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Abstract

We present a unified framework for proving memory lower bounds for multi-pass streaming
algorithms that detect planted structures. Planted structures — such as cliques or bicliques in
graphs, and sparse signals in high-dimensional data — arise in numerous applications, and our
framework yields multi-pass memory lower bounds for many such fundamental settings. We
show memory lower bounds for the planted 𝑘-biclique detection problem in random bipartite
graphs and for detecting sparse Gaussian means. We also show the first memory-sample
tradeoffs for the sparse principal component analysis (PCA) problem in the spiked covariance
model. For all these problems to which we apply our unified framework, we obtain bounds
which are nearly tight in the low, 𝑂 (log𝑛) memory regime. We also leverage our bounds
to establish new multi-pass streaming lower bounds, in the vertex arrival model, for two
well-studied graph streaming problems: approximating the size of the largest biclique and
approximating the maximum density of bounded-size subgraphs.

To show these bounds, we study a general distinguishing problem over matrices, where
the goal is to distinguish a null distribution from one that plants an outlier distribution over a
random submatrix. Our analysis builds on a new distributed data processing inequality that
provides sufficient conditions for memory hardness in terms of the likelihood ratio between the
averaged planted and null distributions. This result generalizes the inequality of [Braverman
et al., STOC 2016] and may be of independent interest. The inequality enables us to measure
information cost under the null distribution – a key step for applying subsequent direct-sum-
type arguments and incorporating the multi-pass information cost framework of [Braverman
et al., STOC 2024]. Finally, to instantiate our framework in concrete settings, we derive bounds
on the likelihood ratio between the planted and null distributions using careful truncations.
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1 Introduction

Many statistical estimation tasks involve discovering certain hidden structures in the data distri-
bution. A well-known instance of this is the planted clique problem [Jer92, Kuč95], where one
is given a random Erdős–Rényi graph 𝐺 (𝑛, 1/2) (each edge exists with probability 1/2) but with
a clique added on a uniformly randomly chosen subset of 𝑘 vertices. The goal is to recover this
planted clique. Several variants of this problem, such as finding the densest subgraph within a
graph [CX16] or finding the presence of certain community structure in the graph [Abb18] share
a similar “planted" flavor. Planted structures arise not only in combinatorial problems such as
clique detection, but also in classical statistical settings – for instance, estimating the mean of a
high-dimensional Gaussian when the mean vector is known to be 𝑘-sparse [BGM+16] or perform-
ing dimensionality reduction through sparse principal component analysis (PCA) [ZHT06]. Since
modern settings often involve large amounts of high-dimensional data with many irrelevant at-
tributes, problems with sparse planted structures capture key challenges in statistical estimation
in such settings. Other examples include sparse linear regression [SD15], sub-matrix detection
[MW15b] and testing almost 𝑘-wise independence [AAK+07].

These problems with planted structure also offer a fertile ground to understand average-case
complexity, and the interaction of computational and statistical resources. In many of these set-
tings, there is believed to be a gap between what is information-theoretically optimal, and what is
possible under computational constraints. The planted clique problem and the sparse PCA prob-
lem are among the problems which have been central objects of study in this line of work. For the
planted clique problem, if the clique size 𝑘 = Ω(

√
𝑛) then polynomial-time algorithms are known

for recovering the clique [AKS98, FK00, McS01]. It is widely conjectured that if 𝑘 < 𝑂 (𝑛1/2−𝛿 ) for
some 𝛿 > 0, then no polynomial-time algorithms exist for approximately recovering (or detecting)
the planted clique. Hardness of planted clique implies hardness of a number of problems with
planted structure including testing almost 𝑘-wise independence [AAK+07], community detection
[BB20], sub-matrix detection [MW15b], as well as sparse PCA [BR13]—pointing at its fundamental
nature for understanding statistical-computational gaps and average-case complexity. Similarly,
the sparse PCA problem which adds a sparsity constraint to the usual PCA problem (discussed
further in Section 1.4) has played a central role in understanding computational-statistical trade-
offs in statistical settings. Its hardness has been studied from the perspective of sum of squares
relaxations [MW15a, HKP+17], low-degree likelihood ratio tests [DKWB24], statistical query al-
gorithms [BBH+21], robustness to adversarial perturbations [dKNS20], failure of approximate
message passing [LKZ15, BMR20] and methods from statistical physics [LKZ17, AWZ23].

Our goal in this work is to understand statistical-computational gaps for detecting planted
clique, sparse PCA and other problems with planted structures. We consider the streaming
model of computation, where the algorithm gets one or more passes over an input drawn
from some data-generating distribution. Here, the memory usage of the algorithm is the main
metric of computational cost. The streaming model over stochastic inputs is widely studied
[GM07, AMOP08, KMM12, KKS14, CMVW16, Raz18, SSV19, BGW20, BGL+24], and it captures
many modern settings involving massive computation on large graphs or datasets. In addition
to its practical relevance, investigating the role of memory in detecting planted structures offers
a complementary vantage point to understand the computational hardness of statistical inference
[Sha14, SVW16, DH24, MSSV24] and, as we show, also yields new streaming lower bounds for
approximation problems on worst-case graphs.
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In this work, we develop a general framework for proving memory hardness of detecting
planted structures in data, and apply it to several canonical settings ranging from graph problems
to learning tasks. Our first application establishes unconditional statistical-computational tradeoffs
for the planted biclique problem – a bipartite generalization of the planted clique problem – previously
studied by [FGR+17] in the context of statistical query hardness for planted clique detection. In
this problem, the goal is to distinguish whether a uniformly random bipartite graph has a (𝑘 × 𝑘)
biclique planted on a uniformly chosen set of vertices. The problem is at least as hard as the
planted clique problem and has been used as a cryptographic primitive [ABW10]. Moreover, most
known algorithms and bounds for the planted clique problem naturally extend to the bipartite
version [AV11, FP16, KLP22, BKS23]. In the streaming model, at each time-step the algorithm
observes a uniformly random left vertex together with its adjacency list. [FGR+17] studied the
distributional version of the planted biclique problem defined on such adjacency-list vectors.

Problem 1.1. Fix an integer 𝑘 , 1 ≤ 𝑘 ≤ 𝑛, and a uniformly random subset of 𝑘 indices 𝑆 ⊆ [𝑛]. The input
distribution 𝐷𝑆 on vectors 𝑥 ∈ {0, 1}𝑛 is defined as follows: with probability 1 − (𝑘/𝑛), 𝑥 is uniform over
{0, 1}𝑛; and with probability 𝑘/𝑛, 𝑥 is such that its 𝑘 coordinates from 𝑆 are set to 1, and the remaining
coordinates are uniform in {0, 1}. Given 𝑚 independent samples, the distributional planted 𝑘-biclique
problem is to distinguish between samples drawn from 𝐷𝑆 and samples drawn uniformly from {0, 1}𝑛.

We show that any 𝑝-pass streaming algorithm solving the distributional planted 𝑘-biclique
problem with𝑚 samples requires

Ω

(
𝑛

𝑚
· 𝑛2

𝑝 𝑘4 log𝑛

)
(1)

bits of memory. When 𝑚 = Ω(𝑛3/𝑘4) – that is, when
√
𝑛𝑚 ≫ 𝑘2𝑚/𝑛 – a simple edge-counting

algorithm using one pass and 𝑂 (log𝑛) memory suffices to distinguish the planted distribution
from uniform. Hence, our memory-sample tradeoff is tight up to logarithmic factors in the
low-memory regime. In the statistically feasible regime – when 𝑘 = Θ(log𝑛) and 𝑚 = 𝑂̃ (𝑛) –
any constant-pass streaming algorithm must use Ω̃(𝑛2) bits of memory. Without delving into
tedious details, we show the same memory hardness for any multi-pass streaming algorithm that
distinguishes between a random𝐺 (𝑚,𝑛, 1/2) bipartite graph and one with an added planted (𝑘 ×𝑘)
biclique. While this result is significant in its own right and requires new techniques, our main
contribution is a general framework providing sufficient conditions on the underlying distributions
to yield such memory-sample tradeoffs for detecting planted structures. This framework further
allows us to generalize our lower bounds to detecting planted (𝑘 ×𝑘) bicliques in random𝐺 (𝑚,𝑛, 𝑞)
bipartite graphs for any 0 < 𝑞 < 1/2, which we discuss in more detail in Section 1.2.

1.1 Our general framework

Changing notation slightly, consider the planted biclique problem on a bipartite graph with 𝑛

left vertices and 𝑑 right vertices. The streaming algorithm observes 𝑛 adjacency-list vectors in
{0, 1}𝑑 , such that at 𝑘 uniformly chosen time-steps, these vectors contain all 1s on a fixed subset
of coordinates 𝑆 ⊆ [𝑑]. In our general framework for detecting planted structures, we retain the
property that a fraction of the rows follow a planted distribution, but we additionally constrain the
subset 𝑆 to lie within a predefined “partition". This modification allows us to model a broader class
of planted distributions, and we formalize this general setup below (see Figure 1 for an illustration).
Given a vector 𝑥 , we represent its projection to coordinates in 𝑆 by 𝑥𝑆 .
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Problem 1.2 (General planted structure detection). Consider some 𝑛,𝑑 , 0 < 𝑘 ≤ 𝑛 and 0 < 𝑡 ≤ 𝑑 . Let
{𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] be some partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . Let 𝜇0, {𝜇𝜃 } be distributions on 𝑡-dimensional vectors,
and 𝑃 be some distribution over 𝜃 . The goal is to distinguish between the following joint distributions on 𝑛
such 𝑑-dimensional vectors 𝑥1, . . . , 𝑥𝑛 ∈ X𝑑 :

1. 𝐷0: ∀𝑖 ∈ [𝑛] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝜇0.

2. 𝐷1: Pick 𝑟 uniformly from [𝑑/𝑡]. Pick set 𝑅 uniformly from subsets of [𝑛] of size 𝑘 . Pick 𝜃 ∼ 𝑃 .

∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟, 𝑥𝑖𝑇𝑟 ′ ∼ 𝜇0

(i.e. except for the chosen partition 𝑇𝑟 , draw coordinates in all partitions from 𝜇0, for all datapoints).

∀𝑖 ∉ 𝑅, 𝑥𝑖𝑇𝑟 ∼ 𝜇0

(i.e. for datapoints not in chosen set 𝑅, coordinates in all partitions are drawn similar to 𝐷0).

∀𝑖 ∈ 𝑅, 𝑥𝑖𝑇𝑟 ∼ 𝜇𝜃

(i.e. for datapoints in chosen set 𝑅, the coordinates in chosen partition 𝑇𝑟 are drawn from 𝜇𝜃 ).

Figure 1: The distributions 𝐷0 and 𝐷1 from Problem 1.2. The partition {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] is shown to be
over contiguous segments here only for convenience. In 𝐷1, 𝑟 is drawn uniformly from [𝑑/𝑡], 𝑅 is
drawn uniformly from subsets of [𝑛] of size 𝑘 , and 𝜃 is drawn from 𝑃 . The planted structure is
highlighted in red.

The above setup captures settings with sparsely planted structures on certain coordinates of the
datapoints (through 𝑇𝑟 ), as well as scenarios where a subset of datapoints are outliers containing
planted structure (through 𝑅). In addition to encompassing the planted biclique detection problem
in random bipartite graphs𝐺 (𝑛,𝑑, 𝑞) – where each edge across the partition appears independently
with probability 𝑞 – this framework also models canonical learning problems over Gaussian distri-
butions. Let 𝜇0 be a product distribution over 𝑡-dimensional vectors with 𝑖 .𝑖 .𝑑 . N(0, 1) entries, let
𝑃 be the uniform distribution over 𝑘-sparse subsets 𝜃 ⊆ [𝑡], and let 𝜇𝜃 be the distribution obtained
from 𝜇0 by shifting the mean to +1 on coordinates in 𝜃 . This yields the problem of detecting a
mixture of a standard multivariate Gaussian and a sparse-mean Gaussian. While both the planted
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biclique and sparse-mean Gaussian problems involve planted distributions that are 𝑖 .𝑖 .𝑑 . over the
selected coordinates, we use our framework to also model sparse PCA, where the planted distri-
bution 𝜇𝜃 introduces correlations among the selected coordinates – specifically, the projection of
a datapoint onto 𝜃 is drawn from a Gaussian with a shifted covariance. Table 1 summarizes the
specific parameters used for these applications.

