learning. Specifically, when the dimensionality
of the problem is d, the complexity of learning the distribution (under a small TV distance) is
typically n= Θ(d), whereas that of the sample amplification is typically n= Θ(

√
d). In this

section, we give examples where this relationship could break down in either direction, thus
show that there is no universal scaling between the sample complexities of amplification and
learning.

7.1. An example where the complexity of sample amplification is o(
√
d). We first provide

an example where the distribution learning is hard, but an (n,n+1,0.1) sample amplification
is easy. Consider the following class Pd,t of discrete distributions:

Pd,t =

{
(p0, · · · , pd) : pi ≥ 0,

d∑
i=0

pi = 1, p0 = t

}
,

where it is the same as the class of all discrete distributions over d + 1 points, except that
the learner has the perfect knowledge of p0 = t for some known t ∈ [1/(2

√
d),1/2]. It is a

classical result (see, e.g. [27]) that the sample complexity of learning the distribution over
Pd,t with a small TV distance is still n = Θ(d), regardless of t. However, the next theorem
shows that the complexity of sample amplification is much smaller.

THEOREM 7.1. For the class Pd,t with t ∈ [1/(2
√
d),1/2], an (n,n + 1,0.1) sample

amplification is possible if and only if

n= Ω

(
1

t

)
.

Note that for the choice of t= Θ(d−α) with α ∈ [0,1/2], the complexity of sample ampli-
fication could possibly be n= Θ(dα) for every α ∈ [0,1/2], showing that it could be o(

√
d)

with an arbitrary polynomial scale in d. Moreover, if t= o(1/
√
d), the complexity of sample

amplification reduces to n= Θ(
√
d), the case without the knowledge of t. The main reason

why sample amplification is easier here is that the additional fake sample could be chosen as
the first symbol, which has a large probability. In contrast, learning the distribution requires
the estimation of all other probability masses, so the existence of a probable symbol does not
help much in learning.



STATISTICAL COMPLEXITY OF SAMPLE AMPLIFICATION 21

7.2. An example where the complexity of sample amplification is ω(
√
d). Next we pro-

vide an example where the complexity of sample amplification is the same as that of learning.
Consider a low-rank covariance estimation model: X1, · · · ,Xn ∼N (0,Σ), where Σ ∈Rp×p
could be written as Σ = UU> with U ∈Rp×d and U>U = Id. In other words, the covariance
matrix Σ is isotropic on some d-dimensional subspace. Here n ≥ d samples suffice to esti-
mate Σ and thus the whole distribution perfectly, for the d-dimensional subspace could be
recovered using d i.i.d. samples with probability one. Therefore, the complexity of learning
the distribution is n = d. The following theorem states that this is also the complexity of
sample amplification.

THEOREM 7.2. For the above low-rank covariance estimation model with p≥ d+ 1, an
(n,n+ 1,0.1) sample amplification is possible if and only if n≥ d.

Theorem 7.2 shows that as opposed to learning, sample amplification fails to exploit the
low-rank structure in the covariance estimation problem. As a result, the complexity of sam-
ple amplification coincides with that of learning in this example. Note that sample amplifi-
cation is always no harder than learning: the learner could always estimate the distribution,
generate one observation from the distribution and append it to the original samples. There-
fore, Theorem 7.2 provides an example where the relationship between sample amplification
and learning is the worst possible.

7.3. An example where the TV distance is not the right metric. Finally we provide an
example showing that the TV distance is not the right metric for the learning-based approach
in Section 5, and thereby partially illustrate the necessity of using the χ2 divergence. This
example also goes beyond parametric families for sample amplification. Let P be the class
of all L-Lipschitz densities supported on [0,1], i.e. the density f satisfies |f(x) − f(y)| ≤
L|x− y| for all x, y ∈ [0,1]. For c ∈ (0,1), also let Pc ⊆P be the subclass of densities lower
bounded by c everywhere, i.e. f(x)≥ c for all x ∈ [0,1]. It is a classical result (see, e.g. [15])
that the minimax density estimation error under TV distance is Θ(n−1/3) for both P and Pc.
The next theorem shows that the sample complexities for amplification are actually different.

THEOREM 7.3. Let L≥ 8 and c ∈ (0,1) be fixed. It holds that

m?(Pc, n)� n5/6, while m?(P, n) . n3/4.

Theorem 7.3 shows that, although assuming a density lower bound does not alter the TV
estimation error, it boosts the size of amplified samples from O(n3/4) to Θ(n5/6). In fact, the
χ2-estimation error is also reduced from P to Pc: in the proof of Theorem 7.3 we show that
rχ2(Pc, n) . n−2/3, but m?(P, n) . n3/4 together with Theorem 5.2 imply that rχ2(P, n) &
n−1/2. Therefore, this is an example suggesting that measuring the estimation error under the
χ2 divergence might be a better indicator for the complexity of sample amplification than the
TV distance.
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SUPPLEMENTARY MATERIAL

Supplement to “On the Statistical Complexity of Sample Amplification”
We provide proofs of main theorems (Theorem 4.5, 4.6, 5.2, 5.5, 6.2, 6.3, 6.4, 6.5, 7.1, 7.2,
7.3) and lemmas (Lemma 4.4, 5.8).
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SUPPLEMENT TO “ON THE STATISTICAL COMPLEXITY OF SAMPLE
AMPLIFICATION”

BY BRIAN AXELROD, SHIVAM GARG, YANJUN HAN, VATSAL SHARAN, AND
GREGORY VALIANT

APPENDIX A: CONCRETE EXAMPLES OF SAMPLE AMPLIFICATION

In this section we include concrete examples of sample amplification omitted in the main
text due to space limitations, including the non-asymptotic upper bounds in Section 4 and 5,
and the lower bounds for non-product models in Section 6.

A.1. Concrete examples of amplification via sufficiency. In this section, in contrast to
the mostly asymptotic results in Section 4.3, we investigate several non-asymptotic examples
of sample amplification in concrete models. We show that for many natural models, including
exponential family with dependent coordinates and non-exponential family which are not
covered in the general theory, the sufficiency-based sample amplification approach could still
amplify Ω(n/

√
d) additional samples. We also illustrate the computational idea in Section

4.2 via more involved examples.
Our first example concerns the Gaussian model with a known mean but an unknown co-

variance. It is a folklore result that estimating the unknown covariance in a vanishing Frobe-
nius norm requires n= Ω(d2) samples [6, Corollary 1.2], which is also the sample complex-
ity for learning the distribution within a small TV distance. The following example shows
that n=O(d) samples suffice for sample amplification.

EXAMPLE A.1 (Gaussian covariance model with known mean). Consider the i.i.d. ob-
servations X1, · · · ,Xn drawn from N (0,Σ) with zero mean and an unknown covariance
Σ ∈Rd×d. Here a minimal sufficient statistic is the sample covariance matrix

Σ̂n =
1

n

n∑
i=1

XiX
>
i .

Lemma A.2 shows that ‖L(Σ̂n)−L(Σ̂n+m)‖TV ≤ ε as long asm=O(εn/d), therefore draw-
ing samples from PXn+m|Σ̂n+m

achieves sample amplification of size m= Ω(n/d). This co-

incides with the general O(n/
√
D) result where D � d2 is the parameter dimension.

In order to sample from this conditional distribution, consider the following statistic

Sn+m = [(n+m)Σ̂n+m]−1/2[X1,X2, · · · ,Xn+m] ∈Rd×(n+m),

which always exists even if Σ̂n+m is not invertible. Clearly there is a bijection betweenXn+m

and (Σ̂m+n, Sn+m), and Lemma A.2 shows that Sn+m is an ancillary statistic. In particular,
Sn+m always follows the uniform distribution on the following set:

A= {U ∈Rd×(n+m) : UU> = Id}.

Consequently an (n,n + Ω(nε/d), ε) sample amplification is efficiently achievable in the
Gaussian covariance model using the following algorithm:

1. Given samples [X1,X2, · · · ,Xn] compute Σ̂n = 1
n

∑n
i=1XiX

>
i .

2. Sample [Z1,Z2, · · · ,Zn+m] whereZi ∼N(0, I) for all i. Compute Σ̂n+m = 1
n

∑n
i=1ZiZ

>
i .

Based on these compute Sn+m = [(n+m)Σ̂n+m]−1/2[Z1,Z2, · · · ,Zn+m].
3. Output (n+m) samples Xn+m = [(n+m)Σ̂n]1/2Sn+m.
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LEMMA A.2. Under the notations of Example A.1, for n≥ 4 max{m,d} it holds that

‖L(Σ̂n)−L(Σ̂n+m)‖TV ≤
2md

n
.

In addition, Sn+m is uniformly distributed on A= {U ∈Rd×(n+m) : UU> = Id}.

The next example shows that the sample amplification result does not change much if
both the mean and covariance are unknown, though the sampling procedure becomes slightly
more involved.

EXAMPLE A.3 (Gaussian model with unknown mean and covariance). Next we consider
the most general Gaussian model where X1, · · · ,Xn ∼N (θ,Σ) with unknown mean vector
θ ∈Rd and unknown covariance matrix Σ ∈Rd×d. In this case, a minimal sufficient statistic
is the pair (Xn, Σ̂n), with

Xn =
1

n

n∑
i=1

Xi, Σ̂n =
1

n− 1

n∑
i=1

(Xi −Xn)(Xi −Xn)>.

Lemma A.4 shows that ‖L(Xn, Σ̂n)− L(Xn+m, Σ̂n+m)‖TV ≤ ε as long as m = O(nε/d),
therefore drawing amplified samples from PXn+m|(Xn+m,Σ̂n+m) achieves sample amplification
of size m= Ω(nε/d). For the computation, consider the following statistic

Sn+m = [(n+m− 1)Σ̂n+m]−1/2[X1 −Xn+m, · · · ,Xn+m −Xn+m] ∈Rd×(n+m),

and it is clear that the whole samplesXn+m could be recovered from (Xn+m, Σ̂n+m, Sn+m).
Again, Lemma A.4 shows that Sn+m is ancillary and uniformly distributed on the following
set (assuming n+m− 1≥ d):

A= {U ∈Rd×(n+m) : UU> = Id,U1 = 0}.

LEMMA A.4. Under the notations of Example A.3, for n≥ 4 max{m,d} it holds that

‖L(Xn, Σ̂n)−L(Xn+m, Σ̂n+m)‖TV ≤
3md

n− 1
.

In addition, Sn+m is uniformly distributed on A= {U ∈Rd×(n+m) : UU> = Id,U1 = 0}.

The following example concerns the product exponential distributions, or general Gamma
distributions with a fixed shape parameter.

EXAMPLE A.5 (Product exponential distribution). In this example, we consider the
product exponential model where X1, · · · ,Xn ∼

∏d
i=1 Exp(λi) with unknown rate vector

λ= (λ1, · · · , λd). Again, in this model the sample mean Xn is sufficient, and follows a prod-
uct Gamma distribution

∏d
i=1 Gamma(n,nλi). Consequently,

DKL(L(Xn)‖L(Xn+m)) = d ·
(
m− (n+m) log

(
1 +

m

n

)
+ log

Γ(n+m)

Γ(n)
−mψ(n)

)
,

where Γ(x) =
∫∞

0 tx−1e−tdt and ψ(x) = d
dx [log Γ(x)] are the gamma and digamma func-

tions, respectively. Using the definition of f(n,m,d) in (C.3), we note that the above KL
divergence is precisely d · f(2n,2m,1), thus by the proof of Lemma A.2 is further at most
O(dm2/n2). Consequently, sample amplification is possible as long as n = Ω(

√
d/ε) and
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m=O(nε/
√
d). Alternatively, the same result could also follow from Theorem 4.6, for both

assumptions 1 and 2 hold for the exponential distribution.
To draw amplified samples X1, · · · ,Xn+m conditioned on Xn+m, note that the following

statistic S ∈Rd×(n+m) with i-th row being

Si =

(
X1,i

Xn+m,i

,
X2,i

Xn+m,i

, · · · , Xn+m,i

Xn+m,i

)
,

is ancillary. In fact, each Si follows the Dirichlet distribution Dir(1,1, · · · ,1). Then compu-
tational efficiency follows from the obvious fact that Xn+m is determined by (Xn+m, S).

Our final example is a non-exponential family which is not even differentiable in quadratic
mean, but the n=O(

√
d) sample complexity still holds.

EXAMPLE A.6 (Uniform distribution over a rectangle). In this example, let X1, · · · ,Xn

be i.i.d. samples from the uniform distribution on an unknown rectangle
∏d
j=1[aj , bj ] in Rd.

Note that this is not an exponential family. However, the sufficiency-based sample amplifica-
tion could still be applied in this case. Specifically, here the sufficient statistics are Xn

min and
Xn

max, where for j ∈ [d],

Xn
min,j = min

i∈[n]
Xi,j , Xn

max,j = max
i∈[n]

Xi,j .

It is not hard to find that, the joint density of (Xn
min,j ,X

n
max,j) is

fn(a, b) =
n(n− 1)(b− a)n−2

(bj − aj)n
· 1(aj ≤ a≤ b≤ bj).