Table 1: Different instantiations for Problem 1.2. We consider 𝜃 to be a uniformly random ℓ-sized
subset of the chosen 𝑡-sized partition 𝑇𝑟 .

Application Null Distribution
𝜇0

Planted Distribution
𝜇𝜃

Parameters 𝑘 and 𝑡 ,
where 1 ≤ 𝑘 ≤ 𝑛 and
1 ≤ 𝑡 ≤ 𝑑

Planted biclique on ran-
dom 𝐺 (𝑛,𝑑, 𝑞) graphs

Ber(𝑞)⊗𝑡 Set coordinates in 𝜃 to
be 1

𝑘 = ℓ , 𝑡 = Θ̃
(
ℓ2

𝑞

)
Planted biclique with
monotone adversaries

Ber(1/2)⊗𝑡 Set coordinates in 𝜃 to
a fixed string in {0, 1}ℓ

𝑘 = ℓ , 𝑡 = ℓ

(1 − 𝑞) : 𝑞 mixture of a
standard Gaussian and a
sparse-mean Gaussian

N(0, 1)⊗𝑡 Coordinates in 𝜃 are
drawn from N(1, 1)⊗ℓ

𝑘 = 𝑞𝑛, 𝑡 = Θ̃(𝑑𝑜 (1)ℓ2)

ℓ-sparse PCA N(0, 1)⊗𝑡 Coordinates in 𝜃 are
drawn from N(0, 𝐼ℓ +
𝛼𝑣𝑣𝑇 ), for some small
𝛼 and unit vector 𝑣

𝑘 = 𝑛, 𝑡 = Θ̃(𝑑0.01ℓ)

Next we state our main theorem establishing memory-sample tradeoffs for the general planted
structure detection problem.

Theorem 1.3 (Informal version of Theorem 4.3). Let 𝜇1 = 𝔼𝜃∼𝑃 [𝜇𝜃 ]. Suppose 𝜇1(𝑥) ≤ 𝑐 ·𝜇0(𝑥) ∀ 𝑥 ∈ X𝑡 .
Then, any 𝑝-pass streaming algorithm that solves Problem 1.2 requires at least Ω

(
𝑛𝑑

𝑝 ·𝑐 ·𝑘2 ·𝑡

)
bits of memory.

The above theorem provides a sufficient condition on the null and planted distributions, 𝜇0
and 𝜇𝜃 respectively, for proving memory-hardness of detecting planted structures. Note that
we must at least require the distance between 𝜇0 and the average planted distribution 𝔼𝜃∼𝑃 [𝜇𝜃 ]
to be small; otherwise, a single sample would suffice to distinguish the two distributions. Our
condition is both simple to state – as it depends only on the average planted distribution – and
broadly applicable. However, ensuring it holds for the distributions used in our applications
(listed in Table 1) requires careful truncation and modification. To prove the above theorem, we
first establish a new, generalized distributed data processing inequality that is of independent
interest (see Theorem 2.1 for a detailed statement). Theorem 1.3 then follows through multiple
applications of direct-sum-type arguments – one over the partitions and another over the rows.
Each step is nontrivial, as it crucially depends on the specific distributions used in the information
complexity notions. We provide a detailed outline of our technical contributions in Section 2.

1.2 Applications to planted biclique detection and its variants

Firstly, we consider memory requirements for detecting planted bicliques. Let𝐺 (𝑚,𝑛, 𝑞) denote the
distribution over bipartite graphs with𝑚 left vertices and 𝑛 right vertices, where each edge across
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the partition is present independently with probability 𝑞. In the generalized planted biclique
detection problem, the goal is to distinguish between a random bipartite graph drawn from
𝐺 (𝑚,𝑛, 𝑞) and one containing a planted biclique of size (𝑘 ×𝑘) on a uniformly chosen set of vertices.
By instantiating Problem 1.2 with the null (𝜇0) and planted distributions (𝜇𝜃 ) as in Table 1, and
setting 𝑡 = Θ̃(𝑘2/𝑞), we obtain the following multi-pass streaming lower bound.

Theorem 1.4 (Informal version of Theorem 5.2). For the planted 𝑘-biclique problem in random bipartite
graphs𝐺 (𝑚,𝑛, 𝑞), any 𝑝-pass streaming algorithm that observes the adjacency lists of left vertices in random
order and achieves a constant distinguishing advantage requires at least Ω̃

(
𝑛𝑚𝑞

𝑝 ·𝑘4

)
bits of memory.

To apply Theorem 1.3, we require that the likelihood ratio 𝜇1(𝑥)/𝜇0(𝑥) be bounded for all 𝑥 .
This fails when 𝑡 ≪ 𝑘2/𝑞, as planting 𝑘 ones substantially changes the number of ones under 𝜇0.
Using careful truncation arguments (briefly outlined in Section 2.4), we show the condition holds
for 𝑡 ≫ 𝑘2/𝑞. While 𝑞 = 1/2 is the most common setting, it is noteworthy that our framework
applies to general 𝑞. In particular, the case 𝑞 =

polylog(𝑛)
𝑛

is crucial for our new memory lower
bound on approximating the density of subgraphs, discussed in the next subsection.

Fix 𝑚 = 𝑛 and 𝑞 = 1/2. In the regime where the algorithm has poly log𝑛 space (a common
notion of space-efficient computation, particularly with regards to planted clique [Mar21a]), the
result says that it is not possible to detect cliques of size𝑂 (𝑛1/2−𝛿 ), unless the algorithm makes𝑛Ω (𝛿 )

passes over the data. Since we are usually interested in algorithms with constant or logarithmic
number of passes over the data in streaming settings, the bound says that the problem cannot
be solved with 𝑛𝑜 (𝛿 ) space in those settings. The result is tight in the sense that for clique size
𝑘 = Ω(

√︁
𝑛 log𝑛), simply counting edges (which uses𝑂 (log𝑛) space and one pass) suffices [Kuč95].

We next relate our result to prior work on the hardness of planted clique detection in the
streaming model. For worst-case graphs, [HSSW12] and [BLS+18] prove a Ω̃(𝑛2/𝑟2) memory lower
bound for one-pass algorithms that compute an 𝑟 -approximation of the maximum clique size, and
[BLS+18] also provide a matching upper bound (which extends to bicliques). Since the largest
(bi)clique in 𝐺 (𝑛, 𝑛, 1/2) has size Θ(log𝑛) with high probability, a Θ̃(𝑘)-approximation suffices to
detect a planted 𝑘-clique, yielding a 𝑂̃ (𝑛2/𝑘2)-space one-pass algorithm for the planted biclique
problem – leaving room to tighten1 our lower bound by a factor of 𝑂̃ (𝑘2) when 𝑘 <

√
𝑛. For the

planted clique problem, [RWYZ21] also establish a Ω(𝑛2/(𝑝𝑘4)) memory lower bound for 𝑝-pass
algorithms, but in a stronger model where edges arrive in an adversarial order. In contrast, our
model is arguably more natural and easier, as it reveals all neighbors of each vertex together while
vertices arrive in random order. The only prior work establishing non-trivial lower bounds in
a related communication model – where each player receives the adjacency list of a vertex – is
[CG19], which applies only to cliques of size at most 𝑛1/4.

Planted biclique under monotone adversaries Starting with the work of [FK98], the monotone
adversary model studies the extent to which algorithms for planted clique depend on the specific
distributional assumptions of the problem. The monotone adversary model corresponds to starting
with the standard input for planted clique, after which an adversary is allowed to remove any edges
not belonging to the planted clique (if the graph has a planted clique). Since the adversary only
removes such edges, it is in some sense helpful. [FK00] showed that while simpler algorithms

1Note that since our general framework yields memory–sample tradeoffs, Theorem 1.4 is tight for the distributional
version of the planted biclique problem (Problem 1.1).
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based on edge counting and the spectral method fail at the 𝑘 = 𝑂̃ (
√
𝑛) threshold, a semi-definite

programming based method still recovers cliques at the previous 𝑘 = 𝑂̃ (
√
𝑛) threshold in the

presence of such adversaries. Our framework can capture monotone adversaries (see Table 1 for
the parameters), and we get the following result against streaming algorithms that detect whether
there is a clique of size greater than 𝑘 .

Theorem 1.5 (Informal version of Theorem 6.4). For the planted biclique problem in the presence of a
monotone adversary, any successful 𝑝-pass streaming algorithm that detects the presence of planted cliques
of size at least 𝑘 , requires Ω̃

(
𝑛2

𝑝 ·𝑘3

)
bits of memory.

The result shows that the threshold for solving the problem in constant passes with 𝑂 (log𝑛)
memory moves from 𝑘 = Ω̃(

√
𝑛) to 𝑘 = Ω̃(𝑛2/3) — showing that somewhat strong distributional

assumptions are needed to solve the problem at the 𝑘 = Ω̃(
√
𝑛) threshold with small memory.

Note that the previous algorithm based on counting the number of edges no longer works in this
model, though the 𝑂̃

(
𝑛2

𝑘2

)
memory one-pass algorithm from [BLS+18] does work. It is possible that

no 𝑂 (log𝑛)-space, constant-pass algorithm can solve the problem in the presence of a monotone
adversary for 𝑘 = Ω̃(𝑛), suggesting that even a monotone adversary may make the planted biclique
problem as hard for streaming algorithms as in the worst-case setting.

1.3 Application to graph streaming under the vertex arrival model

In this section, we focus on general undirected graphs, not necessarily bipartite, and study the
memory requirements for approximating certain graph properties in the vertex arrival streaming
model. In this model, vertices arrive in a worst-case order, and each new vertex reveals its
connectivity to all previously arrived vertices. This model is natural for graph streaming problems
and has been fairly studied; the seminal work of [KVV90] on online bipartite matching in the
vertex arrival model sparked extensive research in this area. More recently, [Kap21] established a
separation between the edge and vertex arrival models for the online bipartite matching problem.

For other graph properties, while interesting upper bounds are known (e.g., [KMPV19] for
triangle counting), lower bounds in the vertex-arrival streaming model are hard to come by. Among
such problems, approximating the maximum clique or independent set size has been the most
studied [BLS+18, CDK18, CDK19]. While [HSSW12] established a tight Ω(𝑛2/𝛼2) memory lower
bound for one-pass algorithms, under the edge-arrival model, that compute an 𝛼-approximation
to the maximum clique size, it is conceivable that the same approximation might be achievable
using lesser memory in the vertex-arrival model. In fact, [CDK19] showed that computing a
maximal independent set is trivial in vertex-arrival streams but requires Ω(𝑛2) space in edge-arrival
streams. In terms of lower bounds, [CDK19] proved that any 𝛼-approximation of the maximum
clique size in one-pass vertex-arrival streams requires Ω(𝑛2/𝛼7) space, while [BLS+18] established
an incomparable Ω(𝑛/𝛼2) lower bound for one-pass adjacency-list streams. Theorem 1.5 implies
the following stronger memory lower bound for multi-pass streaming algorithms that approximate
the size of the largest biclique in an undirected graph.