Then after some algebra, the KL divergence between the sufficient statistics is

DKL(L(Xn
min,X

n
max)‖L(Xn+m

min ,Xn+m
max )) = d

(
m

n
− log

(
1 +

m

n

)
+

m

n− 1
− log

(
1 +

m

n− 1

))
,

which is O(dm2/n2) when m = O(n). Therefore, sample amplification for uniform distri-
butions is still possible whenever m = O(nε/

√
d) and n = Ω(

√
d/ε), same as exponential

families.
To draw amplified samples X1, · · · ,Xm+n conditioned on (Xn+m

min ,Xm+n
max ), note that the

following statistic S ∈Rd×(n+m) with i-th row being

Si =

(
X1,i −Xn+m

min

Xm+n
max −Xm+n

min

, · · · ,
Xm+n,i −Xn+m

min

Xm+n
max −Xm+n

min

)
,

is ancillary. This is due to the invariance property of the uniform distribution: if X ∼ U(0,1),
then aX + b∼ U(b, a+ b). Since (X1, · · · ,Xn+m) is determined by (Xn+m

min ,Xn+m
max , S), the

computational efficiency follows.

Although all of the above examples work exclusively for continuous models and apply an
identity map between sufficient statistics, we remark that more sophisticated maps based on
learning could be useful and work for discrete models. The idea of sample amplification via
learning is presented in Section 5, and an example which combines both the sufficiency and
learning ideas could be found in Example A.14.
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A.2. Concrete examples of amplification via learning. In this section we show how
learning-based approaches achieve optimal performances of sample amplification in several
examples, including both continuous and discrete models. In some scenarios the following
strengthened lemma may be useful to deal with too large χ2-divergence.

LEMMA A.7. The same results of Theorem 5.2 and 5.5 hold for the following modifica-
tion of the χ2-estimation error:

rχ̄2(P, n) = inf
P̂n

sup
P∈P

EP
[
χ2(P̂n, P )∧ n

]
.

The idea behind Lemma A.7 is that for some models, it might happen that χ2(P̂n, P ) =∞
with a small probability. However, for the TV distance we always have ‖P̂n − P‖TV ≤ 1, so
a large χ2-divergence could still lead to a meaningful TV distance. The proof of Lemma A.7
could be found in Appendix C.

The first example is again the Gaussian location model in Example 4.1, where we show
that the shuffling-based approach also achieves the complexity n = O(

√
d/ε) and the size

m= Ω(nε/
√
d).

EXAMPLE A.8 (Gaussian location model with known covariance, continued). Consider
the setting of Example 4.1, where the family of distributions is P = {N (θ, Id)}θ∈Rd . Here
P has a product structure, with Pj = {N (θj ,1)}θj∈R for each j ∈ [d]. To find an upper
bound on the χ2-estimation error, consider the distribution estimator P̂n,j =N (θ̂j ,1), where
θ̂j = n−1

∑n
i=1Xi,j . Consequently,

χ2(P̂n,j , Pj) = χ2(N (θ̂j ,1),N (θj ,1)) = exp((θ̂j − θj)2)− 1,

and using θ̂j − θj ∼N (0,1/n), we have

E[χ2(P̂n,j , Pj)] =

√
n

n− 2
− 1 =O

(
1

n

)
whenever n≥ 3. Consequently, rχ2(Pj , n) =O(1/n) for all j ∈ [d], and Theorem 5.5 implies
that an (n,n+m,ε) sample amplification is possible if n= Ω(

√
d/ε) and m=O(nε/

√
d).

The next example is the discrete distribution model considered in [2].

EXAMPLE A.9 (Discrete distribution model). Let P be the class of all discrete distribu-
tions supported on k elements. In this case, a natural learner is the empirical distribution
P̂n = (p̂1, · · · , p̂k), with

p̂j =
1

n

n∑
i=1

1(Xi = j), j ∈ [k].

Consequently,

E[χ2(P̂n, P )] = E

 k∑
j=1

(p̂j − pj)2

pj

=

k∑
j=1

1− pj
n

=
k− 1

n
,

meaning that rχ2(P, n)≤ (k−1)/n. Hence, Theorem 5.2 implies that sample amplification is
possible whenever n= Ω(

√
k/ε) and m=O(nε/

√
k). In this case, Algorithm 2 essentially

subsamples from the original data and add them back with random shuffling, which is the
same algorithm in [2]. However, the analysis here is much simplified.
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The following example revisits the uniform distribution in Example A.6, and again shows
that the same amplification performance could be achieved by random shuffling.

EXAMPLE A.10 (Uniform distribution, continued). Consider the setting in Example A.6,
where the distribution class P is the family of all uniform distributions on a rectangle∏d
j=1[aj , bj ]. For each j, a natural distribution estimator P̂n,j is simply the uniform dis-

tribution on [Xn
min,j ,X

n
max,j ], where these quantities are defined in Example A.6. For this

learner, it holds that

χ2
(
P̂n,j , Pj

)
=

(aj − bj)2

(Xn
max,j −Xn

min,j)
2
− 1.

Note that Example A.6 shows that the joint density of (Xn
min,j ,X

n
max,j) is given by

fn(a, b) =
n(n− 1)(b− a)n−2

(bj − aj)n
· 1(aj ≤ a≤ b≤ bj),

the expected χ2-divergence could then be computed as

E
[
χ2
(
P̂n,j , Pj

)]
=−1 +

∫∫
aj≤a≤b≤bj

n(n− 1)(b− a)n−4

(bj − aj)n−2
dadb=

4n− 6

(n− 2)(n− 3)
,

which is O(n−1) if n≥ 4. Hence, we have rχ2(Pj , n) =O(1/n) for each j ∈ [d], and Theo-
rem 5.5 shows an (n,n+m,ε) sample amplification if n= Ω(

√
d/ε) and m=O(nε/

√
d).

The next example is the exponential distribution model studied in Example A.5, where the
modified χ2-learning error rχ̄2(P, n) in Lemma A.7 will be useful.

EXAMPLE A.11 (Exponential distribution, continued). Consider the setting in Example
A.5, where the distribution class P is a product of exponential distributions with unknown
rate parameters. In this case, a natural distribution learner is to estimate each rate parameter
as λ̂n,j = n/

∑n
i=1Xi,j , and use Exp(λ̂n,j) to estimate the truth Exp(λj). Note that

χ2
(

Exp(λ̂n,j),Exp(λj)
)

=
(λ̂n,j − λj)2

λj(2λ̂n,j − λj)

whenever 2λ̂n,j > λj . However, if 2λ̂n,j ≤ λj the χ2-divergence will be unbounded, which
occurs with a small but positive probability.

To address this issue, we note that when λj = 1, the sub-exponential concentration claims
that |

∑n
i=1Xi,j − n| ≤ n/3 with probability at least 1− exp(−Ω(n)). By a simple scaling,

the above event implies that λ̂n,j/λj ∈ [3/4,3/2]. Hence,

E
[
χ2
(

Exp(λ̂n,j),Exp(λj)
)
∧ n
]
≤ 2 ·E

( λ̂n,j
λj
− 1

)2
+ n · exp(−Ω(n)) =O

(
1

n

)
,

which means that rχ̄2(Pj , n) =O(1/n). Therefore, by Lemma A.7, the sample amplification
is possible whenever n= Ω(

√
d/ε) and m=O(nε/

√
d), the same as Example A.5.

The following example considers an interesting non-product model, i.e. the Gaussian dis-
tribution with a sparse mean vector.
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EXAMPLE A.12 (Sparse Gaussian model). Consider the Gaussian location model P =
{N (θ, Id)}θ∈Θ, with an additional constraint that the mean vector θ is s-sparse, i.e. Θ =
{θ ∈Rd : ‖θ‖0 ≤ s}. For the learning problem, it is well-known (cf. [7, Theorem 1]) that the
soft-thresholding estimator θ̂n with

θ̂n,j = sign

(
1

n

n∑
i=1

Xi,j

)
·

(∣∣∣∣∣ 1n
n∑
i=1

Xi,j

∣∣∣∣∣−
√
C logn

n

)
+

and any constant C > 2 achieves that supθ∈Θ E[‖θ̂n − θ‖22] = O(s logd/n). Therefore, the
sample complexity of learning sparse Gaussian distributions is n=O(s logd).

For the complexity of sample amplification, for each j ∈ [d] we applyN (θ̂n,j ,1) as the dis-
tribution estimator. The χ2-estimation performance of this estimator is summarized in Lemma
A.13. Therefore, by a simple adaptation of Lemma A.7, an (n,n+m) sample amplification
is possible as long as n= Ω(

√
s logd/ε) and m=O(nε/

√
s logd).

LEMMA A.13. Under the setting of Example A.12, it holds that

sup
θ∈Θ

d∑
j=1

E
[
χ2
(
N (θ̂n,j ,1),N (θj ,1)

)
∧ n
]

=O

(
s logd

n

)
.

The final example is a special example where the sole application of either sufficient statis-
tics or learning will fail to achieve the optimal sample amplification. The solution is to use a
combination of both ideas.

EXAMPLE A.14 (Poisson distribution). Consider the product Poisson model
∏d
j=1 Poi(λj)

with λ ∈ Rd+. We first show that a naïve application of either sufficiency-based or shuffling-
based idea will not lead to a desired sample amplification. In fact, the sufficient statistic here
is Tn =

∑n
i=1Xi which follows a product Poisson distribution

∏d
j=1 Poi(nλj); as Tn takes

discrete values, applying any linear map between Tn to Tn+m will not result in a small TV
distance between sufficient statistics.

The argument for the shuffling-based approach is subtler. A natural distribution estimator
for Poi(λj) is Poi(λ̂n,j), with λ̂n,j = n−1

∑n
i=1Xi,j . Lemma A.15 shows that this distribution

estimator could suffer from an expected χ2-estimation error far greater than Ω(1/n), so we
cannot conclude an (n,n+ Ω(nε/

√
d), ε) sample amplification from Theorem 5.5.

Now we show that a combination of the sufficient statistic and learning leads to the rate-
optimal sample amplification in this model. Specifically, we split samples and compute the
empirical rate parameter λ̂n/2 based on the first n/2 samples. Next, conditioned on the first
half of samples, the sufficient statistic for the remaining half is Tn/2 =

∑n
i=n/2+1Xi. Define

T̂n/2+m = Tn/2 +Z,

where Z ∼
∏d
j=1 Poi(mλ̂n/2,j) is independent of Tn/2 conditioning on the first half samples.

Finally, we generate the (n/2 +m) amplified samples from the conditional distribution and
append them to (X1, · · · ,Xn/2). By the second statement of Lemma A.15, this achieves an
(n,n+m,ε) sample amplification whenever n= Ω(

√
d/ε) and m=O(nε/

√
d).

LEMMA A.15. Under the settings of Example A.14, there exists some λj > 0 such that

E
[
χ2
(
Poi(λ̂n,j),Poi(λj)

)
∧ n
]

= Ω

(
1

logn

)
� 1

n
.
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In addition, the proposed sufficiency+learning approach satisfies

‖L(X̂n+m)−L(Xn+m)‖TV ≤
m
√

2d

n
.

A.3. Non-asymptotic examples of lower bounds. In this section, we apply the lower
bound ideas to several concrete examples in Section 4 and 5, and show that the previously es-
tablished upper bounds for sample amplification are indeed tight. Since Theorem 6.5 already
handles all product models (including the Gaussian location model in Example 4.1, 4.2, and
A.8, exponential model in Example A.5 and A.11, uniform model in Example A.6 and A.10,
and Poisson model in Example A.14), we are only left with the remaining non-product mod-
els. In the sequel, we will make use of the general Lemma 6.1 to prove non-asymptotic lower
bounds in these examples.

The lower bound of the discrete distribution model was obtained in [2], where the learning
approach in Example A.9 is rate optimal. Our first example concerns the “Poissonized” ver-
sion of the discrete distribution model, and we show that the results become slightly different.

EXAMPLE A.16 (“Poissonized” discrete distribution model). We consider the follow-
ing “Poissonized” discrete distribution model, where we have n i.i.d. samples drawn from∏k
j=1 Poi(pj), with (p1, · · · , pk) being an unknown probability vector. Although the Pois-

sonization does not affect the optimal rate of estimation in many problems, Lemma A.17
shows the following distinction when it comes to sample amplification: the optimal amplifi-
cation size ism= Θ(nε/

√
k+
√
nε) under the Poissonized model, while it ism= Θ(nε/

√
k)

under the non-Poissonized model [2].
The complete proof of Lemma A.17 is relegated to the appendix, but we briefly comment

on why Theorem 6.5 is not directly applicable when k� n. The reason here is that to apply
Theorem 6.5, we will construct a parametric submodel which is a product model:

Pθ =

k0∏
j=1

[
Poi

(
1

k
+ θj

)
× Poi

(
1

k
− θj

)]
, θ ∈Θ ,

[
−1

k
,
1

k

]k0
,

where k = 2k0. However, for θ, θ′ ∈ [0,1/k], the range of the squared Hellinger distance

H2

(
Poi

(
1

k
+ θ

)
× Poi

(
1

k
− θ
)
,Poi

(
1

k
+ θ′

)
× Poi

(
1

k
− θ′

))
is only [0,Θ(1/k)], so Assumption 4 does not hold when k� n. This is precisely the subtlety
in the Poissonized model.

LEMMA A.17. Under the Poissonized discrete distribution model, an (n,n+m,ε) sam-
ple amplification is possible if and only if n= Ω(1) and m=O(nε/

√
k+
√
nε).

Our next example is the sparse Gaussian model in Example A.12, where we establish the
tightness of n= Ω(

√
s logd/ε) and m=O(nε/

√
s logd) directly using Lemma 6.1.

EXAMPLE A.18 (Sparse Gaussian location model). Consider the setting of the sparse
Gaussian location model in Example A.12, and we aim to prove a matching lower bound for
sample amplification. In the sequel, we first handle the case s = 1 to reflect the main idea,
and postpone the case of general s to Lemma A.19.