Theorem 1.6 (Informal version of Corollary 6.6). Any 𝑝-pass streaming algorithm in the vertex-arrival
model that approximates the maximum biclique size within a factor of 𝛼 ≥ 1, must use Ω̃

(
𝑛2

𝑝𝛼3

)
memory.
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Approximating density for 𝛽-bounded subgraphs Next, we turn to the densest subgraph problem,
a fundamental primitive in graph mining that has been extensively studied since the 1970s (see the
excellent survey by [LMFB24] on the problem and its variants). Broadly, the goal is to find a subset
of vertices 𝑆 maximizing the ratio of the number of edges within 𝑆 to |𝑆 |, referred to as the density
of 𝑆 . [BKV12] initiated the study of streaming algorithms for this problem, presenting an𝑂 (log𝑛)-
pass algorithm that achieves a constant-factor approximation using𝑂 (𝑛) bits of memory. They also
proved that any 𝑝-pass streaming algorithm that 𝛼-approximates the maximum density requires
Ω(𝑛/(𝑝𝛼2)) bits of memory under worst-case edge arrival streams. We establish the following
stronger memory lower bound for the harder problem of approximating the maximum density of
subgraphs of size at most 𝛽, in the (potentially stronger) vertex-arrival streaming model.

Theorem 1.7 (Informal version of Corollary 5.9). For any 𝛼 ≥ 1, any 𝑝-pass streaming algorithm in the
vertex arrival model, which 𝛼-approximates the maximum density among all subgraphs of size at most 𝛽 for
𝛽 = 𝑜 (𝑛/𝛼2), requires at least Ω̃

(
𝑛2

𝑝 ·𝛼4𝛽

)
bits of memory.

The multi-pass streaming lower bound of [BKV12] is based on a reduction from set disjointness,
which critically relies on the worst-case edge-arrival order and does not extend to vertex-arrival
streams. To prove the above theorem, we establish a reduction from the planted biclique detection
problem (Theorem 1.4) with parameters 𝑘 = 𝛼 log𝑛 and 𝑞 = log𝑛/𝛽. Since detecting planted
bicliques is believed to be computationally hard even in “sparse" graphs, we cannot hope to extend
our hardness result beyond an approximation factor of 𝛼 = 𝑛/𝛽; since simple greedy algorithms
[AITT00] are known to give such approximation to maximum density of 𝛽-bounded subgraphs.

1.4 Applications to canonical learning problems over Gaussians

We now discuss our results for learning problems over Gaussians. Gaussian distributions pose
significantly more challenges in bounding the likelihood ratio 𝜇1/𝜇0 between the planted and null
distributions. In Section 2.5, we discuss how to suitably truncate the distributions to apply our
framework in more detail.

Detecting sparse mean Gaussians We now consider the problem of testing whether the data
— or some of the data — is coming from a Gaussian with a sparse mean. This is a fundamental
problem with a long line of work [Ing96, BAR02, IS03, DJ04, JW07, CCT17, CCTV18]. It models
various applications where the goal is to do hypothesis testing to determine if there is some sparse
signal present in the data. In many applications such as anomaly detection the signal is also ‘weak’
and not all datapoints come from the planted distribution (see [DJ04] and the survey [DJ15]),
and there has been significant work on detecting such signals which are both sparse and weak
[DJ04, DJ08, HJ10, KS13]. This aspect can also be captured by our general setting in Problem 1.2
(through choice of the set ‘𝑅’).

We now describe the sparse Gaussian testing setting in more detail. We first draw the planted
mean vector 𝜃 ∈ {0, 𝛼}𝑑 uniformly at random from the set {0, 𝛼}𝑑 , but subject to it being ℓ sparse.
Here 𝛼 ∈ [0, 1] is the signal strength parameter. Let 𝑞 > 0 be the probability of getting a planted
sample. In the null distribution, we always get samples from 𝑁 (0, 𝐼 ). In the planted distribution,
at every time step with probability 𝑞 we get a sample from 𝑁 (𝜃, 𝐼 ), and with probability (1 − 𝑞) we
get a sample from 𝑁 (0, 𝐼 ). Using our general framework, we show the following memory-sample

7



tradeoff for algorithms which take as input a lower bound on the sparsity in the planted case, and
then work for all sparsity levels above this lower bound.
Theorem 1.8 (Informal version of Theorem 7.2). For the problem of detecting sparse mean Gaussians
where the mean vector has sparsity at least ℓ , any successful 𝑝-pass, 𝑠-bit memory algorithm which uses 𝑛
samples requires 𝑠 · 𝑛 ≥ Ω

(
𝑑0.99

𝑝 · (𝛼ℓ𝑞)2

)
.

We note that our general framework is versatile enough to capture dependence of the tradeoff
on the signal strength 𝛼 here, and the bound also holds for constant values of 𝛼 where the planted
vector has a super-constant norm. Several other remarks about this lower bound are in order,
starting with upper bounds for this problem. By storing the sum of all the co-ordinates of all
the vectors, it is possible to distinguish the two distributions with 𝑛 = 𝑂

(
𝑑

(𝛼ℓ𝑞)2

)
samples (since,

roughly, the means in the planted versus null case differ by 𝛼ℓ𝑞𝑛, and the variance is 𝑂 (𝑛𝑑)).
Therefore the problem can be solved with a one-pass 𝑂 (log𝑑) memory algorithm, but using
𝑂

(
𝑑

(𝛼ℓ𝑞)2

)
samples. Our bound shows that this sample-complexity is near-optimal and necessary

for 𝑂 (log𝑑) memory constant pass algorithms. This required sample complexity for 𝑂 (log𝑛)
memory algorithms is significantly worse than the optimal sample complexity without memory
constraints. We can solve the problem by storing 𝑂̃ (𝑑/ℓ) randomly chosen co-ordinates of 𝑂̃

(
1
𝑞𝛼2

)
datapoints, and by checking the empirical averages of the co-ordinates for every 𝑂̃

(
1
𝛼2

)
sized

subset of the stored points. This requires 𝑂̃
(
𝑑

ℓ𝛼2𝑞

)
memory and 𝑂̃

(
1
𝛼2𝑞

)
samples. 𝑂̃

(
1
𝛼2𝑞

)
is the

information-theoretic sample complexity of the problem, and hence our memory lower bound
to achieve optimal sample complexity is optimal up to a factor of 𝑑0.01

ℓ𝛼2 . We also note that the
lower bound shows that memory-limited algorithms need a sample complexity which depends
on 1/𝑞2, whereas information-theoretically only a 1/𝑞 dependence is needed — hence memory-
limited algorithms could need many more samples to detect outliers or find weak signals in the
data distribution. This is similar to gaps observed for the needle problem [AMOP08, CCM08, LZ23],
where the goal is to detect if a data stream has one element which appears with a higher than
uniform probability.

Even for the case of 𝑞 = 1 where all samples are drawn from a Gaussian with a sparse mean, we
are unaware of previous memory lower bounds for the detection problem, though memory lower
bounds are known for the estimation version of the sparse Gaussian mean problem [ZDJW13,
GMN14, BGM+16].

Sparse PCA detection problem Sparse PCA adds a sparsity constraint to the PCA problem and
has found widespread applications in statistics, ML and data analysis [ZHT06, ZX18]. As discussed
earlier, it is also a prototypical problem for studying understanding statistical-computational trade-
offs. From the perspective of memory constraints, streaming algorithms have been developed
for sparse PCA [MBPS10, YX15, WL16, KS24] — building on developments in streaming PCA
[MCJ13, JJK+16]. These algorithms all need at least Ω(𝑑) memory to find the sparse principal com-
ponent, but the trivial information-theoretic lower bound only says that Ω̃(𝑘) memory is needed
for the estimation problem if the principal component is 𝑘-sparse. We are unaware of any previous
non-trivial memory lower bound for the problem.

We describe the detection version of the sparse PCA problem. We first draw the sparse principal
component 𝜃 ∈ {0, 1/

√
ℓ}𝑑 uniformly at random from the set {0, 1/

√
ℓ}𝑑 , but subject to it being ℓ-
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sparse. The goal is to distinguish whether the samples are coming from 𝑁 (0, 𝐼 ) or from 𝑁 (0, Σ),
where Σ = 𝐼 + 𝛼𝜃𝜃⊤. This is the widely studied spiked covariance model, also known as the spiked
Wishart model [ZHT06, JL09]. Here 𝛼 > 0 is the signal strength parameter, and we consider 𝛼
which is a small enough constant. Note that in contrast to previous settings, here all the samples
have the sparse, planted structure, as is standard in sparse PCA. We show the following tradeoff
for this problem.

Theorem 1.9 (Informal version of Theorem 8.2). For the sparse PCA detection problem, any successful
𝑝-pass, 𝑠-bit memory algorithm which uses 𝑛 samples requires 𝑠 · 𝑛 ≥ Ω

(
𝑑0.99

𝑝 ·ℓ

)
.

For the small-memory regime where 𝑠 = 𝑂 (log𝑛) and 𝑝 = 1, our result shows that Ω(𝑑0.99/ℓ)
samples are necessary. In contrast, note that the problem is information-theoretically solvable with
only 𝑂̃ (ℓ) samples [MW15a]. Therefore, small, 𝑂 (log𝑛)-memory algorithms need significantly
more samples than the information-theoretic limit to solve the problem. In the 𝑂 (log𝑛)-memory
regime, it is possible to solve the problem with 𝑂̃ (𝑑) samples by thresholding the sum of the
squares of all the co-ordinates over all the samples. Therefore, there is a gap of ℓ (and some other
less significant terms) between our lower bound and the best-known upper bound. However, we
show our lower bound for a more structured version of the problem where a consecutive set of co-
ordinates of 𝜃 are non-zero (in the technical overview in Section 2.5, we discuss this further). In the
presence of this structure, it is possible to solve the problem with Ω̃(𝑑/ℓ) samples, by thresholding
the squares of the sum of consecutive co-ordinates instead. Therefore, our bound is nearly tight
for this setting that we consider.

To the best of our knowledge, our result represents the first memory-sample tradeoffs for sparse
PCA in the standard spiked covariance model, either for the detection or the estimation version of
the problem. Note that a reduction is known from the planted clique problem to the sparse PCA
[BR13, Mar21b], however this reduction does not work in the streaming model. The closest related
setting for which memory-sample tradeoffs are known is for detecting if a pair of co-ordinates
in samples drawn from an unknown distribution are correlated [Sha14, DS18]. This is similar to
the sparse PCA problem when ℓ = 2. However, the bound of [Sha14, DS18] only holds when the
correlation (which is analogous to our signal strength parameter 𝛼) is polynomially small in 𝑑 (in
which regime they prove a stronger bound than Thm 1.9), in contrast our bound holds for constant
values of 𝛼 , and importantly, generalizes beyond the case of correlations where ℓ = 2.2

1.5 Other Related Work

We now discuss some other relevant literature. There has been significant work on understanding
learning under information constraints such as limited memory or communication constraints
[BBFM12, DJW13, Sha14, AS15, SD15, Raz18, DKS19, WBSS21]. The works closely related to our
work are [BBS22, LWZ25, BGL+24], where the former two also study information cost for a similar
setup to planted biclique (Task B in their paper) en route to showing memory lower bounds for
certain estimation problems. However they measure information cost with respect to a non-uniform
distribution which prevents our subsequent direct sum application, and hence their analysis is not
helpful for us. Particularly, while Task B in these papers plants 0/1 uniformly on a𝑘-sized subset, at
best their proof can be massaged to show that detecting cliques of size 𝑘 requires Ω(𝑛/𝑘3) memory,

2Note that in the sparse PCA problem the co-ordinates of the samples are not independent, and hence we cannot do
a direct reduction from ℓ = 2 to larger values of ℓ .
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whereas we show a Ω(𝑛2/𝑘4) bound which requires significantly new techniques and measuring
information 𝑤.𝑟 .𝑡 . the null distribution. Secondly, hybrid arguments used by these papers fail to
work for our other applications such as sparse PCA where planted coordinates are correlated.

Work on the needle problem [AMOP08, CCM08, LZ23, BGL+24] also shares elements of our
analysis. However, bounds for the needle problem do not yield bounds for our general planted
structure detection problem since the needle problem is limited in the sense that a needle is chosen
uniformly from the null distribution. Another relevant set of papers is the work of [FGR+17] on
variants of statistical query (SQ) dimension for Problem 1.1 and the work of [GRT18] which shows
memory-sample tradeoffs parameterized by the SQ dimension of the problem using extractor-
based bounds. However, this connection is weak to give anything non-trivial.

In the graph streaming literature, there is an extensive literature on both upper bounds and
lower bounds (see survey [McG14] on upper bounds and [Ass23] on lower bounds for an overview).
Typical lower bounds here are for worst-case edge arrival graphs, whereas our results hold in the
vertex arrival model as well as random order. Finally, we note that there is a large body of work on
the problem of finding outliers in streaming data, such as [TTL11, MMA16, ALPA17], see [LWZ23]
for a detailed survey. There is also work on memory lower bounds for streaming outlier detection
[SGW18], but for worst-case data.

2 Technical Overview

In this section, we present an overview of our proofs, beginning with the general planted structure
detection problem in Problem 1.2. Recall that in this problem, only one set in the partition contains
a planted structure, and only a subset of rows are planted (see also Figure 1).

We start with a simpler setting involving only a single set in the partition, and where all rows
are planted. For this case, we prove a new data processing inequality to establish information cost
lower bounds with respect to the null distribution (Section 2.1). We then extend our analysis to
the case where only one set in the partition is planted – matching the structure of Problem 1.2
– but all rows remain planted. Using direct-sum-type arguments, we establish an information
complexity lower bound for this case (again with respect to the null distribution), building on
the bounds provided by the data processing inequality (Section 2.2). Finally, we address the full
problem where only a subset of rows are planted. Here, we apply the recent multi-pass information
cost framework of [BGL+24] to derive memory lower bounds (Section 2.3). This step introduces
an additional ∼ 𝑛 factor in the bound and critically relies on the fact that the previous bounds
measure information under the null distribution. We conclude by describing applications of our
general framework to graph problems and statistical detection tasks in Section 2.4 and Section 2.5,
respectively.

As an instrumental warm-up exercise, we first consider the case of single partition; under the
no case, at each time-step, we get a sample drawn from some distribution 𝜇0 on 𝑡-dimensional
vectors. Whereas in the yes case, a sample is drawn from the planted distribution – 𝜇𝜃 – with
probability 𝛾 (think of 𝛾 as 𝑘/𝑛). As we want to develop a general framework for studying hardness
of detecting planted structures, we want to make as few assumptions on 𝜇0 and 𝜇𝜃 , where the
parameter 𝜃 takes value in some set Ω.

[BGM+16] studies a similar distribution detection question (albeit) under the communication
complexity model, where every player independently gets a sample either from 𝜇0 or from 𝜇1.
[BGM+16, Theorem 1.1] establishes information complexity (IC) lower bounds (𝑤.𝑟 .𝑡 . 𝜇0) when 𝜇1 is
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point-wise bounded by 𝑂 (𝜇0). Even though such a restriction might seem stringent, distributions
under many natural detection problems such as Gaussian mean estimation can be truncated
to satisfy it. However, for the distributions we consider – for example, in the planted clique
problem, 𝜇0 is the uniform distribution over 𝑡-dimensional vectors, whereas 𝜇𝜃 has a planted
1s on a set indexed by 𝜃 — 𝜇𝜃 (𝑥)/𝜇0(𝑥) can be exponentially large for “typical" 𝑥s. In fact, we
cannot hope to prove memory lower bounds when we know 𝜃 , as even a single time-step can
detect the outlier without any prior knowledge. Hence, under the random process 𝜃 ∼ 𝑃 , we at
least want that | |𝔼𝜃∼𝑃𝜇𝜃 − 𝜇0 | |𝑇𝑉 = 𝑜 (1). One of our main technical contributions is the following
generalized distributed data processing inequality, when the expected distribution 𝔼𝜃∼𝑃𝜇𝜃 is point-
wise bounded by 𝑂 (𝜇0).

Theorem 2.1 (Informal version of Theorem 4.8 + Lemma 4.12). Let 𝜇0, {𝜇𝜃 }𝜃 ∈Ω be a family of distri-
butions over some sample space X such that 𝔼𝜃∼𝑃𝜇𝜃 ≤ 𝑂 (𝜇0). Consider the distributed detection setting,
where if 𝑉 = 0, then each party receives 𝑥𝑖 ∼ 𝜇0, and if 𝑉 = 1 then we first draw 𝜃 ∼ 𝑃 , and then each party
receives 𝑥𝑖 ∼ 𝜇𝜃 . Then, for any multi-party communication protocol Π that learns 𝑉 with large enough
constant probability,

𝐼 (𝑋 ;Π(𝑋 )) = Ω(1), when ∀𝑖, 𝑋𝑖 ∼ 𝜇0.

One can view the above theorem as a generalization of [BGM+16, Theorem 3.1] to non-product
distributions and might be of independent interest.3 Before diving into the proof overview, let’s
talk about a bit about the implications of this theorem. If 𝑉 is a uniform bit, then it is trivial to
show that any communication protocol that detects𝑉 requires Ω(1) information𝑤.𝑟 .𝑡 . the mixture
distribution. However, our key objective is to establish an information complexity lower bound
with respect to 𝜇0, that is, the no distribution. This is crucial for two reasons. Firstly, using a direct
sum argument over𝑑/𝑡 partitions, we can prove anΩ (𝑑/𝑡) multi-party communication lower bound
for detecting planted structures when every player gets a sample from the planted distribution
(that is, 𝛾 = 1). Secondly, leveraging the recently introduced information cost notions of multi-pass
streaming algorithms [BGL+24], we are able to lift IC bounds for communication protocols to
memory lower bounds that grow quadratically with 1/𝛾 . Again, this is possible because we always
use information cost measures 𝑤.𝑟 .𝑡 . no distribution, which is a product distribution. We discuss
these in more detail in Section 2.2 and Section 2.3 respectively.

2.1 Generalized distributed data processing inequality

We follow and build upon the proof of [BGM+16, Theorem 3.1]. Let 𝜇1 = 𝔼𝜃∼𝑃𝜇𝜃 . Then, the
theorem from [BGM+16] would show an Ω(1) bound on IC 𝑤.𝑟 .𝑡 . 𝜇0 for communication protocols
that distinguish between cases where each player either receives independent samples from 𝜇0 or
from 𝜇1. In fact, their results potentially offer a stronger bound involving the strong data processing
inequality (SDPI) constant4 of 𝜇0 and 𝜇1. In Theorem 2.1, we are aiming for an Ω(1) IC bound𝑤.𝑟 .𝑡 .
𝜇0 but when under the 𝑉 = 1 case, samples are not independent.

When 𝑉 = 1, first we draw 𝜃 from a prior distribution 𝑃 , and then every player gets an
independent sample drawn from 𝜇𝜃 . Note that if the players knew 𝜃 , then a single player can

3While [BGM+16, Theorem 3.1] has been widely used to analyze distributed computing under information con-
straints, [DR19] noted that the independence condition in the theorem is often too strong.

4We refer the reader to [Rag16] for a survey on SDPI. In this paper, we will only be using data processing inequalities.

11



solve the detection problem, without sending Ω(1) bits of information under 𝜇0. For example,
for the planted biclique problem on 𝑡-dimensional vectors, a single player can send the AND
on 𝑘 bits of the plant, which reveals 𝑂 (1/2𝑘 ) bits of information about the input under uniform
distribution. This is the first step in the proof – to show that a single player cannot solve the
distinguishing problem without revealing information under 𝜇0 distribution. In fact, there is no
distinction between the two detection problems (the one we study from the one where each player
gets a sample from 𝜇1 under the yes case), when only one player receives a sample from the planted
distribution (𝜇𝜃 , 𝜃 ∼ 𝑃) while all others receive samples from the null distribution 𝜇0. For the single
player setting, we can adopt the previous proof to show that to detect 𝑉 , the player needs to send
Ω(1) bits of information under 𝜇0.

For communication protocols under product input distributions, one can use the cut-and-paste
property [BYJKS04] to connect the distinguishing capacity of the single player setting to when each
player gets a sample according to 𝜇0 or 𝜇1. However, this property does not hold for non-product
input distributions. Our approach capitalizes on the fact that once we condition on 𝜃 , the cut-and-
paste property still holds. As we are using information-theoretic quantities that easily tensorize
and work well with linearity of expectation, we are able to use both 1) that the cut-and-paste
property holds for every 𝜃 , to lift hardness of single player setting to the when all receive samples
from 𝜇0 or 𝜇𝜃 , and 2) that in the single player setting, to solve the detection problem on average
over 𝜃 ∼ 𝑃 , one needs to reveal information𝑤.𝑟 .𝑡 . 𝜇0.

2.2 Direct sum over the partitions

In Problem 1.2, under the planted distribution, we embed samples from 𝜇𝜃 on a random partition
of 𝑑-dimensional vectors of size 𝑡 , as well as on a random subset of “rows". While Theorem 2.1 is a
crucial part of the our multi-pass memory lower bounds, under the general framework, it doesn’t
say anything about memory needed to distinguish. To prove Theorem 1.3, we apply direct-sum
like techniques twice; once on the partitions and another on the randomness of rows. In this
subsection, we discuss the former. As Theorem 2.1 gives us an IC bound𝑤.𝑟 .𝑡 𝜇0, using a standard
direct-sum argument, we get Ω(𝑑/𝑡) IC bound for any communication protocol that distinguishes
the case when all player get samples from 𝜇

⊗𝑑/𝑡
0 , from the case when all players get samples from

𝜇𝜃 embedded at a fixed partition (that is, 𝑛 = 𝑘 case in Problem 1.2). See Lemma 4.5 for the formal
statement of the result.

Consider the special case of the planted clique distributed detection problem, where under the
planted distribution, each player (total 𝑘 players) receives an 𝑛-dimensional vector with 1s planted
on a pre-chosen set of coordinates 𝑆 of size 𝑘 . For 𝑛 >> 𝑘2, we can adjust the distributions over the
vectors to satisfy the requirements of Theorem 2.1, and get an Ω(1) IC lower bound𝑤.𝑟 .𝑡 . uniform
distribution (we discuss the truncation more in Section 2.4). In fact, using Lemma 4.5, we can get
an Ω̃(𝑛/𝑘2) IC lower bound5,𝑤.𝑟 .𝑡 . the uniform distribution, for any communication protocol that
solves this planted clique distributed detection problem. In Section 2.3, we will crucially use the
fact that this is an IC bound 𝑤.𝑟 .𝑡 . uniform distribution (𝜇0 generally), which is stronger than a
lower bound on the amount of communication needed to solve the detection problem.

The total communication lower bound of Ω̃(𝑛/𝑘2) is interesting in its own right. Notably, it
immediately implies a memory lower bound of Ω̃(𝑛/𝑝𝑘3) bits for any 𝑝-pass streaming algorithm
solving the planted biclique version of Problem 1.2. This is because, even if we fix the rows

5This is tight upto log𝑛 factors if we increase the number of players to ∼ 𝑛/𝑘2.
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where the plants are made, distinguishing them from the uniform distribution would still require
significant communication. In the next subsection, we leverage row-level randomness to establish a
stronger memory lower bound of Ω(𝑛2/𝑝𝑘4) bits, which is optimal (upto log𝑛 factors) for detecting
planted bicliques of size poly log𝑛, and provides non-trivial memory lower bounds for biclique
sizes up to the critical threshold of 𝑘 =

√
𝑛.

This communication complexity lower bound also implies that no 𝑛𝑜 (1) round protocol in the
Broadcast Congested Clique model (𝐵𝐶𝐴𝑆𝑇 (log𝑛)) can detect planted bicliques in directed graphs,
even when the biclique size is as large as𝑛1/3−𝜖 for some constant 𝜖 > 0. In comparison, the previous
work of [CG19] established similar bounds for the planted clique problem in directed graphs for
cliques of size at most 𝑛1/4−𝜖 . Since our primary focus is on multi-pass streaming algorithms, we
do not include further discussion on the implications for the 𝐵𝐶𝐴𝑆𝑇 (log𝑛) model.