For s = 1, we apply Lemma 6.1 to a proper choice of the prior µ and loss L. Fixing a
parameter t > 0 to be chosen later, let µ be the uniform distribution on the finite set of vectors
{te1, · · · , ted}, where e1, · · · , ed are the canonical vectors in Rd. Moreover, for an estimator
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θ̂ ∈Rd of the unknown mean vector, the loss function is chosen to be L(θ, θ̂) = 1(θ̂ 6= θ). For
the above prior and loss, it is clear that the maximum likelihood estimator θ̂ = teĵ with

ĵ = arg max
j∈[d]

n∑
i=1

Xi,j

is the Bayes estimator, and the Bayes risk admits the following expression:

rB(P, n,µ,L) = 1−E

[
exp(
√
nt(
√
nt+Z1))

exp(
√
nt(
√
nt+Z1)) +

∑d
j=2 exp(

√
ntZj)

]
, 1− pd(

√
n · t),

where Z1, · · · ,Zd ∼ N (0,1) are i.i.d. standard normal random variables. Similarly, the
Bayes risk under n+m samples is rB(P, n+m,µ,L) = 1− pd(

√
n+m · t), and it remains

to investigate the property of the function pd(·). Lemma A.19 summarizes a useful property
for the lower bound, i.e. the function pd(z) enjoys a phase transition around z ∼

√
2 logd.

Based on Lemma A.19, the pigeonhole principle implies that for every given c > 0, there
exists some z ∈ [

√
2 logd−C,

√
2 logd+C] such that pd(z+cε)−pd(z) = Ωc(ε). Therefore,

if m = dcnε/
√

logde, choosing t = z/
√
n for the above z yields that pd(

√
n+m · t) −

pd(
√
n · t) = Ωc(ε), and consequently

ε?(P, n,m)≥ rB(P, n,µ,L)− rB(P, n+m,µ,L) = pd(
√
n+m · t)− pd(

√
n · t) = Ωc(ε).

Therefore, we must have n= Ω(
√

logd/ε) and m=O(nε/
√

logd) for sample amplification.

The following lemma summarizes the phase-transition property of pd used in the above
example.

LEMMA A.19. For the function pd(z) in Example A.18, there exists an absolute constant
C independent of d such that

pd(
√

2 logd−C)≤ 0.1,

pd(
√

2 logd+C)≥ 0.9.

Moreover, for general s < d/2, an (n,n + m) sample amplification is possible under the
sparse Gaussian model only if n= Ω(

√
s log(d/s)/ε) and m=O(nε/

√
s log(d/s)).

Our final example proves the tightness of the sufficiency-based approaches in Examples
A.1 and A.3 for Gaussian models with unknown covariance. The proof relies on the compu-
tation of the minimax risks in Lemma 6.1, as well as the statistical theory of invariance.

EXAMPLE A.20 (Gaussian model with unknown covariance). We establish the matching
lower bounds of sample amplification in Example A.1 with a known mean, which imply the
lower bounds in Example A.3. We make use of the minimax risk formulation of Lemma 6.1,
and consider the following loss:

L(Σ, Σ̂) = 1

(
`(Σ, Σ̂)≥ g(n+m− 1− d, d) +C · d

n

)
,

where function g is given by (A.2) in the Lemma C.3 below,C > 0 is a large absolute constant
to be determined later, and `(Σ, Σ̂) is the Stein’s loss

`(Σ, Σ̂) = tr(Σ−1Σ̂)− log det(Σ−1Σ̂)− d.
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To search for the minimax estimator under the above loss, similar arguments in [11] based
on the theory of invariance show that it suffices to consider estimators taking the form

Σ̂n = LnDnL
>
n ,(A.1)

whereDn ∈Rd×d is a diagonal matrix independent of the observations, andLn ∈Rd×d is the
lower triangular matrix satisfying that LnL>n =

∑n
i=1XiX

>
i . Moreover, the risk of the above

estimator is invariant with the unknown Σ, so in the sequel we assume that Σ = Id. Note that
when Dn = Id/n, the estimator Σ̂n is the sample covariance; however, other choices of the
diagonal matrix Dn could give a uniform improvement over the sample covariance, see [11].

The proof idea is to show that with n+m samples, there exists an estimator Σ̂n+m with a
specific choice of Dn+m in (A.1) such that (cf. Lemma A.21)

|E[`(Σ, Σ̂n+m)]− g(n+m+ 1− d, d)| ≤ 5d

n+m
,

√
Var(`(Σ, Σ̂n+m))≤ 4d

n+m
.

Consequently, by Chebyshev’s inequality, for C > 0 large enough r(P, n+m,L)≤ 0.1.
To lower bound the minimax risk r(P, n,L) with n samples, we need to enumerate over

all possible estimators taking the form of (A.1). It turns out that for any choice of Dn, the
first two moments of `(Σ, Σ̂n) admit explicit expressions, and it always holds that (cf. Lemma
A.21)

E[`(Σ, Σ̂n)]≥ g(n+ 1− d, d) +C1

(√
Var(`(Σ, Σ̂n))− 4d

n

)
− 6d

n

for any given constant C1 > 0, provided that n,d ≥ C2 with C2 depending only on C1.
ChoosingC1 > 0 large enough, Chebyshev’s inequality leads to `(Σ, Σ̂n)≥ g(n+1−d, d)−
5C1d/n with probability at least 0.9 for every Σ̂n taking the form of (A.1). By the last
statement of Lemma A.21, for m = C3n/d with a large enough C3 > 0, the above event
implies that r(P, n,L)≥ 0.9.

Combining the above scenarios and applying the pigeonhole principle, an application of
Lemma 6.1 claims that m=O(nε/d) is necessary for an (n,n+m,ε) sample amplification.

The following lemma summarizes the necessary technical results for Example A.20.

LEMMA A.21. Let n≥ d. For Dn = diag(λ1, · · · , λd) with λj = 1/(n+ d+ 1− 2j) for
all j ∈ [d], the corresponding estimator Σ̂n in (A.1) satisfies

|E[`(Σ, Σ̂n)]− g(n+ 1− d, d)| ≤ 5d

n
,

√
Var(`(Σ, Σ̂n))≤ 4d

n
,

where

g(u, v) ,
(u+ 2v) log(u+ 2v) + u logu

2
− (u+ v) log(u+ v).(A.2)

Meanwhile, for any choice of Dn and any absolute constant C1 > 0, the estimator Σ̂n in
(A.1) satisfies

E[`(Σ, Σ̂n)]≥ g(n+ 1− d, d) +C1

(√
Var(`(Σ, Σ̂n))− 4d

n

)
− 6d

n
,

as long as n,d≥C2 for some large enough constant C2 depending only on C1.
Finally, the function g defined in (A.2) satisfies the following inequality: for n ≥ 2d and

0≤m≤ n, it holds that

g(n+ 1− d, d)− g(n+m+ 1− d, d)≥ md2

13n2
.
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APPENDIX B: PROOF OF MAIN THEOREMS

B.1. Proof of Theorem 4.5. We recall the following result in [3, Theorem 2.6]: given
Assumptions 1 and 2 with k = 3, there exists a constant C > 0 depending only on d and the
moment upper bound such that

sup
θ∈Θ
‖L(
√
n[∇2A(θ)]−1/2(Tn −∇A(θ)))−N (0, Id)‖TV ≤

C√
n
.

By an affine transformation, it is then clear that

sup
θ∈Θ
‖L(Tn)−N (∇A(θ),∇2A(θ)/n)‖TV ≤

C√
n
.

Moreover, the computation in Example 4.1 shows that

sup
θ∈Θ
‖N (∇A(θ),∇2A(θ)/n)−N (∇A(θ),∇2A(θ)/(n+m))‖TV ≤

m
√
d

n
.

Now the desired result follows from the above inequalities and a triangle inequality.

B.2. Proof of Theorem 4.6. As the density in the Edgeworth expansion (4.1) may be
negative at some point, throughout the proof we extend the formal definition of the TV dis-
tance to any signed measures P and Q, just as half of the L1 distance. Under this new defini-
tion, it is clear that the triangle inequality ‖P −R‖TV ≤ ‖P −Q‖TV +‖Q−R‖TV still holds.
The following tensorization property also holds: for general signed measures P1, · · · , Pd and
Q1, · · · ,Qd with maxi∈[d] max{|Pi|(Ω), |Qi|(Ω)} ≤ r, we have

‖P1 × · · · × Pd −Q1 × · · · ×Qd‖TV

≤
d∑
i=1

‖P1 × · · · × Pi−1 ×Qi × · · · ×Qd − P1 × · · · × Pi ×Qi+1 × · · · ×Qd‖TV

≤
d∑
i=1

‖Pi −Qi‖TV ·
∏
j<i

|Pj |(Ω) ·
∏
k>i

|Qk|(Ω)

≤ rd
d∑
i=1

‖Pi −Qi‖TV.(B.1)

Fix any θ ∈Θ, let Pn,i (resp. Pn+m,i) be the probability distribution of the i-th coordinate
of Tn (resp. Tn+m), and Qn,i (resp. Qn+m,i) be the signed measure of the corresponding
Edgeworth expansion taking the form (4.1) with k = 9. We note that the polynomials K`(x)
in (4.1) are the same for Qn,i and Qn+m,i, and their coefficients are uniformly bounded over
θ ∈Θ thanks to Assumption 2. Then based on Assumptions 1 and 2 with k = 10, the result
of [3, Theorem 2.7] claims that

‖Pn,i −Qn,i‖TV ≤
C

n2
,

with C > 0 independent of (n,d, θ). Moreover, the signed measure of the Edgeworth expan-
sion in (4.1) could be negative only if |x|= Ω(

√
n), and therefore the total variation of each

Qn,i satisfies

|Qn,i|(R) = |Γn,9|(R)≤ Γn,9([−c
√
n, c
√
n]) + |Γn,9|(R\[−c

√
n, c
√
n])≤ 1 + exp(−Ω(n)),
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where the last inequality follows from integrating the Gaussian tails. Finally, let Q+
n,i be the

positive part of Qn,i in the Jordan decomposition, the tensorization property (B.1) leads to∥∥∥∥∥L(Tn)−
d∏
i=1

Q+
n,i

∥∥∥∥∥
TV

≤

∥∥∥∥∥L(Tn)−
d∏
i=1

Qn,i

∥∥∥∥∥
TV

≤ Cd

n2
· (1 + exp(−Ω(n)))d ,(B.2)

and similar result holds for L(Tn+m).
Next it remains to upper bound the TV distance between

∏d
i=1Q

+
n,i and

∏d
i=1Q

+
n+m,i.

To this end, we also generalize the formal definition of the Hellinger distance between gen-
eral measures which are not necessarily probabilities. Then the following inequality between
generalized TV and Hellinger distance holds: for measures P and Q on Ω,

‖P −Q‖TV =
1

2

∫
|dP − dQ|= 1

2

∫
|
√

dP −
√

dQ|(
√

dP +
√

dQ)

≤ 1

2

√∫
(
√

dP −
√

dQ)2 ·
∫

(
√

dP +
√

dQ)2

≤H(P,Q) ·
√
P (Ω) +Q(Ω).(B.3)

Also, the following tensorization property holds for the Hellinger distance between general
measures: for (not necessarily probability) measures Pi,Qi on Ωi,

H2

(
d∏
i=1

Pi,

d∏
i=1

Qi

)
=

∏d
i=1Pi(Ωi) +

∏d
i=1Qi(Ωi)

2
−

d∏
i=1

(
Pi(Ωi) +Qi(Ωi)

2
−H2(Pi,Qi)

)
.

(B.4)

Consequently, it suffices to prove an upper bound on the Hellinger distance H(Pi,Qi), and
the TV distance on the product measure is a direct consequence of (B.3) and (B.4).

To upper bound the individual Hellinger distance, note that after a proper affine transfor-
mation, the densities of Qn,i and Qn+m,i are as follows:

Qn,i(dx) = γn(x)

(
1 +

3∑
`=1

K`,i(
√
n · x)

n`/2

)
dx,(B.5)

Qn+m,i(dx) = γn+m(x)

(
1 +

3∑
`=1

K`,i(
√
n+m · x)

(n+m)`/2

)
dx,(B.6)

where γn is the density of N (0,1/n), and K`,i is a polynomial of degree 3` with uniformly
bounded coefficients. By (B.5) and (B.6), we observe that there exists an absolute constant
c > 0 independent of (n,m) such that Qn,i(x)/γn(x),Qn+m,i(x)/γn+m(x) ∈ [1/2,3/2]
whenever |x| ≤ c. Consequently, the squared Hellinger distance could then be expressed as

H2(Q+
n,i,Q

+
n+m,i) =

1

2

∫
|x|≤c

(√
Qn,i(x)−

√
Qn+m,i(x)

)2

dx+
1

2

∫
|x|>c

(√
Q+
n,i(x)−

√
Q+
n+m,i(x)

)2

dx

≤
∫
|x|≤c

(
√
γn(x)−

√
γn+m(x))2

(
1 +

3∑
`=1

K`,i(
√
n+m · x)

(n+m)`/2

)
dx

+

∫
|x|≤c

γn(x)


√√√√1 +

3∑
`=1

K`,i(
√
n · x)

n`/2
−

√√√√1 +

3∑
`=1

K`,i(
√
n+m · x)

(n+m)`/2

2

dx
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+

∫
|x|>c

(
Q+
n,i(x) +Q+

n+m,i(x)
)

dx

≡A1 +A2 +A3.

Next we upper bound the terms A1,A2, and A3 separately.