2.3 Lifting to memory lower bounds

Next, our goal is to lift the communication lower bounds established in Lemma 4.5, when each row
gets a “plant" in the planted distribution, to memory lower bounds in the streaming setting (beyond
the implications discussed in the last subsection), when each row gets a “plant" with probability
𝛾 . For sake of exposition, let us look at the planted bi-clique problem when 𝑘 = poly log𝑛. All
the techniques discussed in this subsection readily generalize to Problem 1.2, when IC notions
are measured 𝑤.𝑟 .𝑡 . 𝜇0. Lemma 4.5 gives an Ω(𝑛/𝑘2) bound on information complexity (𝑤.𝑟 .𝑡 . ∼
uniform distribution on every player’s input) for any 𝑘-party communication protocol that solves
the planted bi-clique problem when 𝑛 = 𝑘 .

In Problem 1.2, the planted distribution only samples from the non-uniform distribution on
𝑘 = 𝛾𝑛 number of rows 𝑅, and this set 𝑅 is chosen uniformly at random. Thus, we want to use the
fact that any multi-pass streaming algorithm that doesn’t know 𝑅 needs to solve, the distributed
detection problem for the special case, where all rows are planted, for multiple instances embedded
in the stream, simultaneously. Such arguments are usually made using direct sum theorems in
communication complexity, but it is challenging to use these techniques to prove optimal6 memory
bounds that we get. One challenge is that as we want hardness for a distributional problem, we
are aiming for multi-pass lower bounds for stochastic streams and hence, we cannot strategically
embed multiple instances of the communication problem in the stream, so as to force a single
time-step to communicate a lot to the next time-step.

Recent work of [BGW20] introduced a new information cost notion for one-pass streaming
algorithms, which is amenable to memory lower bounds for stochastic streams. We leverage the
multi-pass information cost (MIC) notion, introduced in [BGL+24], to prove our result. Briefly,
these information cost notions measure the information a time-step needs to retain about the input
stream on average. As these information cost notions are only meaningful for product distributions
over the time-steps, it is crucial that we prove the IC bound 𝑤.𝑟 .𝑡 . a product distribution over
the players’ inputs (Lemma 4.5). Secondly, as the rows – where the communication problem is
embedded in the stream – is random, to be able to use tensorization properties of the MIC notion,
we need the distribution over every sample without a plant to have the same distribution as the
no distribution. Hence, the proof heavily relies on the fact that we prove information complexity
bounds 𝑤.𝑟 .𝑡 . 𝜇⊗𝑑/𝑡0 , which is the distribution for every sample under the null distribution. Once
we have the right IC bounds, to get a multi-pass information cost lower bound that depends

6Here, by optimal, we mean that we get non-trivial memory lower bounds even for 𝑘 = 𝑛1/2−𝜖 for constant 𝜖 > 0.
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quadratically on 1/𝛾 , we use a similar argument to one made in [BGL+24] for lifting the hardness
of MostlyEQ to the needle problem.

2.4 Applications to planted biclique and other graph streaming problems

Our general-purpose framework for proving memory lower bounds for detecting planted struc-
tures yields multi-pass memory lower bounds for the classical planted bi-clique problem in bi-
partite graphs, as well as a semi-random version of the planted bi-clique problem. These lower
bounds in turn allow us to derive worst-case memory-bounded hardness of approximation for
fundamental graph problems like the Maximum Bi-Clique and Densest at-most-𝛽 Subgraph, in a nat-
ural (potentially stronger) vertex-arrival streaming model. Obtain these bounds require a careful
application of our general framework, and we elaborate on some of the technical aspects below.

Consider first the planted bi-clique problem. We first note that to get a lower bound for the
planted bi-clique problem where 𝑘 out of 𝑛 coordinates are planted uniformly at random, it is
sufficient to show lower bounds for an easier version where we partition the 𝑛 coordinates into 𝑛/𝑡
subsets of size 𝑡 ≥ 𝑘 , and all the planted 𝑘 co-ordinates belong to one subset in the partition. To
see this, note that an algorithm A that can solve the general non-partition version of the problem
can be used to solve the partition version, by simply permuting the 𝑛 coordinates of each input
according to a consistent, uniformly random permutation, and feeding this input to A. Now,
to show a lower bound for this partition version of the problem, we first need to fix the size of
the partition. Note that if 𝑡 = 𝑜 (𝑘2), then simply counting the number of ones in each subset of
the partition suffices to distinguish between the uniform and planted distributions, since with
high probability only 𝑡/2 ± 𝑂 (

√
𝑡) ones are observed in each subset for the uniform distribution.

Therefore, we will choose 𝑡 = Ω(𝑘2).
The next step, which is also the key technical step in all applications of our framework, is to

appropriately truncate the distributions 𝜇0 and 𝜇𝜃 to obtain new distributions 𝜇0 and 𝜇𝜃 such that:
(1) 𝜇0 and 𝜇𝜃 are close to 𝜇0 and 𝜇𝜃 respectively; (2) but they satisfy that 𝔼𝜃 𝜇𝜃 := 𝜇1 is pointwise
upper-bounded by 𝑐 · 𝜇0 for some constant 𝑐. The reason this truncation is necessary is that the
original distributions 𝜇0 and 𝜇𝜃 do not satisfy that 𝔼𝜃 𝜇𝜃 := 𝜇1 is pointwise upper-bounded by 𝑐 · 𝜇0
for some constant 𝑐. This is because 𝑡-bit strings which have exactly 𝑘 ones have roughly 2𝑘 more
probability under 𝔼𝜃 𝜇𝜃 than under 𝜇0, since strings under 𝜇𝜃 always have at least 𝑘 ones. To
address this, we restrict to typical strings which have 𝑡/2 ±𝑂 (

√︁
𝑡 log 𝑡) ones, and define 𝜇0 and 𝜇𝜃

by restricting 𝜇0 and 𝜇𝜃 to such strings. This truncation allows us to bound 𝑐 by a constant, and
effectively leverage the lower bound from the general framework.

Our next result shows a stronger memory lower bound for the semi-random version of the
planted bi-clique problem, where an adversary is monotone—it can only remove ones from non-
planted locations. Our main insight here is to relate this problem with a monotone adversary to
a slightly modified version of the planted bi-clique problem itself. While in the standard planted
bi-clique problem, we plant the

−→
1 𝑘 vector at some subset of 𝑘 coordinates, we instead think of the

version where we plant an arbitrary vector 𝑣 ∈ {0, 1}𝑘 at these coordinates. To related this “fixed-
pattern" planted bi-clique problem to monotone adversaries, note that the generated samples for a
fixed pattern vector 𝑣 with 𝑘 ′ ones are equivalent to samples from a planted bi-clique problem with
a bi-clique of size 𝑘 ′, but in the presence of a monotone adversary which forces a consistent set
of 𝑘 − 𝑘 ′ non-planted coordinates in the planted rows to be 0. The fixed-pattern planted bi-clique
problem is at least as hard as the standard problem, and in fact we show a stronger lower bound for
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it. This is because for this problem we can choose the size of the partitions to be as small as 𝑡 = 𝑘 ,
since the vector that we plant within the partition is also a uniformly random vector, and therefore
the number of ones in the partition is still typical. This allows us to improve on the memory lower
bound for this problem by a factor of 𝑘 .

Finally, we outline how our memory lower bounds above for the planted problems allow us
to derive hardness results for approximating both, the densest at-most 𝛽 subgraph, as well as
the maximum bi-clique in undirected graphs, in the vertex arrival model. Both these results are
for undirected graphs, whereas the planted bi-clique lower bounds stated above are for bipartite
graphs. In transferring the hardness to these undirected graph applications, we need to transition
to a different streaming model, where vertices arrive in a worst-case order, and connectivity is
only revealed to vertices that have previously occurred in the stream. For both the applications,
the technique is similar: if the bipartite graph is planted, the translated undirected graph has a
sizable edge density on some subgraph, and also a sizable bi-clique. However, if there is no plant,
using standard concentration arguments, we can show these quantities to be small in the translated
graph. Thus, if we had an accurate approximation, we can use it to figure out which case we are in.
We note that for the densest subgraph application, we crucially rely on our framework allowing
us to instantiate the hardness of the planted bi-clique problem with 𝑞 (the Bernoulli parameter at
the non-planted locations) being as small as log𝑛

𝛽
, as opposed to 𝑞 = 1/2.

2.5 Applications to detecting ℓ-sparse Gaussians and sparse PCA

We now discuss our proof for the detecting sparse Gaussians and for the sparse PCA detection
problem. For these applications, appropriately truncating the distributions is more challenging
and subtle than for the planted biclique problem.

We first sketch the proof for the sparse Gaussian detection problem. Recall that in the 𝑑
dimensional ℓ-sparse Gaussian detection problem, in the planted distribution, with probability
(1 − 𝑞) we get samples from 𝑁 (0, 𝐼 ) and with probability 𝑞 we get samples from 𝑁 (𝜃, 𝐼 ), where 𝜃
is ℓ-sparse. In the null distribution, we always get samples from 𝑁 (0, 𝐼 ). For simplicity, we first
consider a simpler version of the problem where ∥𝜃 ∥2 = 1. The proof here generally follows a
similar outline to the planted biclique problem. As in the planted biclique case, we partition the
coordinates into sets of size 𝑡 . In this special case of the sparse Gaussian mean problem, we take
𝑡 = ℓ , and 𝜇1 = 𝑁 ((1/

√
𝑡)−→1 𝑡 , 𝐼 ). Notice that there is no parameter 𝜃 to choose in the planted case

in this partition version of the problem, and the co-ordinates in the chosen set in the partition are
simply sampled from 𝜇1. Our goal is now to show that 𝜇1 is pointwise upper-bounded by 𝑐 · 𝜇0 for
some that 𝑐 that is not too large. In this case for any 𝑥 ∈ ℝ𝑡 , 𝜇1(𝑥)/𝜇0(𝑥) = exp((1/

√
𝑡)∑𝑗 𝑥 𝑗 ). Note

that
∑
𝑗 𝑥 𝑗 can be unbounded, therefore, as in the planted bipartite case, we need to truncate the

distributions 𝜇1 and 𝜇0. We can truncate the distributions to the set {𝑥 ∈ ℝ𝑡 :
∑
𝑗 𝑥 𝑗 ≤

√
𝐶𝑡} for some

𝐶. This is satisfied with high-probability, and allows us to bound 𝜇1(𝑥)/𝜇0(𝑥). Using our result
for the general planted detection setup (informal version in Theorem 1.3) we get a 𝑠 · 𝑛 ≥ Ω

(
𝑑0.99

𝑝 ·ℓ𝑞2

)
lower bound for 𝑝-pass, 𝑠-bit algorithms which use 𝑛 samples.