1. Upper bounding A1: note that by the definition of c, the multiplication factor in A1 is at
most 3/2. Therefore,

A1 ≤
3

2

∫
|x|≤c

(
√
γn(x)−

√
γn+m(x))2dx

≤ 3

2

∫
R
(
√
γn(x)−

√
γn+m(x))2dx

(a)
= 3

(
1−

(
n(n+m)

(n+m/2)2

)1/4
)

(b)

≤ 3m2

4n2
,(B.7)

where (a) is due to the direct computation of the squared Hellinger distance between
N (0,1/n) and N (0,1/(n+m)), and (b) makes use of the inequality 1− x1/4 ≤ 1− x
for x ∈ [0,1].

2. Upper bounding A2: using |
√
a−
√
b| ≤ |a− b| for a, b≥ 1/2, we have

A2 ≤
∫
|x|≤c

γn(x)

(
3∑
`=1

K`,i(
√
n · x)

n`/2
−

3∑
`=1

K`,i(
√
n+m · x)

(n+m)`/2

)2

dx

≤ 3

3∑
`=1

∫
R
γn(x)

(
K`,i(
√
n · x)

n`/2
−
K`,i(
√
n+m · x)

(n+m)`/2

)2

dx

= 3

3∑
`=1

∫
R
γ(x)

(
K`,i(x)

n`/2
−
K`,i(

√
1 +m/n · x)

(n+m)`/2

)2

dx,

where the last step is a change of measure, and γ is the density of N (0,1). Writing
K`,i(x) =

∑3`
j=0 ai,jx

j , then∣∣∣∣∣K`,i(x)

n`/2
−
K`,i(

√
1 +m/n · x)

(n+m)`/2

∣∣∣∣∣=
∣∣∣∣∣∣

3∑̀
j=0

ai,jx
j

n`/2

(
1−

(
1 +

m

n

) j−`
2

)∣∣∣∣∣∣. m(1 + x3`)

n`/2+1

whenever m=O(n). Combining the above two inequalities yields

A2 .
m2

n3
.(B.8)

3. Upper bounding A3: note that the tail of γn(x) is at least exp(−Ω(n)) when x≥ c, inte-
grating the tail leads to

A3 = exp(−Ω(n)).(B.9)

In summary, a combination of (B.7), (B.8), and (B.9) leads to

H2(Q+
n,i,Q

+
n+m,i) =O

(
m2

n2
+ exp(−Ω(n))

)
.



STATISTICAL COMPLEXITY OF SAMPLE AMPLIFICATION 13

Now using (B.3), (B.4), and |Qn,i|(R)≤ 1 + exp(−Ω(n)), we conclude that∥∥∥∥∥
d∏
i=1

Q+
n,i −

d∏
i=1

Q+
n+m,i

∥∥∥∥∥
TV

=O

(
m
√
d

n
+ (1 + exp(−Ω(n)))d

)
.(B.10)

Hence, when n = Ω(
√
d) and m = O(n), the desired result follows from (B.2) and (B.10).

For the other scenarios, we simply use that the TV distance is upper bounded by one, and the
result still holds.

B.3. Proof of Theorem 5.2. Let P̂n be the distribution learned from the first n/2 sam-
ples which achieves the χ2-learning error rχ2(P, n/2), and Pmix be the distribution of the
shuffled samples (Z1, · · · ,Zn/2+m) in Algorithm 2. Note that both distributions depend on
the first n/2 samples and are therefore random. Then the final TV distance of sample ampli-
fication is

‖PXn/2 × Pmix(Xn/2)− P⊗(n+m)‖TV = EXn/2‖Pmix(Xn/2)− P⊗(n/2+m)‖TV,

which is the expected TV distance between the mixture distribution and the product distribu-
tion.

By Lemma 5.8, for any realization of Xn/2 it holds that

χ2
(
Pmix, P

⊗(n/2+m)
)
≤
(

1 +
m

n/2 +m
χ2(P̂n, P )

)m
− 1.

Since (3.2) shows that DKL(P‖Q)≤ log(1 + χ2(P,Q)), we have

DKL(Pmix‖P⊗(n/2+m))≤m log

(
1 +

m

n/2 +m
χ2(P̂n, P )

)
≤ m2

n/2 +m
χ2(P̂n, P ).

Consequently, by (3.2) again and the concavity of x 7→
√
x, we have

EXn/2‖Pmix(Xn/2)− P⊗(n/2+m)‖TV ≤ EXn/2

√
1

2
DKL(Pmix(Xn/2)‖P⊗(n/2+m))

≤ EXn/2

√
m2

n+ 2m
χ2(P̂n(Xn/2), P )

≤
√

m2

n+ 2m
EXn/2 [χ2(P̂n(Xn/2), P )]

≤
√

m2

n+ 2m
· rχ2(P, n/2).

B.4. Proof of Theorem 5.5. The main arguments are essentially the same as Theorem
5.2. Note that by the same argument, for each j ∈ [d] we have

DKL(Pmix,j‖P⊗(n/2+m)
j )≤ m2

n/2 +m
χ2(P̂n,j , Pj).

Note that both Pmix and P have product structures, the chain rule of KL divergence implies
that

DKL(Pmix‖P⊗(n/2+m))≤ m2

n/2 +m

d∑
j=1

χ2(P̂n,j , Pj).

Now the rest of the proof follows from the same last few lines of that of Theorem 5.2.



14

B.5. Proof of Theorem 6.2. The proof relies on Lemma 6.1 and a classical statistical
result known as Anderson’s lemma. Without loss of generality we assume Σ = Id. Choose
L(θ, θ̂) = `(θ− θ̂), with a bowl-shaped (i.e. symmetric and quasi-convex) loss function `(·) ∈
[0,1]. Then Anderson’s lemma (see, e.g. [16, Lemma 8.5]) implies that the minimax estimator
under L and n samples is θ̂n = n−1

∑n
i=1Xi, thus

r(P, n,L) = E
[
`

(
Z√
n

)]
,

with Z ∼N (0, Id). Choosing `(x) = 1(‖x‖2 ≥ r) with the parameter r > 0 determined by

P
(∣∣∣∣ Z√n

∣∣∣∣≥ r)− P
(∣∣∣∣ Z√

n+m

∣∣∣∣≥ r)=

∥∥∥∥N (0,
Id
n

)
−N

(
0,

Id
n+m

)∥∥∥∥
TV
,

then clearly `(·) ∈ {0,1} is bowl-shaped. Hence, for this choice of L, Lemma 6.1 gives that

ε?(P, n,m)≥ r(P, n,L)− r(P, n+m,L) =

∥∥∥∥N (0,
Id
n

)
−N

(
0,

Id
n+m

)∥∥∥∥
TV
,

and a matching upper bound is presented in Example 4.1.

B.6. Proof of Theorem 6.3. Based on the discussions above Theorem 6.3, we choose
an arbitrary open ball Θ0 ⊆ Θ, and pick any d-dimensional ball Bd(µ0; r) contained in
∇A(Θ0). Let θ0 be the center of Θ0, and after a proper affine transformation we assume
that ∇A2(θ0) = Id. Consider a truncated Gaussian prior ν with

µ∼N (µ0, cnr
2
n) | µ ∈Bd(µ0; rn),

where cn > 0 and rn ∈ (0, r) are parameters to be determined later. Using the diffeomorphism
∇A, there is a prior ν0 on Θ0 which induces the above prior on ∇A(Θ0). Moreover, as Θ0,
the closure of Θ0, is a compact set, a weaker Assumption 2 with the supremum restricted to
Θ0 holds for k = 3.

Now we analyze the Bayes risks under the above prior ν0 and the loss

L(θ, µ̂) = `(∇A(θ)− µ̂) ∈ [0,1],

where ` is a bowl-shaped function. By sufficiency, it remains to consider the class of esti-
mators depending only on the sufficient statistic Tn(Xn) = n−1

∑n
i=1 T (Xi). Let µ̂(Tn) be

such an estimator, then under each θ ∈Θ0, we have

Eθ[L(θ, µ̂(Tn))]≥ Eθ[L(θ, µ̂(Zn))]− ‖L(Tn)−L(Zn)‖TV,

where Zn | θ ∼ N (∇A(θ), Id/n). To upper bound this TV distance, the proof of Theorem
4.5 together with Assumption 2 applied to Θ0 gives that

‖L(Tn)−N (∇A(θ),∇2A(θ)/n)‖TV ≤
C1√
n
,

where C1 > 0 only depends on the exponential family. Moreover,

‖N (∇A(θ), Id/n)−N (∇A(θ),∇2A(θ)/n)‖TV

= ‖N (0, Id)−N (0,∇2A(θ))‖TV

(a)

≤ 3

2
‖∇2A(θ)− Id‖F

(b)

≤ C2rn,

where (a) follows from [5, Theorem 1.1], and (b) makes use of the analytical property of
A(θ) (see, e.g. [12, Theorem 1.17]), the assumption that ‖∇A(θ) − ∇A(θ0)‖2 ≤ rn, and



STATISTICAL COMPLEXITY OF SAMPLE AMPLIFICATION 15

∇2A(θ0) = Id. Again, here the constant C2 > 0 is independent of n. Combining the above
inequalities yields that

Eθ[L(θ, µ̂(Tn))]≥ Eθ[L(θ, µ̂(Zn))]− C1√
n
−C2rn.(B.11)

Next we lower bound the Bayes risk Eν0Eθ[L(θ, µ̂(Zn))] when Tn has been replaced by
Zn. Let ν ′ be the non-truncated Gaussian distribution N (µ0, cnr

2
n), and Gn ∼ N (0, Id/n),

then

Eν0Eθ[L(θ, µ̂(Zn))] = Eµ∼ν [`(µ− µ̂(Gn + µ))]

≥ Eµ∼ν′ [`(µ− µ̂(Gn + µ))]− ν ′({µ /∈Bd(µ0; rn)})
(c)

≥ Eµ∼ν′ [`(µ− µ̂(Gn + µ))]− e−C3/cn

(d)

≥ E

[
`

(√
ncnr2

n

1 + ncnr2
n

·Gn

)]
− e−C3/cn

(e)

≥ E[`(Gn)]− e−C3/cn − C4

1 + ncnr2
n

.(B.12)

Here (c) follows from the Gaussian tail probability, (d) makes use of Anderson’s lemma and
the fact that under ν ′, the posterior distribution of µ given Zn is Gaussian with covariance
ncnr

2
nId/(1 +ncnr

2
n). The final inequality (e) is due to the following upper bound on the TV

distance:

‖N (0,Σ)−N (0, cΣ)‖TV ≤
3

2
‖(c− 1)Id‖F =

3
√
d|c− 1|

2
.

Now combining (B.11) and (B.12), we obtain a lower bound on the Bayes risk:

rB(P, n, ν0,L)≥ E[`(Gn)]− C1√
n
−C2rn − e−C3/cn − C4

1 + ncnr2
n

.

Similarly, by reversing all the above inequalities, an upper bound of the Bayes risk with
n+m samples is also available:

rB(P, n+m,ν0,L)≤ E[`(Gn+m)] +
C1√
n

+C2rn + e−C3/cn +
C4

1 + ncnr2
n

.

By the proof of Theorem 6.2, a proper choice of ` satisfies that

E[`(Gn)]−E[`(Gn+m)] =

∥∥∥∥N (0,
Id
n

)
−N

(
0,

Id
n+m

)∥∥∥∥
TV

= Ω

(
m
√
d

n
∧ 1

)
,

where the last step is again due to [5, Theorem 1.1]. Consequently, by choosing cn =
Θ(1/ logn) and rn = Θ((logn/n)1/3), the desired result follows from Lemma 6.1.

B.7. Proof of Theorem 6.4. We will apply Lemma 6.1 to the uniform prior µ over 2d

points
∏d
j=1{θj,+, θj,−}, and the loss function L : Θ×Θ→ [0,1] with

L((θ1, · · · , θd), (θ̂1, · · · , θ̂d)) = 1

 d∑
j=1

1(θj = θ̂j)≤
d

2
+

1

2

d∑
j=1

αj

 .

We compute the Bayes risks rB(P, n,µ,L) and rB(P, n+m,µ,L) in this scenario.
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Under the uniform prior µ, it is straightforward to see that the posterior distribution of
θ given Xn is a product distribution

∏d
j=1 pθj |Xn

j
, with pθj |Xn

j
supported on two elements

{θj,+, θj,−}, and

pθj |Xn
j
(θj,+) =

∏n
i=1 pθj,+(Xi,j)∏n

i=1 pθj,+(Xi,j) +
∏n
i=1 pθj,−(Xi,j)

,

pθj |Xn
j
(θj,−) =

∏n
i=1 pθj,−(Xi,j)∏n

i=1 pθj,+(Xi,j) +
∏n
i=1 pθj,−(Xi,j)

.

Then given Xn, the Bayes estimator θ̂(Xn) ∈ Θ which minimizes the expected loss L is a
minimizer ξ ∈Θ of the above expression

Pθ|Xn

 d∑
j=1

1(θj = ξj)≤
d

2
+

1

2

d∑
j=1

αj

 ,

which is easily seen to be

θ̂j(X
n) = θ̂j(X

n
j ) = θj,− + (θj,+ − θj,−) · 1

(
n∏
i=1

pθj,+(Xi,j)≥
n∏
i=1

pθj,−(Xi,j)

)
.

For the above Bayes estimator, the random variables 1(θj = θ̂j(X
n)) are mutually inde-

pendent, with the mean value

pn,j = P(θj = θ̂j(X
n))

=
1

2
p⊗nθj,+

(
n∏
i=1

pθj,+(Xi,j)<

n∏
i=1

pθj,−(Xi,j)

)
+

1

2
p⊗nθj,−

(
n∏
i=1

pθj,+(Xi,j)≥
n∏
i=1

pθj,−(Xi,j)

)

=
1

2

(
1 + ‖p⊗nθj,+ − p

⊗n
θj,−
‖TV

)
.

Consequently, we have pn,j ≤ (1 + αj)/2− ε/(2
√
d) for each j ∈ [d] by (6.2), and thus

rB(P, n,µ,L) = P

 d∑
j=1

Bern(pn,j)≤
d

2
+

1

2

d∑
j=1

αj


≥ P

 d∑
j=1

Bern

(
1 + αj

2
− ε

2
√
d

)
≤ d

2
+

1

2

d∑
j=1

αj

 .(B.13)

An entirely symmetric argument leads to

rB(P, n+m,µ,L)≤ P

 d∑
j=1

Bern

(
1 + αj

2
+

ε

2
√
d

)
≤ d

2
+

1

2

d∑
j=1

αj

 .(B.14)

To further lower bound (B.13) and upper bound (B.14), the following lemma shows that we
may assume that the above Bernoulli distributions have the same parameter.

LEMMA B.1 (Theorems 4 and 5 of [8]). Let Xi ∼ Bern(pi) be independent Bernoulli
random variables for i= 1, · · · , n, with p̄= n−1

∑n
i=1 pi. Then for 0≤ k ≤ np̄− 1, we have

P

(
n∑
i=1

Xi ≤ k

)
≤ P (B(n, p̄)≤ k) ,
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and for k ≥ np̄, we have

P

(
n∑
i=1

Xi ≤ k

)
≥ P (B(n, p̄)≤ k) .

In particular, for integers (b, c) with b≤ np̄≤ c, we have

P

(
b≤

n∑
i=1

Xi ≤ c

)
≥ P (b≤ B(n, p̄)≤ c) .

For d≥ 4/ε2, based on the second statement of Lemma B.1, the quantity in (B.13) satisfies

rB(P, n,µ,L)≥ P
(
B

(
d,

1 + α

2
− ε

2
√
d

)
≤ 1 + α

2
· d
)
,(B.15)

with α, d−1
∑d

j=1αj . Similarly, based on the first statement of Lemma B.1, for (B.14) we
have

rB(P, n+m,µ,L)≤ P
(
B

(
d,

1 + α

2
+

ε

2
√
d

)
≤ 1 + α

2
· d
)
.(B.16)

Since
dP(B(n,x) = k)

dx
= n (P(B(n− 1, x) = k− 1)− P(B(n− 1, x) = k)) ,

we invoke Lemma 6.1 and lower bound the Bayes risk difference as

ε?(P, n,m)≥ rB(P, n,µ,L)− rB(P, n+m,µ,L)

≥ P
(
B

(
d,

1 + α

2
− ε

2
√
d

)
≤ 1 + α

2
· d
)
− P

(
B

(
d,

1 + α

2
+

ε

2
√
d

)
≤ 1 + α

2
· d
)

=−
∑

0≤k≤(1+α)d/2

∫ 1+α

2
+ ε

2
√
d

1+α

2
− ε

2
√
d

dP(B(d,x) = k)

dx
dx

= d

∫ 1+α

2
+ ε

2
√
d

1+α

2
− ε

2
√
d

P
(
B(d− 1, x) =

⌊
1 + α

2
· d
⌋)

dx

(a)

≥ d

∫ 1+α

2
+ ε

2
√
d

1+α

2
− ε

2
√
d

c(α,α)√
d

dx= c(α,α)ε,

where (a) is due to

min
p0≤p≤p1,|k−np|≤C

√
n
P(B(n,p) = k) = Ωp0,p1,C

(
1√
n

)
(B.17)

for any p0, p1 ∈ (0,1) and C > 0, by Stirling’s approximation.
For d < 4/ε2, we first note the following identity:

d

dx

∣∣∣∣
x=0

P

(
n∑
i=1

Bern(pi + x) = k

)

=
d

dx

∣∣∣∣
x=0

∑
w∈{0,1}n:

∑n
i=1wi=k

n∏
i=1

(pi + x)wi(1− pi − x)1−wi
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=

n∑
i=1

 ∑
w\i∈{0,1}n−1:

∑
j 6=iwj=k−1

∏
j 6=i

p
wj
j (1− pj)1−wj −

∑
w\i∈{0,1}n−1:

∑
j 6=iwj=k

∏
j 6=i

p
wj
j (1− pj)1−wj


=

n∑
i=1

P
∑
j 6=i

Bern(pj) = k− 1

− P

∑
j 6=i

Bern(pj) = k

 .
Based on (B.13) and (B.14), we then have

ε?(P, n,m)≥ rB(P, n,µ,L)− rB(P, n+m,µ,L)

≥ P

 d∑
j=1

Bern

(
1 + αj

2
− ε

2
√
d

)
≤ (1 + α)d

2

− P

 d∑
j=1

Bern

(
1 + αj

2
+

ε

2
√
d

)
≤ (1 + α)d

2


=−

∑
0≤k≤(1+α)d/2

∫ ε

2
√
d

− ε

2
√
d

d

dx
P

 d∑
j=1

Bern

(
1 + αj

2
+ x

)
= k

dx

=

d∑
i=1

∫ ε

2
√
d

− ε

2
√
d

P

∑
j 6=i

Bern

(
1 + αj

2
+ x

)
=

⌊
(1 + α)d

2

⌋dx.

We will show that the integrand is uniformly of the order Ω(1/
√
d). To this end, note that for

|x| ≤ ε/(2
√
d)< 1/d as d < 4/ε2, it holds that

∑
j 6=i

(
1 + αj

2
+ x

)
<

d∑
j=1

1 + αj
2

+ 1≤
⌊

(1 + α)d

2

⌋
+ 2,

∑
j 6=i

(
1 + αj

2
+ x

)
>

d∑
j=1

1 + αj
2
− 1− 1≥

⌊
(1 + α)d

2

⌋
− 2.

Consequently, by the last statement of Lemma B.1, one has

P

∣∣∣∣∣∣
∑
j 6=i

Bern

(
1 + αj

2
+ x

)
−
⌊

(1 + α)d

2

⌋∣∣∣∣∣∣≤ 2


≥ P

∣∣∣∣∣∣B
d− 1,

1

d− 1

∑
j 6=i

(
1 + αj

2
+ x

)− ⌊(1 + α)d

2

⌋∣∣∣∣∣∣≤ 2

= Ωα,α

(
1√
d

)
,

where the last step is again due to (B.17). The above display is a lower bound for the prob-
ability of a size-5 set, and in view of the following lemma, the same Ωα,α(1/

√
d) lower

bound also holds for the probability of any singleton. Plugging this lower bound back into
the integral then yields to ε?(P, n,m) = Ωα,α(ε), as desired.

LEMMA B.2. Let p1, · · · , pn ∈ [a, b] with 0< a≤ b < 1, and cn≤ k < k+ 1≤ (1− c)n
for some c > 0. Define

f(k) = P

(
n∑
i=1

Bern(pi) = k

)
.
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Then there exists an absolute constant C =C(a, b, c)<∞ such that

C−1 ≤ f(k+ 1)

f(k)
≤C.

PROOF. Let Wk = {w ∈ {0,1}n :
∑n

i=1wi = k}, and g(w) =
∏n
i=1 p

wi
i (1 − pi)

1−wi .
Then it is clear that

f(k) =
∑
w∈Wk

g(w).

Call two binary vectors w and w′ as neighbors (denoted by w ∼ w′) if w and w′ only differ
in one coordinate. It is clear that every w ∈Wk has n − k neighbors in Wk+1, and every
w ∈Wk+1 has k+ 1 neighbors in Wk. Moreover, for w ∼w′,

g(w)

g(w′)
≤max

{
b

a
,
1− a
1− b

}
=: ρ.

Consequently, by double counting,

f(k+ 1) =
∑

w∈Wk+1

g(w) =
1

k+ 1

∑
w′∈Wk

∑
w∈Wk+1:w∼w′

g(w)

≤ ρ

k+ 1

∑
w′∈Wk

∑
w∈Wk+1:w∼w′

g(w′) =
(n− k)ρ

k+ 1

∑
w′∈Wk

g(w′)

=
(n− k)ρ

k+ 1
f(k)≤ (1− c)ρ

c
f(k).

The other inequality can be established analogously.

B.8. Proof of Theorem 6.5. For each j ∈ [d], we pick two points θj,+, θj,− ∈ Θj in
Assumption 4. We first aim to show that

0.09 , ε′1 ≤ ‖p⊗nθj,+ − p
⊗n
θj,−
‖TV ≤ ε1 , 0.6,(B.18)

0.99995 , ε′2 ≥ ‖p⊗20n
θj,+

− p⊗20n
θj,−
‖TV ≥ ε2 , 0.86.(B.19)

The proofs of (B.18) and (B.19) rely on the tensorization property of the Hellinger distance

H2

(
d∏
i=1

Pi,

d∏
i=1

Qi

)
= 1−

d∏
i=1

(
1−H2(Pi,Qi)

)
,

and the relationship between TV and Hellinger distance in (3.1). For example, for (B.18), we
have

‖p⊗nθj,+ − p
⊗n
θj,−
‖TV ≤

√
1− (1−H2(p⊗nθj,+ , p

⊗n
θj,−

))2

=

√
1−

(
1−H2(pθj,+ , pθj,−)

)2n
≤

√
1−

(
1− 1

5n

)2n

≤
√

9

25
= 0.6.
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Applying the other inequality, for (B.19) we have

‖p⊗20n
θj,+

− p⊗20n
θj,−
‖TV ≥H2(p⊗20n

θj,+
, p⊗20n
θj,−

)

≥ 1−
(

1− 1

10n

)20n

≥ 1− exp(−2)> 0.86.

The other inequalities involving ε′1 and ε′2 could be established analogously.
Next, for the choice of m = dcεn/

√
de in the statement of Theorem 6.5, we show that

there exists nj ∈ [n,20n] such that

‖p⊗(nj+m)
θj,+

− p⊗(nj+m)
θj,−

‖TV − ‖p⊗njθj,+
− p⊗njθj,−

‖TV ≥
ε2 − ε1

d19
√
d/(cε)e

.(B.20)

To prove (B.20), first note that t 7→ fj(t) , ‖p⊗tθj,+ − p
⊗t
θj,−
‖TV is non-decreasing by the data-

processing property of the TV distance. Moreover, by (B.18) and (B.19), we have fj(n)≤ ε1
and fj(20n)≥ ε2. Consequently,

ε2 − ε1 ≤ fj(20n)− fj(n)

≤
d19n/me−1∑

k=1

[fj(n+ km)− fj(n+ (k− 1)m)] + [fj(20n)− fj(20n−m)]

≤
⌈

19n

m

⌉
· max
n≤nj≤20n−m

[fj(nj +m)− fj(nj)],

which gives (B.20). In addition, we also have ε′1 ≤ fj(nj)≤ fj(nj +m)≤ ε′2.
Next we are about to apply Theorem 6.4. By (B.20), there exist αj ∈ (ε′1, ε

′
2) such that

‖p⊗njθj,+
− p⊗njθj,−

‖TV ≤ αj −Ωc

(
ε√
d

)
,

‖p⊗(nj+m)
θj,+

− p⊗(nj+m)
θj,−

‖TV ≥ αj + Ωc

(
ε√
d

)
.

Therefore, Theorem 6.4 shows that there is an absolute constant c′ > 0 depending only on
(c, ε′1, ε

′
2) such that

ε?(P, (n1, · · · , nd),m)≥ c′ε,

where the above quantity denotes the minimax error in a new sample amplification problem:
suppose we draw nj independent samples from Pj , also independently for each j ∈ [d], and
we aim to amplify into nj+m independent samples fromPj . In other words, the sample sizes
for different dimensions may not be equal in the new problem, but the target is still to generate
m more samples. We claim that ε?(P, (n1, · · · , nd),m)≤ ε?(P, n,m), and thereby complete
the proof. To show the claim, note that nj ≥ n for all j ∈ [d], hence in the new problem we
could keep nj − n samples unused for each j, use the remaining samples to amplify into
n+m vectors, and add the above unused samples back to form the final amplification.

B.9. Proof of Theorem 7.1. We first prove the upper bound. Consider the distribution
estimator P̂n = (1,0, · · · ,0), which has a χ2-divergence

χ2(P̂n‖P ) =
1

t
− 1, ∀P ∈ Pd,t.
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Consequently, the χ2-estimation error rχ2(Pd,t, n) is at most 1/t, and Theorem 5.2 states
that the random shuffling approach achieves an (n,n+ 1,0.1) sample amplification if n =
Θ(1/t).

Next we prove the lower bound. Let n = 1/(100t) and d be a multiple of 100. Consider
the following prior µ over Pd,t: µ is the uniform prior over (p0, · · · , pd) ∈ Pd,t with p0 = t
and the remaining 1− t mass evenly distributed on a uniformly random subset of [d] of size
d/100. The action space A is chosen to be X n+1, and the loss function is

L(P,xn+1) = 1− 1(xn+1 belongs to the support of P,

does not contain symbol 0 or repeated symbols).

We first show that rB(Pd,t, n+ 1, µ)≤ 0.1. In fact, after observing n+ 1 samples Xn+1, we
simply use Xn+1 as the estimator under the above loss. Clearly Xn+1 belongs to the support
of P . For the remaining conditions,

P(Xn+1 contains symbol 0) = 1− (1− t)n+1 = 1− (1− t)1/(100t)+1 ≤ 0.05,

P(Xn+1 contains repeated symbols)≤
(
n+ 1

2

)t2 +

d/100∑
j=1

1

(d/100)2


≤ n2

(
t2 +

100

d

)
≤ 1

10000
+

1

100
< 0.05.