The general Gaussian case with signal strength 𝛼 (i.e. non-zero co-ordinates of 𝜃 are 𝛼) has
a similar outline, but requires a much more careful analysis to get the dependence on the signal
strength parameter 𝛼 . First, we show via a reduction that to show a bound for the original problem
where 𝜃 is exactly ℓ-sparse it suffices to show a lower bound for the case where each co-ordinate of
the planted mean vector 𝜃 is non-zero with probability ℓ/𝑡 . Independence across co-ordinates of 𝜃
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facilitates the analysis, and for this distribution of 𝜃 we can show that for 𝜇1 = 𝔼𝜃 𝜇𝜃 , 𝜇1(𝑥)/𝜇0(𝑥) is
bounded if

∑𝑡
𝑗=1 exp(𝛼𝑥 𝑗 ) is bounded—analogous to the simple case of 𝛼 = 1/

√
𝑡 sketched above—

as long as 𝑡 is sufficiently larger than ℓ2. This suggests a truncation: we truncate the distributions
𝜇0 and 𝜇𝜃 to 𝑥 which satisfy an appropriate, 𝛼-dependent bound on

∑𝑡
𝑗=1 exp(𝛼𝑥 𝑗 ). Finally, we show

that the truncated distributions are close to the original ones using certain concentration bounds.
We now sketch the proof for the sparse PCA detection problem. Recall that in the sparse

PCA detection problem the goal is to distinguish whether samples are drawn from the standard
Gaussian distribution 𝜇0 = 𝑁 (0, 𝐼𝑑 ) or from 𝜇𝜃 = 𝑁 (0, Σ) for Σ = 𝐼𝑑 + 𝛼𝜃𝜃𝑇 for a ℓ-sparse unit vector
𝜃 . In this case, 𝜇𝜃 (𝑥)/𝜇0(𝑥) depends on exp

(
𝛼

2(𝛼+1) (𝑥
⊺𝜃 )2

)
. The fact that there is a quadratic instead

of a linear term in the exponent makes truncation significantly more difficult here than in previous
settings, because 𝔼𝑥∼𝑁 (0,𝐼 ) [exp(𝑐𝑥2)] diverges for 𝑐 ≥ 1/2. To see the challenge this poses, consider
the following quantity for some 𝜃 ∈ Ω (where Ω is the domain of the parameters, such as all
𝑘-sparse unit vectors),

𝔼𝑥∼𝜇𝜃

[
𝜇1(𝑥)
𝜇0(𝑥)

]
.

For all our previous applications such as planted biclique and sparse Gaussian mean detection,
𝔼𝑥∼𝜇𝜃

[
𝜇1 (𝑥 )
𝜇0 (𝑥 )

]
is a constant. Intuitively, concentration bounds then allow us to show that with high

probability over 𝑥 ∼ 𝜇𝜃 , 𝜇1 (𝑥 )
𝜇0 (𝑥 ) is bounded. This allows us to find a truncation set 𝑇 such that with

high probability 𝑥 lies in 𝑇 for all 𝜇𝜃 , and moreover 𝜇1 (𝑥 )
𝜇0 (𝑥 ) is bounded for all 𝑥 ∈ 𝑇 , which allows

us to use our general framework to derive lower bounds. In the case of sparse PCA detection,
𝔼𝑥∼𝜇𝜃

[
𝜇1 (𝑥 )
𝜇0 (𝑥 )

]
is unbounded if 𝛼 ≥ 1, due to the Gaussian integral diverging. This is the reason why

our bounds for sparse PCA detection only hold for small constants 𝛼 . In addition, we have to
consider a more structured version of the problem, where the co-ordinates of 𝜃 are divided into
blocks of size ℓ , and we uniformly select one of the blocks and set all the co-ordinates in that block
to 1/

√
ℓ , with the remaining co-ordinates being 0. With these assumptions, we can then derive a

suitable truncation which is satisfied with high probability, and for which 𝜇1(𝑥)/𝜇0(𝑥) is bounded.

2.6 Organization of the paper

In Section 3, we define preliminaries and notations. Section 4 formally defines the general problem
(Problem 1.2) of detecting planted structures, and proves the main lower bound (Theorem 1.3)
for this problem. Next, in Section 5, we instantiate the planted bi-clique problem within this
framework, and show the formal memory lower bound (Theorem 1.4) for it. We also outline the
densest at-most 𝛽 subgraph application (Theorem 1.7) here. In Section 6, we continue to study the
planted bi-clique problem in the presence of a monotone adversary, and derive a memory lower
bound (Theorem 1.5). Here, we also state the application about approximating the maximum
bi-clique (Theorem 1.6). Section 7 proves our results on detecting sparse Gaussians (Theorem 1.8).
Finally, Section 8 shows our bounds for the sparse PCA detection problem (Theorem 1.9).
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3 Preliminaries

We use the notation [𝑛] to denote the set {1, 2, . . . , 𝑛}. Given an 𝑛-bit vector 𝑥 , we use 𝑥𝑆 to denote
the projection of 𝑥 on set 𝑆 (ordered lexicographically), that is, {𝑥𝑖}𝑖∈𝑆 . We use

−→
1 to denote the all

1s vector when dimension is clear from the context. We use |𝑥 | to denote the number of 1s in 𝑥 .
Given two distributions 𝜇0, 𝜇1 : X → [0, 1], we say 𝜇0 ≤ 𝑐 · 𝜇1, if for all 𝑥 ∈ X, 𝜇0(𝑥) ≤ 𝑐𝜇1(𝑥). We use
capital letters or bold letters, such as 𝑋,𝑌, 𝑍 , 𝜽 , etc., to denote random variables and 𝑥,𝑦, 𝑧, 𝜃 etc., to
denote the values these random variables take. Given a probability distribution D : 𝑋 → [0, 1], we
use the notation 𝑥 ∼ D when value 𝑥 is sampled according to distribution D. Similarly, we use the
notation 𝑧 ∼ 𝑍 to denote the process that 𝑍 takes value 𝑧 with probability Pr[𝑍 = 𝑧]. We use Ber(𝑞)
to denote the Bernoulli distribution which takes value 1 with probability 𝑞 and 0 with probability
1 − 𝑞. We use notations 𝔼[𝑍 ] to denote the expectation and of random variable 𝑍 , and 𝔼[𝑍 |𝑌 = 𝑦]
to denote the expectation of the random variable 𝑍 conditioned on the event 𝑌 = 𝑦. We also use
the notation 𝑍 |𝑌=𝑦 to denote the random variable 𝑍 conditioned on the event 𝑌 = 𝑦.

Basics of information theory. Given two distributions 𝑃,𝑄 over X, 𝐷𝐾𝐿 (𝑃 | |𝑄) represents the
Kullback–Leibler (KL) divergence of 𝑃 w.r.t. 𝑄 , that is,

𝐷𝐾𝐿 (𝑃 | |𝑄) =
∫
𝑥∈X

log 𝑑𝑃 (𝑥)
𝑑𝑄 (𝑥)𝑑𝑃 (𝑥) .

We will use log base 2 unless stated otherwise. Note that 𝐷𝐾𝐿 (𝑃 | |𝑄) ≥ 0 for all 𝑃 and 𝑄 .
For random variables 𝑋 and 𝑌 (not necessarily discrete) having joint distribution 𝑃𝑋𝑌 , and

marginals 𝑃𝑋 , 𝑃𝑌 respectively, the mutual information between𝑋 and𝑌 , denoted 𝐼 (𝑋 ;𝑌 ), is defined
as

I(𝑋 ;𝑌 ) = 𝐷𝐾𝐿 (𝑃𝑋𝑌 | |𝑃𝑋 ⊗ 𝑃𝑌 ), (2)

where 𝑃𝑋 ⊗ 𝑃𝑌 is the product distribution of the marginals of 𝑋 and 𝑌 . Note that 𝐼 (𝑋 ;𝑌 ) = 𝐼 (𝑌 ;𝑋 ),
and 𝐼 (𝑋 ;𝑌 ) ≥ 0 always, by the non-negativity of KL divergence. Note also that mutual information
between 𝑋 and 𝑌 can be expressed in terms of the KL divergence as follows:

I(𝑋 ;𝑌 ) = 𝔼𝑦∼𝑌
[
𝐷𝐾𝐿 (𝑋 |𝑌=𝑦 | |𝑋 )

]
.

I(𝑋 ;𝑌 |𝑍 ) represents the mutual information between 𝑋 and 𝑌 conditioned on the random
variable 𝑍 ; and is defined as

I(𝑋 ;𝑌 |𝑍 ) = 𝔼𝑍
[
𝐷𝐾𝐿 (𝑃𝑋𝑌 |𝑍 | |𝑃𝑋 |𝑍 ⊗ 𝑃𝑌 |𝑍 )

]
, (3)

where 𝑃𝑋𝑌 |𝑍 denotes the joint distribution of 𝑋,𝑌 conditioned on 𝑍 , and 𝑃𝑋 |𝑍 and 𝑃𝑌 |𝑍 denote the
marginal distributions of 𝑋 and 𝑌 conditioned on 𝑍 , respectively.

We will routinely use the chain rule for mutual information:

𝐼 (𝑋 ;𝑌, 𝑍 ) = 𝐼 (𝑋 ;𝑌 ) + 𝐼 (𝑋 ;𝑍 |𝑌 ). (4)

Using the chain rule, we can derive the following simple facts, which will also come in handy:
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1. If 𝐼 (𝐴, 𝐵;𝐶 |𝐷) = 0, then 𝐼 (𝐴, 𝐵;𝐶 |𝐵, 𝐷) = 0. This follows since 𝐼 (𝐴, 𝐵;𝐶 |𝐷) = 𝐼 (𝐶;𝐵 |𝐷) +
𝐼 (𝐶;𝐴|𝐵, 𝐷) by the chain rule; since 𝐼 (𝐴, 𝐵;𝐶 |𝐷) = 0, by non-negativity of the chain rule,
we have that 𝐼 (𝐶;𝐵 |𝐷) = 𝐼 (𝐶;𝐴|𝐵, 𝐷) = 0. Finally, by another application of the chain rule,
𝐼 (𝐴, 𝐵;𝐶 |𝐵, 𝐷) = 𝐼 (𝐶;𝐴|𝐵, 𝐷) + 𝐼 (𝐶;𝐵 |𝐵, 𝐷); the first summand is 0 by the preceding argument,
and the latter summand is 0 since conditioning on 𝐵 fully determines 𝐵.

2. If 𝐼 (𝐴;𝐵 |𝐶, 𝐷) = 0, then 𝐼 (𝐶;𝐵 |𝐷,𝐴) ≤ 𝐼 (𝐶;𝐵 |𝐷). To see this, apply the chain rule twice on
𝐼 (𝐶,𝐴;𝐵 |𝐷), to get

𝐼 (𝐶,𝐴;𝐵 |𝐷) = 𝐼 (𝐶;𝐵 |𝐷) + 𝐼 (𝐴;𝐵 |𝐶, 𝐷)
= 𝐼 (𝐴;𝐵 |𝐷) + 𝐼 (𝐶;𝐵 |𝐴, 𝐷) .

Since 𝐼 (𝐴;𝐵 |𝐶, 𝐷) = 0, we get that 𝐼 (𝐶;𝐵 |𝐴, 𝐷) = 𝐼 (𝐶;𝐵 |𝐷) − 𝐼 (𝐴;𝐵 |𝐷). Since 𝐼 (𝐴;𝐵 |𝐷) ≥ 0, the
fact follows.

We will also use Hellinger distance and TV distance as other measures of distance between
two distributions. For distributions 𝑃 and 𝑄 over X having densities 𝑝 and 𝑞 respectively, these
quantities are defined as follows,

ℎ2(𝑃 | |𝑄) = 1 −
∫
𝑥∈X

√︁
𝑝 (𝑥) · 𝑞(𝑥)𝑑𝑥, and | |𝑃 −𝑄 | |𝑇𝑉 =

1
2

∫
𝑥∈X

|𝑝 (𝑥) − 𝑞(𝑥) |𝑑𝑥.

Multi-pass streaming algorithms. Given a stream of 𝑛 input elements, 𝑥1, . . . , 𝑥𝑛, we say M is a
𝑝-pass algorithm (for 𝑝 ≥ 1) when it goes over the entire stream 𝑝 times in order. We use 𝑚 (ℓ,𝑖 ) ,
for ℓ ∈ [𝑝], 𝑖 ∈ [𝑛], to denote the memory state of M in the ℓ-th pass after reading 𝑖 input elements.
Let 𝑚0 = 𝑚 (1,0) denote the starting memory state and for ease of notation, let 𝑚 (ℓ+1,0) = 𝑚 (ℓ,𝑛)
for all ℓ ∈ [𝑝]. When the distribution on the input stream is specified, we will use M(ℓ,𝑖 ) , for
ℓ ∈ [𝑝], 𝑖 ∈ {0, 1, . . . , 𝑛}, to denote the random variable over the corresponding memory states. We
will use the random variables 𝑋 1, . . . , 𝑋𝑛 to denote the joint distribution over the input stream.