By the union bound, this estimator achieves a Bayes risk at most 0.1, and thus rB(Pd,t, n+
1, µ)≤ 0.1.

Next we show that rB(Pd,t, n,µ)≥ 0.9, which combined with Lemma 6.1 gives the desired
lower bound. To show this, consider the new symbol in the estimator xn+1 not in Xn when
the learner observes Xn. Since xn+1 has length n+ 1> n, there is at least one such symbol.
In order to have L(P,xn+1) = 0, this new symbol cannot be 0 or appear in Xn. Moreover,
the posterior distribution of the support of P ∼ µ given Xn is uniformly distributed over

{0,X1, · · · ,Xn} ∪
{
S ⊆ [d]\{X1, · · · ,Xn} : |S|= d

100
− n
}
.

Therefore, the posterior probability of the new symbol being outside the support of P (recall
that it could be neither one of {X1, · · · ,Xn} nor 0) is at least

1− d/100− n
d− n

=
0.99d

d− n
≥ 0.99> 0.9,

giving the desired inequality rB(Pd,t, n,µ)≥ 0.9.

B.10. Proof of Theorem 7.2. The upper bound of sample amplification directly follows
from that of learning, and it remains to show the lower bound n ≥ d. If n ≤ d − 1, with
probability one the observations Xn spans an n-dimensional subspace of the row space of
Σ. An (n,n+ 1,0.1) sample amplification calls for at least one additional observation not in
Xn, which with probability 1 should not belong to the n-dimensional subspace spanned by
Xn for n≤ d− 1. However, since p≥ d+ 1, under a uniformly chosen d-dimensional row
space of Σ, the posterior probability of the additional observation belonging to the row space
of Σ is zero. Consequently, an (n,n+ 1,0.1) sample amplification is impossible if n < d.
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B.11. Proof of Theorem 7.3. We prove the three claims separately.
The proof of m?(Pc, n) &c n

5/6. Classical theory of nonparametric estimation (see, e.g.
[15]) tells that there exists a density estimator f̂ such that Ef‖f̂ − f‖22 . n−2/3. Since f is
lower bounded by c, this implies that

χ2(f̂ , f)≤ ‖f̂ − f‖
2
2

c
.c n

−2/3.

Consequently, rχ2(Pc, n) . n−2/3, and Theorem 5.2 implies that m?(Pc, n) &c n
5/6.

The proof of m?(Pc, n) .c n
5/6. We construct a parametric subfamily of Pc and invoke

Theorem 6.5. Let g be a 1-Lipschitz function supported on [0,1] with
∫ 1

0 g(x)dx = 0 and
‖g‖2 > 0; in particular ‖g‖∞ ≤ 1. Let h = n−1/3 and assume that M := h−1 is an integer.
For u= (u1, · · · , uM ) ∈ {±1}M , define

fu(x) = 1 + c0

M∑
i=1

uihg

(
x− (i− 1)h

h

)
,

where c0 ∈ (0,1) is a small constant satisfying c0h≤ 1− c. Consequently, fu ∈ Pc for every
u ∈ {±1}M . However, the density estimation modelX1, · · · ,Xn ∼ fu is not a product model,
so Theorem 6.5 cannot be directly applied.

To overcome the above issue, we consider a Poissonized model as follows: first we draw
N ∼ Poi(n), and then draw N i.i.d. samples X1, · · · ,XN ∼ fu. The Poissonized model sat-
isfies the following two properties:

1. For any measurable set A⊆ [0,1], we have

M(A) := |{i ∈ [N ] :Xi ∈A}| ∼ Poi
(
n

∫
A
f(x)dx

)
.

2. For any collection of disjoint subsets {Ai, i ≥ 1}, the random variables {M(Ai), i ≥ 1}
are mutually independent.

For i ∈ [M ], let Ai = [(i− 1)/M, i/M), so that
∫
Ai
fu(x)du= 1/M for every u ∈ {±1}M .

Clearly, there is a one-to-one correspondence between (X1, · · · ,XN ) and (Y1, · · · , YM ),
where Yi is the collection of observations in X1, · · · ,XN that falls into the set Ai. By the
above two properties, (Y1, · · · , YM ) are mutually independent, and Yi ∼ f⊗ni,ui under fu. Here
fi,ui is the probability distribution of the following process: sample Ni ∼ Poi(1/M), and
draw Ni i.i.d. samples from the density

M

(
1 + c0uihg

(
x− (i− 1)h

h

))
supported on Ai. In addition,

H2(fi,+1, fi,−1)� E[Ni] ·Mc2
0h

3‖g‖22 �
1

n
,

so the Poissonized model is a product model which satisfies the prerequisite of Theorem 6.5.
Next we denote the i.i.d. sampling model by P⊗nc , and the Poissonized model by PPoi(n)

c .
Let n1 = n+C

√
n,n2 = n+m−C

√
n+m, where C > 0 is a large universal constant to

be chosen later. By Theorem 6.5 applied to d=M � n1/3, Le Cam’s distance in Definition
3.1 between Poissonized models satisfies

∆(PPoi(n1)
c ,PPoi(n2)

c ) = Ω(1),
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as long as m= Ω(n5/6). In addition, the model PPoi(n1)
c is more informative than P⊗nc with

probability at least 1− ε1, where ε1 = P(Poi(n1)< n). Similarly, P⊗(n+m)
c is more informa-

tive than PPoi(n2)
c with probability at least 1−ε2, where ε2 = P(Poi(n2)> n+m). Therefore,

∆(P⊗nc ,P⊗(m+n)
c )≥∆(PPoi(n1)

c ,PPoi(n2)
c )− ε1 − ε2 = Ω(1),

where in the last step we have ε1, ε2→ 0 by choosing C > 0 large enough.
The proof of m?(P, n) . n3/4. Suppose n ≥ m ≥ Cn3/4 for a large constant C > 0.

Consider the following prior µ on the density f : let M =
√
n, and u = (u1, · · · , uM ) be

uniformly distributed over all vectors in {0,1}M such that the number of 1’s is M/100.
Given u, we construct

fu(x) =

{
ui(2/M − 4|x− (2i− 1)/2M |) if x ∈Ai , [(i− 1)/M, i/M), i ∈ [M ],

(8− 2/(25M))(x− 1/2) if 1/2≤ x≤ 1,

and let f = fu. It is not hard to verify that each fu is a density and 8-Lipschitz, so fu ∈ P .
Next under the context of Lemma 6.1, we choose the action space to be [0,1]n+m, as well

as the following loss:

L(f,xn+m) = 1− 1(xn+m belongs to the support of f,

and fall into at least [1− (1− n−1)n]
√
n/100 +C0n

1/4 sets in {Ai}Mi=1),

where C0 > 0 is a large enough constant. We aim to show that under the loss L and prior µ,
the Bayes risk satisfies rB(P⊗(n+m), µ)≤ 0.1 and rB(P⊗n, µ)≥ 0.9. Then an application of
Lemma 6.1 completes the proof of m?(P, n) . n3/4.

We first show that rB(P⊗(n+m), µ)≤ 0.1. We simply use the observed sample Xn+m as
the estimator xn+m under the above loss, then clearly xn+m belongs to the support of f .
For the second event in the loss function, let Un+m be the number of sets in {Ai}Mi=1 which
receive any observations in Xn+m. By the linearity of expectation, as well as the negative
dependence across different set counts, we compute for every fu that

E[Un+m] =

M/100∑
i=1

[
1−

(
1− 1

M2

)n+m
]

=

√
n

100

[
1−

(
1− 1

n

)n]
+ Ω

(
m√
n

)
,

Var(Un+m)≤ E[Un+m] =O(
√
n).

By Chebyshev’s inequality, form≥Cn3/4 with a large enoughC > 0, we have rB(P⊗(n+m), µ)≤
0.1.

Next we show that rB(P⊗n, µ)≥ 0.9. Let (i1, · · · , ik) ∈ [M ]k be the indices such that the
set Aij is hit by the observations Xn. Clearly the posterior distribution of the support of the
vector u is uniformly distributed over

{i1, · · · , ik} ∪
{
S ⊆ [M ]\{i1, · · · , ik} : |S|= M

100
− k
}
.

On one hand, if the estimator xm+n hits a set Aj with j /∈ {i1, · · · , ik}, the probability that
xn+m does not belong to the support of f is at least

1− M/100− k
M − k

=
0.99M

M − k
≥ 0.99.

On the other hand, if the estimator xm+n never hits a set Aj with j /∈ {i1, · · · , ik}, then xm+n

fall into at most Un sets in {Ai}Mi=1, where Un is defined in a similar way as Un+m. Similar
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to the previous computation, we have

E[Un] =

√
n

100

[
1−

(
1− 1

n

)n]
, Var(Un) =O(

√
n).

By Chebyshev’s inequality, for C0 > 0 large enough, the probability that xn+m violates the
second event in the loss function is at least 0.99. Now a combination of the above two cases
implies that rB(P⊗n, µ)≥ 0.9, as desired.

APPENDIX C: PROOF OF MAIN LEMMAS

C.1. Proof of Lemma 4.4. Recall that the log-partition function A(θ) is defined as

A(θ) = log

∫
X

exp(θ>T (x))dµ(x),

for any vector λ ∈Rd with θ+ (∇2A(θ))−1/2λ ∈Θ, we have

Eθ
[
exp

(
λ>(∇2A(θ))−1/2(T (X)−∇A(θ))

)]
=

∫
X

exp
(

(θ+ (∇2A(θ))−1/2λ)>T (x)−A(θ)− [(∇2A(θ))−1/2λ]>∇A(θ)
)

dµ(x)

= exp
(
A(θ+ (∇2A(θ))−1/2λ)−A(θ)− [(∇2A(θ))−1/2λ]>∇A(θ)

)
.

(C.1)

It remains to show that when ‖λ‖2 is sufficiently small, we always have θ+(∇2A(θ))−1/2λ ∈
Θ, and the exponent of (C.1) is uniformly bounded from above over θ ∈Θ and λ ∈Rd. Then
the existence of uniformly bounded MGF around zero implies a uniformly bounded moment
of any order.

The result of [13, Theorem 4.1.6] shows that for a self-concordant and convex function f ,
we have ∇2f(y) � 4∇2f(x) whenever (y − x)>∇2f(x)(y − x) ≤M2/16. Consequently,
for ‖λ‖2 ≤M/4, a Taylor expansion with a Lagrange remainder gives

A(θ+ (∇2A(θ))−1/2λ)−A(θ)− [(∇2A(θ))−1/2λ]>∇A(θ)

=
1

2
λ>(∇2A(θ))−1/2 · ∇2A(ξ) · (∇2A(θ))−1/2λ,(C.2)

where ξ lies on the line segment between θ and θ+ (∇2A(θ))−1/2λ. Consequently, we have

(ξ − θ)> · ∇2A(θ) · (ξ − θ)≤ λ>(∇2A(θ))−1/2 · ∇2A(θ) · (∇2A(θ))−1/2λ= ‖λ‖22 ≤
M2

16
,

and therefore ∇2A(ξ) � 4∇2A(θ). Plugging it back into (C.2) establishes the bounded-
ness of (C.1), as well as the finiteness of A(θ + (∇2A(θ))−1/2λ), or equivalently, θ +
(∇2A(θ))−1/2λ ∈Θ.

C.2. Proof of Lemma A.2. For X1, · · · ,Xn ∼N (0,Σ) and n≥ d, it is well known that
the empirical covariance Σ̂n follows a Wishart distribution Wd(Σ/n,n), where the density
ofWd(V,n) is given by

fV,n(X) =
det(X)(n−d−1)/2 exp(−Tr(V −1X)/2)

2nd/2 det(V )n/2Γd(n/2)
,
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where Γd(x) = πd(d−1)/4
∏d
i=1 Γ(x − (i − 1)/2) is the multivariate Gamma function, and

Γ(x) =
∫∞

0 tx−1e−tdt is the usual Gamma function. After some algebra, we have

DKL(Wd(Σ/n,n)‖Wd(Σ/(n+m), n+m))

=
d

2

(
m− (n+m) log

(
1 +

m

n

))
+ log

Γd((n+m)/2)

Γd(n/2)
− m

2
ψd

(n
2

)
,(C.3)

where ψd(x) = d
dx [log Γd(x)] is the multivariate digamma function. Note that the above KL

divergence (C.3) does not depend on Σ; we denote it by f(n,m,d).
By (3.2), it suffices to establish an upper bound of f(n,m,d). Applying infinite Taylor

series to log Γd(x) at x= n/2 yields

log Γd

(
n+m

2

)
= log Γd

(n
2

)
+
m

2
ψd

(n
2

)
+

∞∑
t=2

1

t!

(m
2

)t
ψ

(t−1)
d

(n
2

)

= log Γd

(n
2

)
+
m

2
ψd

(n
2

)
+

∞∑
t=2

1

t!

(m
2

)t d∑
k=1

ψ(t−1)

(
n− k+ 1

2

)
,

where ψ(t−1)(x) = dt

dxt [log Γ(x)] is the polygamma function. For any t ≥ 2 and x ≥ 1, the
following inequality holds for the polygamma function [1, Equation 6.4.10]:∣∣∣∣ψ(t−1)(x)− (−1)t

(t− 2)!

xt−1

∣∣∣∣≤ (t− 1)!

xt
.

As a result, for the following modification

g(n,m,d) ,
d

2

(
m− (n+m) log

(
1 +

m

n

))
+m

d∑
k=1

∞∑
t=2

(−1)t

2t(t− 1)

(
m

n− k+ 1

)t−1

,

(C.4)

it holds that

|f(n,m,d)− g(n,m,d)| ≤
d∑

k=1

∞∑
t=2

1

t!

(m
2

)t
· (t− 1)!

[(n− k+ 1)/2]t

=

d∑
k=1

∞∑
t=2

1

t

(
m

n− k+ 1

)t

≤ d ·
∞∑
t=2

1

2

(
2m

n

)t
≤ 4dm2

n2
,(C.5)

where we have used the assumption n≥ 4 max{m,d}.
Next we establish an upper bound of g(n,m,d). Using the identity

h(x) ,
(1 + x) log(1 + x)− x

x
=

∞∑
t=2

(−1)txt−1

t(t− 1)

and some algebra, we have

g(n,m,d) =−dm
2
h
(m
n

)
+
m

2

d∑
k=1

h

(
m

n− k+ 1

)
=
m

2

d∑
k=1

[
h

(
m

n− k+ 1

)
− h

(m
n

)]
.
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Note that for x ∈ [0,1], we have

h′(x) =
x− log(1 + x)

x2
∈
[
0,

1

2

]
,

we conclude that

g(n,m,d)≤ m

2

d∑
k=1

1

2

[
m

n− k+ 1
− m

n

]
≤ md

2
· 2md
n2

=
m2d2

n2
.(C.6)

Finally, by (C.5), (C.6) and (3.2), we conclude that

‖L(Σ̂n)−L(Σ̂n+m)‖TV ≤
√
f(n,m,d)

2
≤ 2md

n
.

For the claim that Sn+m follows the uniform distribution on the set A= {U ∈Rd×(n+m) :
UU> = Id}, we need the following auxiliary definitions and results. A topological group is a
group (G,+) with a topology such that the operation + :G×G→G is continuous. A (right)
group action of G on X is a function φ : X ×G→X such that φ(φ(x, g), g′) = φ(x, gg′)
and φ(x, e) = x, where e is the identity element of G. A group action is called transitive if
for every x,x′ ∈A, there exists some g ∈G such that φ(x, g) = x′. A group action is called
proper if for any compactK ⊆X and x ∈X , the map φx :G→X with g 7→ φ(x, g) satisfies
that φ−1

x (K)⊆G is compact. The following lemma is useful.

LEMMA C.1 (Chapter 14, Theorem 25 of [14]). Let G be a locally compact group acting
transitively and properly on a locally compact Hausdorff space X . Then there is a unique
(up to multiplicative factors) Baire measure on X which is invariant under the action of G.

Now for the claimed result, it is easy to verify that (a proper version of) Sn+m always
takes value in A, assuming n+m≥ d. To show that Sn+m is uniform on A, note that for any
orthogonal matrix V ∈R(n+m)×(n+m), it is easy to verify

[X1, · · · ,Xn+m]
d
= [X1, · · · ,Xn+m]V.

Denote the RHS by [Y1, · · · , Yn+m], we also have Σ̂n+m(Y n+m) = Σ̂n+m(Xn+m). Conse-
quently,

Sn+m(Xm+n) · V = [(n+m)Σ̂n+m(Xn+m)]−1/2[Y1, Y2, · · · , Yn+m]

= [(n+m)Σ̂n+m(Y n+m)]−1/2[Y1, Y2, · · · , Yn+m]

d
= [(n+m)Σ̂n+m(Xn+m)]−1/2[X1,X2, · · · ,Xn+m] = Sn+m(Xm+n),

meaning that the distribution of Sn+m is invariant with right multiplication of an orthogonal
matrix. Let G be the orthogonal group O(n+m), the map φ : A×G→ A with φ(U,V ) =
UV is a group action of G on A. This action is transitive as for any U,U ′ ∈ A, we could
add more rows to U,U ′ to obtain Ũ , Ũ ′ ∈G, and then V = Ũ>Ũ ′ ∈G maps U to U ′. This
action is also proper as G itself is compact. Hence, Lemma C.1 below shows that Sn+m is
uniformly distributed on A.
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C.3. Proof of Lemma A.4. The proof of Lemma A.4 is a simple consequence of several
known results. First, Basu’s theorem claims that Xn and Σ̂n are independent. Second, the
computation in Example 4.1 shows

‖L(Xn)−L(Xn+m)‖TV ≤
m
√
d

n
.

Finally, as Σ̂n ∼Wd(Σ/(n − 1), n − 1) again follows a Wishart distribution, the proof of
Lemma A.2 shows that

‖L(Σ̂n)−L(Σ̂n+m)‖TV ≤
2md

n− 1
.

In conclusion, we have

‖L(Xn, Σ̂n)−L(Xn+m, Σ̂n+m)‖TV ≤ ‖L(Xn)−L(Xn+m)‖TV + ‖L(Σ̂n)−L(Σ̂n+m)‖TV

≤ 3md

n− 1
.

For the distribution of Sn+m, it is clear that (a proper version of) Sn+m always takes value
in A, and we show that the distribution of Sn+m is invariant with proper group actions in A.
Consider the set

G= {V ∈R(n+m)×(n+m) : V V > = In+m, V 1 = 1}
with the usual matrix multiplication. We show that G is a group: clearly In+m ∈ G; for
V,V ′ ∈ G, it is clear that V V ′1 = V 1 = 1 and therefore V V ′ ∈ G; for V ∈ G, it holds
that V −11 = V −1V 1 = 1 and thus V −1 ∈G. Next we show that the action φ :A×G→A
with φ(U,V ) = UV is a group action on A, and it suffices to show that UV ∈ A. This is
true as (UV )(UV )> = UV V >U> = UU> = Id, and UV 1 = U1 = 0. This group action is
also transitive: for any U,U ′ ∈ A, we may properly add rows to them and obtain Ũ , Ũ ′ ∈
O(n + m), where one of the added rows is a scalar multiple of 1>, which is feasible as
U1 = 0. Consequently, the matrix V = Ũ−1Ũ ′ ∈ O(n+m) maps U to U ′, and also 1> to
1>; hence V ∈G. Finally, we show that any group action of G on Sm+n does not change the
distribution of Sm+n. To see this, for any V ∈G we have

[X1, · · · ,Xn+m]
d
= [X1, · · · ,Xn+m]V,

Xn+m([X1, · · · ,Xn+m]V ) =Xn+m([X1, · · · ,Xn+m]),

Σ̂n+m([X1, · · · ,Xn+m]V ) = Σ̂n+m([X1, · · · ,Xn+m]).

Therefore, following the same arguments as in Example A.1 we arrive at the desired invari-
ance, and the uniform distribution of Sm+n is a direct consequence of Lemma C.1.

C.4. Proof of Lemma 5.8. For any subset S ⊆ [n + m] with |S| = m, let PS be the
distribution of (Z1, · · · ,Zn+m) when the samples (Y1, · · · , Ym) are placed in the index set S
of the pool (Z1, · · · ,Zn+m). Then it is clear that Pmix = E[PS ], with S uniformly distributed
on all size-m subsets of [n+m]. To compute the χ2-divergence where the first distribution
is a mixture, the following identity holds [10]:

χ2
(
Pmix, P

⊗(n+m)
)

= ES,S′
[∫

dPSdPS′

dP⊗(n+m)

]
− 1,

where S′ is an independent copy of S. By the independence assumption, we have

dPS

dP⊗(n+m)
(z1, · · · , zn+m) =

∏
i∈S

dQ

dP
(zi),
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and consequently∫
dPSdPS′

dP⊗(n+m)
= EP

[∏
i∈S

dQ

dP
(zi)

∏
i∈S′

dQ

dP
(zi)

]

=
∏

i∈S∩S′
EP

[(
dQ

dP
(zi)

)2
]
·
∏

i∈S∆S′

EP
[

dQ

dP
(zi)

]
= (1 + χ2(Q,P ))|S∩S

′|.

It remains to upper bound the expectation with respect to the random variable |S ∩ S′|.
Note that |S ∩ S′| follows the hypergeometric distribution with parameter (n + m,m,m),
which corresponds to sampling without replacement. The counterpart for sampling with
replacement corresponds to a Binomial distribution B(m, m

n+m), and the following lemma
shows that the latter dominates the former in terms of the convex order:

LEMMA C.2. [9, Theorem 4] Let the population be C = {c1, · · · , cN}. Let X1, · · · ,Xn

denote random samples without replacement from C and Y1, · · · , Yn denote random samples
with replacement. If f(·) is convex, then

E

[
f

(
n∑
i=1

Xi

)]
≤ E

[
f

(
n∑
i=1

Yi

)]
.

Applying Lemma C.2 to the convex function x 7→ (1 + χ2(Q,P ))x yields

ES,S′ [(1 + χ2(Q,P ))|S∩S
′|]≤ E[(1 + χ2(Q,P ))B(m,m/(n+m))]

=
(
E[(1 + χ2(Q,P ))Bern(m/(n+m))]

)m
=

(
1 +

m

n+m
χ2(Q,P )

)m
,

as desired.

C.5. Proof of Lemma A.7. Note that in the proof of Theorem 5.2, we have

‖Pmix(Xn/2)− P⊗(n/2+m)‖TV ≤
√
m2

n
χ2(P̂n(Xn/2), P ).

Since the TV distance is always upper bounded by one, the following upper bound is also
true:

‖Pmix(Xn/2)− P⊗(n/2+m)‖TV ≤
√
m2

n
·
(
χ2(P̂n(Xn/2), P )∧ n

)
.

Consequently, taking the expectation over Xn/2 leads to the claim.

C.6. Proof of Lemma A.13. First we note that

χ2
(
N (θ̂n,j ,1),N (θj ,1)

)
= exp

(
(θ̂n,j − θj)2

)
− 1,
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By the triangle inequality,

E|θ̂n,j − θj | ≤ E

∣∣∣∣∣θ̂n,j − 1

n

n∑
i=1

Xi,j

∣∣∣∣∣+E

∣∣∣∣∣ 1n
n∑
i=1

Xi,j − θj

∣∣∣∣∣
≤
√
C logn

n
+

√
2

nπ
=O

(√
logn

n

)
.(C.7)

Moreover, it is straightforward to verify that |θ̂n,j − θj | is (1/n)-Lipschitz with respect to
(X1,j , · · · ,Xn,j). Therefore, the Gaussian Lipschitz concentration (see, e.g. [4, Theorem
10.17]) gives that

P
(
|θ̂n,j − θj | ≥ E|θ̂n,j − θj |+ t

)
≤ exp

(
−nt

2

2

)
(C.8)

for any t≥ 0. Hence, combining (C.7) and (C.8), we conclude that |θ̂n,j−θj |=O(
√

log(nd)/n)
holds with probability at least 1− (nd)−2, and therefore

E
[
χ2
(
N (θ̂n,j ,1),N (θj ,1)

)
∧ n
]
≤ 2 ·E[(θ̂n,j − θj)2] +

1

nd
,

where we have used that ex ≤ 1 + 2x whenever x ∈ [0,1]. Summing over j ∈ [d] and using
the property of the soft-thresholding estimator supθ∈Θ E[‖θ̂n−θ‖22] =O(s logd/n) gives the
claimed result.

C.7. Proof of Lemma A.15. For the first claim, note that for Poisson models, we have

χ2
(
Poi(λ̂n,j),Poi(λj)

)
= exp

(
(λ̂n,j − λj)2

λj

)
− 1.

Consequently, for λj = 1/(n2 logn), we have

E
[
χ2
(
Poi(λ̂n,j),Poi(λj)

)
∧ n
]
≥
[(

exp

(
(1/n− λj)2

λj

)
− 1

)
∧ n
]
· P(λ̂n,j = 1/n)

= Ω(n) · e−nλjnλj = Ω

(
1

logn

)
� 1

n
,

establishing the first claim.
For the second claim, note that conditioning on Xn/2,

DKL

(
L(T̂n/2+m)‖L(Tn/2+m)

)
=

d∑
j=1

DKL

(
Poi(nλj/2 +mλ̂n,j)‖Poi((n/2 +m)λj)

)

≤
d∑
j=1

m2(λ̂n,j − λj)2

(n/2 +m)λj
.

where we have used DKL(Poi(λ1)‖Poi(λ2)) = λ2 − λ1 + λ1 log(λ1/λ2) ≤ (λ1 − λ2)2/λ2.
Hence,

EXn/2

[
DKL

(
L(T̂n/2+m)‖L(Tn/2+m)

)]
≤ dm2

(n/2 +m)n/2
≤ 4dm2

n2
,
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and the TV distance satisfies

‖L(X̂n+m)−L(Xn+m)‖TV = EXn/2

[
‖L(T̂n/2+m)−L(Tn/2+m)‖TV

]
≤ EXn/2

[√
1

2
DKL

(
L(T̂n/2+m)‖L(Tn/2+m)

)]

≤
√

1

2
EXn/2

[
DKL

(
L(T̂n/2+m)‖L(Tn/2+m)

)]
≤ m
√

2d

n
.