We use notation [𝑎, 𝑏] in the subscript to represent random variables indexed from 𝑎 to 𝑏, for
example, M( [1,ℓ ],𝑖 ) represents 𝑖-th memory states for the first ℓ passes, that is, M(1,𝑖 ) , . . . ,M(ℓ,𝑖 ) . We use
notations < 𝑏, ≤ 𝑏 in the subscript to represent all the corresponding random variables with index
less than 𝑏 or at most 𝑏 respectively. For example, M(ℓ,≤𝑖 ) represents random variables M(ℓ,[0,𝑖 ] ) .

We will require the following result of [BGL+24] which establishes independence between
inputs and private randomness in two segments of the stream, once we condition on the public
randomness and the memory states at two different time-steps for all passes. While [BGL+24]
do not provide an explicit proof of this particular result, we give a proof in Appendix B for
completeness.

Lemma 3.1 (Claim 3.4 in [BGL+24]). Consider a stream𝑋 1, . . . , 𝑋𝑛 from a product distribution, and let M
be a 𝑝-pass streaming protocol that uses public randomness 𝑃 and private randomness 𝑅M = {𝑅M

𝑙,𝑖
}𝑙∈[𝑝 ],𝑖∈[𝑛] ,

where the private randomness at every step is mutually independent, as well as independent of the public
randomness. Then, for any 𝑖, 𝑗 ∈ [𝑛], 𝑖 < 𝑗 , and any 𝑙 ∈ [𝑝], it holds that:

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M<𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃) = 0, (5)

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃) = 0. (6)
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We will use the following notion of information cost for multi-pass streaming algorithms,
introduced by [BGL+24]. For a given distribution 𝜇 over𝑋 1, . . . , 𝑋𝑛, the information cost of a 𝑝-pass
streaming protocol M, which uses public randomness 𝑃 , is given by:

𝑀𝐼𝐶 (M, 𝜇) =
𝑝∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
+

𝑝∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
. (7)

Here, the random variables for the memory states depend both on the randomness of the input as
well as private and public randomness used by the algorithm. When 𝜇 is clear from context, we
will drop it from the notation.

We will also require the following lemma established in [BGL+24], which bounds the multi-pass
information cost notion for any memory-bounded streaming algorithm.

Lemma 3.2 (Lemma 1.1, [BGL+24]). Let (𝑋 1, 𝑋 2, · · · , 𝑋𝑛) be drawn from a product distribution 𝜇. Then,
for any 𝑝-pass streaming algorithm M that uses public as well as private randomness, has memory size 𝑠 and
runs on input stream 𝑋 1, · · · , 𝑋𝑛, it holds that:

𝑀𝐼𝐶 (M, 𝜇) ≤ 2𝑝 · 𝑠 · 𝑛.

We note that [BGL+24] proved the above result in the setting where M uses only private
randomness; essentially the same proof works for the definition of 𝑀𝐼𝐶 given in (7) when M can
additionally use public randomness, and we give the proof in Appendix B for completeness.

4 General Multi-IC Lower Bound for Distinguishing Problems

In this section, we will prove communication and memory lower bounds for a general distinguish-
ing problem, where the goal is to detect if a submatrix has been planted with an outlier distribution.
Let X,Ω be two sets such that 𝜇0, {𝜇𝜃 }𝜃 ∈Ω are distributions on 𝑡-dimensional vectors over X. Given
a distribution 𝑃 over the parameter space Ω, we denote the average distribution 𝔼𝜃∼𝑃𝜇𝜃 by 𝜇1. Let
𝑑, 𝑛 > 0. We study the following distinguishing problem on 𝑛 ×𝑑 sized matrices, when each row of
the matrix arrives in a stream.

Problem 4.1. Let 0 < 𝑘 ≤ 𝑛. Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] be a partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . The goal is to
distinguish between the following joint distributions on 𝑑-dimensional vectors 𝑥1, . . . , 𝑥𝑛 ∈ X𝑑 :

1. 𝐷0: ∀𝑖 ∈ [𝑛] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝜇0.

2. 𝐷T
1 : Pick 𝑟 uniformly from [𝑑/𝑡]. ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖

𝑇𝑟 ′
is drawn from 𝜇0.

𝑅 is drawn uniformly at random from all subsets of [𝑛] of size 𝑘 . Pick 𝜃 ∼ 𝑃 .
∀𝑖 ∉ 𝑅, 𝑥𝑖

𝑇𝑟
is drawn from 𝜇0. Whereas, ∀𝑖 ∈ 𝑅, 𝑥𝑖

𝑇𝑟
is drawn from 𝜇𝜃 .

We will refer to this distinguishing problem by DP(𝜇0, {𝜇𝜃 }𝜃 ∈Ω, 𝑃,T , 𝑘, 𝑛).
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Theorem 4.2. Let 1 < 𝑘 ≤ 𝑛. Let 𝜇0, 𝜇𝜃 , 𝜃 ∈ Ω be distributions on 𝑡-dimensional vectors in X𝑡 , and 𝑃 be
a distribution over parameter space Ω such that 𝔼𝜃∼𝑃𝜇𝜃 ≤ 𝑐 · 𝜇0. Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] be a partition of [𝑑],
where ∀𝑟, |𝑇𝑟 | = 𝑡 . Then, any 𝑝-pass streaming algorithm (using public as well as private randomness) that
solves the distinguishing problem DP(𝜇0, {𝜇𝜃 }𝜃 ∈Ω, 𝑃,T , 𝑘, 𝑛) (as defined in Problem 4.1) with large enough
constant advantage, requires at least Ω

(
𝑛𝑑

𝑝 ·𝑐 ·𝑘2𝑡

)
bits of memory.

We will prove Theorem 4.2 using the following theorem on information cost of any multi-pass
streaming algorithm that solves Problem 4.1.

Theorem 4.3. Let 1 < 𝑘 ≤ 𝑛. Let 𝜇0, 𝜇𝜃 , 𝜃 ∈ Ω be distributions on 𝑡-dimensional vectors in X𝑡 , and 𝑃 be
a distribution over parameter space Ω such that 𝔼𝜃∼𝑃𝜇𝜃 ≤ 𝑐 · 𝜇0. Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] be a partition of [𝑑],
where ∀𝑟, |𝑇𝑟 | = 𝑡 . Let M be a 𝑝-pass streaming algorithm (using public as well as private randomness) that
solves the distinguishing problem DP(𝜇0, {𝜇𝜃 }𝜃 ∈Ω, 𝑃,T , 𝑘, 𝑛) with large enough constant probability. We
add another pass to M such that in the (𝑝 + 1)-th pass, M doesn’t do any operations but stores𝑚 (𝑝,𝑛) . Then,

𝑀𝐼𝐶 (M) ≥ Ω

(
𝑛2𝑑

𝑐𝑘2𝑡

)
.

Here, the multi-pass information cost is evaluated with respect to the distribution 𝐷0.

Theorem 4.2 then easily follows; for any (𝑝 + 1)-pass streaming algorithm M, that uses 𝑠 bits of
memory, 𝑀𝐼𝐶 (M) is upper bounded by 2(𝑝 + 1) · 𝑠 · 𝑛 (Lemma 3.2).

To prove the above theorem, we will first show an information-complexity lower bound under
the blackboard model, when the row set 𝑅 (in Problem 4.1), that would contain the planted
distribution, is known. To show the multi-pass information cost lower bound, we will then embed
many such communication problems into the stream. The latter part is similar to the argument
made in [BGL+24, Section 5.2]. First, we study the 𝑘-player communication protocol that solves
Problem 4.1 when 𝑛 = 𝑘 . Informally, in the no case, each player gets a 𝑑-dimensional vector from
𝜇
⊗(𝑑/𝑡 )
0 , whereas is the yes case, one of the 𝑑/𝑡 partitions is planted with 𝜇𝜃 for every player.

DP(𝜇0, {𝜇𝜃 }𝜃∈Ω, 𝑃,T , 𝑘, 𝑘) under 𝑘-player number-in-hand communication model

Next, we will prove an Ω
(
𝑑
𝑐𝑡

)
communication lower bound for any𝑘-party communication protocol

that solves the distinguishing problem DP(𝜇0, {𝜇𝜃 }𝜃 ∈Ω, 𝑃,T , 𝑘, 𝑘). We define the communication
problem below for completeness.

Definition 4.4. (𝑘-party General Planted Problem) There are 𝑘 parties in the communication problem,
where the 𝑖-th party holds a 𝑑-dimensional vector 𝑥𝑖 ∈ X𝑑 . Let 𝜇0, {𝜇𝜃 }𝜃 ∈Ω be distributions on 𝑡-dimensional
vectors in X𝑡 , and 𝑃 be a distribution over parameter space Ω such that 𝔼𝜃∼𝑃𝜇𝜃 ≤ 𝑐 · 𝜇0. Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ]
be a partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . We promise that (𝑥1, . . . , 𝑥𝑘 ) are sampled from either of the following
distributions:

1. (No) ∀𝑖 ∈ [𝑘] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝜇0.

2. (Yes) Draw 𝑟 uniformly from [𝑑/𝑡]. Draw 𝜃 ∼ 𝑃 . ∀𝑖 ∈ [𝑘], 𝑥𝑖
𝑇𝑟

is drawn from 𝜇𝜃 and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖
𝑇𝑟 ′

is
drawn from 𝜇0.

The goal of the players is to distinguish which case they are in. Here, all parties communicate using a shared
blackboard, and are allowed to use public as well as private randomness.
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Given any 𝐶-bit communication protocol Π, we use Π = (Π0,Π1, . . . ,Π𝐶 ) to also denote the
transcript, that is, the concatenation of the public randomness with all the messages written on
blackboard during the execution of Π. In the lemma below, we will measure the information
complexity with respect to the No distribution.

Lemma 4.5. For any communication protocol Π that solves the 𝑘-party General Planted Problem, with
probability at least 0.9, we have that,

I
(
𝚷;𝑋 1, 𝑋 2, . . . , 𝑋𝑘

)
≥ Ω

(
𝑑

𝑐 · 𝑡

)
.

Here, ∀𝑖 ∈ [𝑘], 𝑋 𝑖 is distributed according to the No case, and 𝚷 is the distribution over transcripts, which
depends on the input distribution and randomness used by the protocol.

Using the generalized distributed data processing inequality proven in Section 4.2, we can show
an Ω(1/𝑐) bound on the information complexity of any communication protocol that distinguishes
between the two cases when 𝑑 = 𝑡 , that is, all players get a 𝑡-dimensional vector drawn either from
𝜇0 or from 𝜇𝜃 (where 𝜃 ∼ 𝑃). We can then prove Lemma 4.5 using a direct-sum argument. We first
state the result for when 𝑡 = 𝑑 .

Lemma 4.6. (Corollary of Theorem 4.8 and Lemma 4.12) Let 𝑡 > 0, 𝑘 > 1 and 𝜇0, {𝜇𝜃 }𝜃 ∈Ω be distributions
on 𝑡-dimensional vectors in X𝑡 . Let 𝑃 be a distribution over parameter space Ω such that 𝔼𝜃∼𝑃𝜇𝜃 ≤ 𝑐 · 𝜇0. Let
Π be a 𝑘-party communication protocol that distinguishes between the following two cases, with probability
at least 0.9:

1. (No) All players get a vector independently drawn from 𝜇0.

2. (Yes) 𝜃 is first drawn from P. All players then get a vector independently drawn from 𝜇𝜃 .

Then,
I
(
𝚷;𝑌 1, 𝑌 2, . . . , 𝑌𝑘

)
≥ Ω (1/𝑐) .