C.8. Proof of Lemma A.17. The upper bound result is easy. The m=O(nε/
√
k) upper

bound is a consequence of the general product Poisson model considered in Example A.14.
For the m = O(

√
nε) upper bound, we consider the sufficient statistic Tn =

∑n
i=1Xi ∼∏k

j=1 Poi(npj), and simply apply the sufficiency-based algorithm to T̂n+m = Tn. Since

DKL(L(Tn+m)‖L(Tn)) =

k∑
j=1

DKL(Poi((n+m)pj)‖Poi(npj))≤
k∑
j=1

(mpj)
2

npj
=
m2

n
,

where the last identity crucially makes use of the identity
∑k

j=1 pj = 1, this procedure works.
Next we show that sample amplification is impossible when m = ω(nε/

√
k) and k =

O(n). Note that this implies that m = ω(max{nε/
√
k,
√
nε}) is impossible in general, for

the k > n case is always not easier than the k = n case. To prove the above claim, w.l.o.g. we
assume that k = 2k0 is even, and consider the following parametric submodel:

Pθ =

k0∏
j=1

[
Poi

(
1

k
+ θj

)
× Poi

(
1

k
− θj

)]
, θ ∈Θ ,

[
−1

k
,
1

k

]k0
.

Clearly Pθ is a parametric submodel, by setting p2j−1 = 1/k+ θj and p2j = 1/k− θj in the
original model. This submodel is a product model, thus we could apply the result of Theorem
6.5 after we have verified Assumption 4. Note that when θ, θ′ arbitrarily vary in [−1/k,1/k],
the range of

H2

(
Poi

(
1

k
+ θ

)
× Poi

(
1

k
− θ
)
,Poi

(
1

k
+ θ′

)
× Poi

(
1

k
− θ′

))
is [0,Θ(1/k)], so Assumption 4 is fulfilled when k ≤ cn for a small constant c > 0. Conse-
quently, Theorem 6.5 establishes the desired bound m=O(nε/

√
k).

C.9. Proof of Lemma A.19. For the first inequality, note that for a large C0 > 0, both
Z1 ≤ C0 and max2≤j≤dZj ≥

√
2 logd−C0 hold with probability at least 0.99. When both

events hold, we have

exp(t(t+Z1))≤ exp(t(t+C0)),

d∑
j=2

exp(tZj)≥ exp(t(
√

2 logd−C0)).
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Consequently, for C = 3C0 with C0 > 0 large enough, we have

pd(
√

2 logd−C)≤ 0.01 +
exp((

√
2 logd− 3C0)(

√
2 logd− 2C0))

exp((
√

2 logd− 3C0)(
√

2 logd−C0))

= 0.01 + exp
(
−C0(

√
2 logd− 3C0)

)
< 0.1.

For the second inequality, note that Jensen’s inequality yields that

pd(t)≥ EZ1

[
exp(t(t+Z1))

exp(t(t+Z1)) +
∑d

j=2 E[exp(tZj)]

]

≥ EZ1

[
exp(t(t+Z1))

exp(t(t+Z1)) + d exp(t2/2)

]
.

Again, with probability at least 0.99 we have Z1 ≥ −C0, and therefore for t =
√

2 logd +
2C0,

pd(t)≥ 0.99× exp(t(t−C0))

exp(t(t−C0)) + d exp(t2/2)

= 0.99× 1

1 + exp(t2/2 + (t− 2C0)2/2− t(t−C0))

= 0.99× 1

1 + exp(−C0 ·
√

2 logd)
> 0.9,

for C0 > 0 large enough.
For the last claim, consider any s < d/2. Let d0 , bd/sc ≥ 2, and consider the product

prior µ⊗s to s blocks each of dimension d0. In other words, we set exactly one of the first
d0 coordinates of the mean vector to t uniformly at random, and do the same for the next
d0 coordinates, and so on. Clearly the resulting mean vector is always s-sparse. Writing
θ = (θ1, · · · , θs) with each θi ∈Rd0 , let the loss function be

L(θ, θ̂) = 1

 s∑
j=1

1(θj 6= θ̂j)≥N

 ,

with an integer N to be specified later. Then in each block, we reduce to the case s= 1, and
the error probability for this block is 1− pd0(

√
n · t) for sample size n. Moreover, the errors

in different blocks are independent. Consequently,

rB(P, n,µ,L)− rB(P, n+m,µ,L)

= P
(
B(s,1− pd0(

√
n · t))≥N

)
− P

(
B(s,1− pd0(

√
n+m · t))≥N

)
.(C.9)

Finally, again by the properties of pd(·) summarized in Lemma A.19 and the pigeonhole
principle, form= dcnε/

√
s logd0e, we could always find some t > 0 such that pd0(

√
n+m ·

t)− pd0(
√
n · t) = Ωc(ε/

√
s), with both quantities in [0.1,0.9]. Now choosing

N =

⌈
s(1− pd0(

√
n · t))

2
+
s(1− pd0(

√
n+m · t))

2

⌉
with the above choice of t, the Bayes risk difference will be lower bounded by Ωc(ε) by a
similar argument to the proof of Theorem 6.4. Now by (C.9) and Lemma 6.1, we see that n=
Ω(
√
s log(d/s)/ε) and m=O(nε/

√
s log(d/s)) are necessary for sample amplification.
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C.10. Proof of Lemma A.21. The following results are the key to the proof of Lemma
A.21, which we will assume for now and prove in the subsequent sections.

LEMMA C.3. For Dn = diag(λ1, · · · , λd), the following identities hold for the estimator
Σ̂n:

E[`(Σ, Σ̂n)] =

d∑
j=1

[
(n+ d+ 1− 2j)λj − logλj −E

[
logχ2

n−j+1

]]
− d,(C.10)

Var(`(Σ, Σ̂n)) =

d∑
j=1

[
2(n+ d+ 1− 2j)λ2

j − 4λj +ψ′
(
n+ 1− j

2

)]
,(C.11)

where χ2
m denotes the chi-squared distribution with m degrees of freedom, and ψ′(x) is the

polygamma function of order 1. In particular, when n≥ 2d, the following inequalities hold:∣∣∣∣∣∣E[`(Σ, Σ̂n)]−

g(n+ 1− d, d) +

d∑
j=1

h((n+ d+ 1− 2j)λj)

∣∣∣∣∣∣≤ 5d

n
,(C.12)

Var(`(Σ, Σ̂n))≤ 16d2

n2
+

d∑
j=1

4((n+ d+ 1− 2j)λj − 1)2

n
,(C.13)

where the functions g and h are given by (A.2) and

h(u) , u− logu− 1.(C.14)

LEMMA C.4. For the function h in (C.14) and u1, · · · , ud ∈R+, it holds that

d∑
j=1

h(uj)≥
1

8
min


d∑
j=1

(uj − 1)2,

√√√√ d∑
j=1

(uj − 1)2

 .(C.15)

Returning to the proof of Lemma A.21, the first claim is a direct application of (C.12) and
(C.13). For the second claim, let Dn = diag(λ1, · · · , λd), and

V ,
d∑
j=1

((n+ d+ 1− 2j)λj − 1)2.

Then by (C.12), (C.13) and Lemma C.4, we have

E[`(Σ, Σ̂n)]≥ g(n+ 1− d, d) +
V ∧
√
V

8
− 5d

n
.

Meanwhile, the variance satisfies√
Var(`(Σ, Σ̂n))≤ 4d

n
+ 2

√
V

n
.

Note that for n,d larger than a constant depending only on C1, we always have

d

n
+
V ∧
√
V

8
≥ 2C1

√
V

n
.
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Therefore, for n,d= Ω(1) large enough, the above inequalities implies

`(Σ, Σ̂)≥ g(n+ 1− d, d) +C1

(√
Var(`(Σ, Σ̂n))− 4d

n

)
− 6d

n
,

establishing the second claim.
For the last statement, note that

∂g(u, v)

∂u
=

log(u+ 2v) + log(v)

2
− log(u+ v) =

1

2
log

(
u(u+ 2v)

(u+ v)2

)
≤− v2

2(u+ v)2
,

the intermediate value theorem then implies that

g(n+ 1− d, d)− g(n+m+ 1− d, d)≥m · min
u∈[n+1−d,n+m+1−d]

d2

2(u+ d)2
≥ md2

13n2
.

C.11. Proof of Lemma C.3. We first recall the well-known Bartlett decomposition: for
the lower triangular matrix Ln = (Lij)i≥j , the random variables {Lij}i≥j are mutually inde-
pendent, with

Lij ∼N (0,1), i > j; L2
jj ∼ χ2

n+1−j , j ∈ [d].

For Σ = Id and Σ̂n = LnDnL
>
n , simple algebra gives

`(Σ, Σ̂n) =

d∑
j=1

∑
i≥j

λjL
2
ij − logλj − logL2

jj − 1

 .

Consequently, the identity (C.10) follows from the above Bartlett decomposition. This iden-
tity was also obtained in [11].

For the identity (C.11) on the variance, by the mutual independence we have

Var(`(Σ, Σ̂n)) =

d∑
j=1

∑
i≥j

λ2
j ·Var(L2

ij) +

d∑
j=1

Var(logL2
jj)− 2

d∑
j=1

λj · Cov(L2
jj , logL2

jj).

(C.16)

Next we evaluate each term of (C.16). Clearly Var(L2
ij) = E[Z4]−E[Z2]2 = 2 for i > j and

Z ∼N (0,1). For the other random variables, we need to recall the following identity for χ2
m:

Λ(t) , logE[(χ2
m)t] = t log 2 + log Γ

(m
2

+ t
)
− log Γ

(m
2

)
.(C.17)

Based on (C.17), we have

Var(L2
jj) = (n+ 1− j)(n+ 3− j)− (n+ 1− j)2 = 2(n+ 1− j).

Moreover, differentiating Λ(t) at t= 0 gives

E[logχ2
m] = Λ′(0) = log 2 +ψ

(m
2

)
,(C.18)

E[(logχ2
m)2]−

(
E[logχ2

m]
)2

= Λ′′(0) = ψ′
(m

2

)
.(C.19)

Note that (C.19) leads to

Var(logL2
jj) = ψ′

(
n+ 1− j

2

)
.
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Finally, differentiating Λ(t) at t= 1 gives that

E[L2
jj logL2

jj ] = E[L2
jj ] ·

(
log 2 +ψ

(
n+ 1− j

2
+ 1

))
= (n+ 1− j)

(
log 2 +ψ

(
n+ 1− j

2
+ 1

))
,

and hence the identity ψ(x+1) = ψ(x)+x−1 for the digamma function together with (C.18)
leads to

Cov(L2
jj , logL2

jj) = 2.

Therefore, plugging the above quantities in (C.16) gives the identity (C.11).
Next we prove the remaining inequalities when n≥ 2d. For (C.12), note that (C.10) gives

an identity (together with (C.18))

E[`(Σ, Σ̂n)]−

g(n+ 1− d, d) +

d∑
j=1

h((n+ d+ 1− 2j)λj)


=

d∑
j=1

(
log(n+ d+ 1− 2j)− log 2−ψ

(
n+ 1− j

2

))
− g(n+ 1− d, d).

Since |ψ(x)− log(x)| ≤ 1/x for all x≥ 1, replacing ψ(·) by log(·) in the above expression
only incurs an absolute difference at most

d∑
j=1

2

n+ 1− j
≤ 2

∫ d

0

dx

n− x
= 2 log

(
1 +

d

n− d

)
≤ 4d

n
.

For the remaining terms, it is not hard to verify that

g(n+ 1− d, d) =

∫ d

0
log

n+ 1− d+ 2x

n+ 1− d+ x
dx.

As x 7→ log(n+ 1− d+ 2x)− log(n+ 1− d+ x) is increasing on [0,∞), we have

0≤ g(n+ 1− d, d)−
d−1∑
x=0

log
n+ 1− d+ 2x

n+ 1− d+ x
≤ log

n+ 1− d+ 2d

n+ 1− d+ d
≤ d

n
.

Now (C.12) follows from a combination of the above inequalities.
For the inequality (C.13), we complete the square of (C.11) to obtain

Var(`(Σ, Σ̂n)) =

d∑
j=1

2((n+ d+ 1− 2j)λj − 1)2

n+ d+ 1− 2j
+

d∑
j=1

(
ψ′
(
n+ 1− j

2

)
− 2

n+ d+ 1− 2j

)

≤ 4

n

d∑
j=1

((n+ d+ 1− 2j)λj − 1)2 +

d∑
j=1

(
ψ′
(
n+ 1− j

2

)
− 2

n+ d+ 1− 2j

)
.

To handle the second sum, note that [1, Equation 6.4.10] gives |ψ′(x)−x−1| ≤ x−2 for x≥ 1.
Therefore, the second term has an absolute value at most
d∑
j=1

[
2(d− j)

(n+ 1− j)(n+ d+ 1− 2j)
+

(
2

n+ 1− j

)2
]
≤ d ·

[
2d

(n/2)2
+

(
2

n/2

)2
]
≤ 16d2

n2
.
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C.12. Proof of Lemma C.4. Note that when 0 < u ≤ 2, Taylor expansion of h(·) at
u= 1 gives

h(u)≥ (u− 1)2

2
min
θ∈[0,2]

h′′(θ) =
(u− 1)2

8
.

For u > 2, we have u− 1≥ log2 u > 10/7 · logu, and therefore

h(u) = u− logu− 1≥ 3(u− 1)

10
.

Therefore, in both cases we have

h(u)≥ 1

8
min

{
(u− 1)2, |u− 1|

}
.

To prove (C.15), let J , {j ∈ [d] : |uj − 1| ≤ 1}, S ,
∑d

j=1(uj − 1)2. Using the above
inequality, we have

d∑
j=1

h(uj)≥
1

8

∑
j∈J

(uj − 1)2 +
1

8

∑
j /∈J

|uj − 1|

≥ 1

8

∑
j∈J

(uj − 1)2 +
1

8

√∑
j /∈J

(uj − 1)2

≥ 1

8
min
x∈[0,S]

(
x+
√
S − x

)
=

1

8
min{S,

√
S},

which is precisely (C.15).
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