Here, ∀𝑖 ∈ [𝑘], 𝑌 𝑖 — the input to the 𝑖-th player — is distributed according to the No case, and 𝚷 is the
distribution over transcripts, which depends on the input distribution and randomness used by the protocol.

Proof of Lemma 4.5. The proof follows from a standard direct sum argument. Let Π be a protocol
that solves the 𝑘-party General Planted Problem, with success probability 0.9. Using Π, we will
construct a protocol Π′ that distinguishes between the cases when all players get a 𝑡-dimensional
vector drawn either from 𝜇0 or from 𝜇𝜃 (where 𝜃 ∼ 𝑃), with probability 0.9. We will also show that
the information complexity of Π′ 𝑤.𝑟 .𝑡 . the No distribution is at most 𝑡/𝑑 times the information
complexity of Π 𝑤.𝑟 .𝑡 . the No distribution. Formally, let 𝑋 1, 𝑋 2, . . . , 𝑋𝑘 ∈ X𝑑 be independently
drawn from the No distribution for the 𝑘-party General Planted Problem. Let 𝑌 1, . . . , 𝑌𝑘 ∈ X𝑡 be
independently drawn from 𝜇0. Then, we will prove that

I
(
𝚷

′;𝑌 1, 𝑌 2, . . . , 𝑌𝑘
)
≤ 𝑡

𝑑
· I

(
𝚷;𝑋 1, 𝑋 2, . . . , 𝑋𝑘

)
.

Here, 𝚷
′ and 𝚷 are distributions over transcripts when the inputs are drawn from 𝑌 and 𝑋

respectively. Hence, Lemma 4.5 follows from Lemma 4.6.
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Protocol Π′ Let 𝑦1, 𝑦2, . . . , 𝑦𝑘 ∈ X𝑡 be the input to the 𝑘-players. Π′ first samples 𝑗 uniformly at
random from [𝑑/𝑡] using public randomness. ∀𝑖 ∈ [𝑘], the 𝑖-th player prepares a 𝑑-dimensional
vector 𝑥𝑖 as follows: set 𝑥𝑖

𝑇𝑗
= 𝑦𝑖 and for 𝑗 ′ ≠ 𝑗 , draw 𝑥𝑖

𝑇𝑗 ′
from 𝜇0 using private randomness. Recall

that T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] is a partition of [𝑑] into 𝑡 sized sets. All players run Π on inputs 𝑥1, . . . , 𝑥𝑘 and
answer whatever Π answers. We will represent the corresponding random variables by capital
letters.

Let us first calculate the success probability of Π′, which is the average of the probabilities that
Π′ outputs "No" when the input to each player is 𝑖 .𝑖 .𝑑 . 𝜇0 (No distribution) and Π′ outputs "Yes"
when the input to each player is 𝑖 .𝑖 .𝑑 . 𝜇𝜃 (where 𝜃 is in turn drawn from 𝑃 , the Yes distribution).

1
2 ·

(
Pr

∀𝑖,𝑦𝑖∼𝜇0

[
Π′(𝑦1, 𝑦2, . . . , 𝑦𝑘 ) = "No"

]
+ Pr
𝜃∼𝑃 ;∀𝑖,𝑦𝑖∼𝜇𝜃

[
Π′(𝑦1, 𝑦2, . . . , 𝑦𝑘 ) = "Yes"

] )
=

1
2 · ©­« Pr

∀𝑖,𝑦𝑖∼𝜇0; 𝑗∈𝑅 [𝑑/𝑡 ]; ∀𝑖, 𝑥𝑖
𝑇𝑗
=𝑦𝑖 , 𝑥𝑖

𝑇𝑗 ′
∼𝜇0∀ 𝑗 ′≠𝑗

[
Π(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) = "No"

]
+ Pr
𝜃∼𝑃 ;∀𝑖,𝑦𝑖∼𝜇𝜃 ; 𝑗∈𝑅 [𝑑/𝑡 ]; ∀𝑖, 𝑥𝑖

𝑇𝑗
=𝑦𝑖 , 𝑥𝑖

𝑇𝑗 ′
∼𝜇0∀ 𝑗 ′≠𝑗

[
Π(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) = "Yes"

]ª®¬
=

1
2 · ©­« Pr

∀𝑖, 𝑗, 𝑥𝑖
𝑇𝑗
∼𝜇0

[
Π(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) = "No"

]
+ Pr
𝜃∼𝑃 ;𝑗∈𝑅 [𝑑/𝑡 ];∀𝑖, 𝑥𝑖𝑇𝑗 ∼𝜇𝜃 , 𝑥

𝑖
𝑇𝑗 ′

∼𝜇0∀ 𝑗 ′≠𝑗

[
Π(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) = "Yes"

]ª®¬ .
The last line is exactly equal to the probability of success for protocol Π to distinguish between No
and Yes distributions of the 𝑘-party General Planted Problem. Hence, Π′ succeeds with probability
at least 0.9. Next, we calculate the information complexity of Π′ when 𝑌 1, . . . , 𝑌𝑘 are 𝑖 .𝑖 .𝑑 . 𝜇0. Note
that by definition of the protocol, the transcript 𝚷′ = (𝐽 ,𝚷′

− 𝐽 ), where 𝐽 is the public randomness
used by the protocol Π′ to sample uniformly from [𝑑/𝑡], and 𝚷

′
− 𝐽 is the subsequent transcript

generated when the players simulate Π on the prepared inputs 𝑥1, . . . , 𝑥𝑘 . Furthermore, the public
randomness 𝐽 is independent of the input 𝑌 1, . . . , 𝑌𝑘 . Then, we have that

𝐼 (𝚷′;𝑌 1, . . . , 𝑌𝑘 ) = 𝐼 (𝐽 ,𝚷′
− 𝐽 ;𝑌

1, . . . , 𝑌𝑘 )
= 𝐼 (𝐽 ;𝑌 1, . . . , 𝑌𝑘 ) + 𝐼 (𝚷′

− 𝐽 ;𝑌
1, . . . , 𝑌𝑘 | 𝐽 ) (chain rule)

= 𝐼 (𝚷′
− 𝐽 ;𝑌

1, . . . , 𝑌𝑘 | 𝐽 ) (𝐽 independent of 𝑌 1, . . . , 𝑌𝑘 )

=
𝑡

𝑑
·
𝑑/𝑡∑︁
𝑗=1

I
(
𝚷

′
− 𝑗 ; 𝑋̃ 1

𝑇𝑗
, . . . , 𝑋̃𝑘𝑇𝑗

)
=
𝑡

𝑑
·
𝑑/𝑡∑︁
𝑗=1

I
(
𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗

)
. (8)

The last equality follows from the fact that the joint distribution on (𝚷′
− 𝐽 , 𝑋̃ ) is the same as the

joint distribution on (𝚷, 𝑋 ) when 𝑌 1, . . . , 𝑌𝑘 are 𝑖 .𝑖 .𝑑 . 𝜇0.
Now, for any 𝑗 ∈ [𝑑/𝑡], observe that by the chain rule,

I(𝚷, {𝑋 1
𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 ;𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 ) = I(𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 ) + I({𝑋 1

𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 ;𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 | 𝚷)
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= I({𝑋 1
𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 ;𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 ) + I(𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 | {𝑋

1
𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 ).

Since for all 𝑗 ∈ [𝑑/𝑡], 𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘

𝑇𝑗
are independent of {𝑋 1

𝑇𝑗 ′
, . . . , 𝑋𝑘

𝑇𝑗 ′
} 𝑗 ′< 𝑗 , we get that

I(𝚷;𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 ) + I({𝑋 1

𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 ;𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 | 𝚷) = I(𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 | {𝑋

1
𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 )

=⇒ I(𝚷;𝑋 1
𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 ) ≤ I(𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 | {𝑋

1
𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗 ) .
(non-negativity of mutual information)

Substituting in Equation (8) above, we then get that

𝑑/𝑡∑︁
𝑗=1

I
(
𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗

)
≤

𝑑/𝑡∑︁
𝑗=1

I
(
𝚷;𝑋 1

𝑇𝑗
, . . . , 𝑋𝑘𝑇𝑗 | {𝑋

1
𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′< 𝑗
)

= I
(
𝚷; {𝑋 1

𝑇𝑗 ′
, . . . , 𝑋𝑘𝑇𝑗 ′

} 𝑗 ′∈[𝑑/𝑡 ]
)

(chain Rule)

= I
(
𝚷;𝑋 1, 𝑋 2, . . . , 𝑋𝑘

)
.

Plugging this back into Equation (8) completes the proof. □
Now, we are ready to prove the information cost lower bound for multi-pass streaming algo-

rithms that solve Problem 4.1.

4.1 Proof of Theorem 4.3

Let M be a (𝑝 + 1)-pass algorithm that solves the distinguishing problem DP(𝜇0, {𝜇𝜃 }𝜃 ∈Ω, 𝑃,T , 𝑘, 𝑛)
with large enough constant probability, say 1 − 𝛿 (recall that, we added another pass that doesn’t
do any operations to M). This implies that

1
2

(
Pr

(𝑥1,𝑥2,...,𝑥𝑛 )∼𝐷0

[
M(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

]
+ Pr

(𝑥1,𝑥2,...,𝑥𝑛 )∼𝐷T
1

[
M(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1

] )
≥ 1 − 𝛿

Recall that T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] is a partition of [𝑑] into 𝑡 sized sets. Under 𝐷0, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑗

is
drawn from 𝜇0. Under 𝐷T

1 , first 𝑗 is chosen uniformly at random from [𝑑/𝑡], 𝜃 ∼ 𝑃 and 𝑅 is chosen
uniformly from 𝑘-sized subsets of [𝑛] (we will use the notation 𝑅 ∼

([𝑛]
𝑘

)
to denote this random

process), such that ∀𝑖 ∈ 𝑅, 𝑥𝑖
𝑇𝑗

is drawn from 𝜇𝜃 , and everything else is drawn as in 𝐷0. Thus, we
can rewrite the success probability of M as

1
2

(
Pr

∀𝑖, 𝑗, 𝑥𝑖
𝑇𝑗
∼𝜇0

[
M(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

]
+

Pr
𝜃∼𝑃 ; 𝑗∈𝑅 [𝑑/𝑡 ]; 𝑅∼( [𝑛]

𝑘 ); ∀𝑖∈𝑅, 𝑥𝑖
𝑇𝑗
∼𝜇𝜃 ; 𝑥𝑖

𝑇𝑗 ′
∼𝜇0 ∀𝑖, 𝑗 ′ (𝑖∉𝑅 ∨ 𝑗 ′≠𝑗 )

[
M(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1

]ª®¬ ≥ 1 − 𝛿. (9)

23



Let 𝑞𝑅 be the success probability of distinguishing between 𝐷0 and 𝐷T
1 , when the rows where 𝜇𝜃 is

“planted”, are fixed to be 𝑅, that is,

𝑞𝑅 =
1
2

(
Pr

∀𝑖, 𝑗, 𝑥𝑖
𝑇𝑗
∼𝜇0

[
M(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

]
+

Pr
𝜃∼𝑃 ; 𝑗∈𝑅 [𝑑/𝑡 ]; ∀𝑖∈𝑅, 𝑥𝑖𝑇𝑗 ∼𝜇𝜃 ; 𝑥𝑖

𝑇𝑗 ′
∼𝜇0 ∀𝑖, 𝑗 ′ (𝑖∉𝑅 ∨ 𝑗 ′≠𝑗 )

[
M(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1

]ª®¬ . (10)

By Equation (9), we have that 𝔼
𝑅∼( [𝑛]

𝑘 ) [𝑞𝑅] ≥ 1−𝛿 . Let 𝛿 < 0.01, and we call a set 𝑅 good if 𝑞𝑅 ≥ 0.9.

Then, with probability of at least 0.5 (over 𝑅 ∼
([𝑛]
𝑘

)
), 𝑞𝑅 ≥ 1 − 2𝛿 ≥ 0.9 and 𝑅 is good. Next, we

will show that every good set 𝑅, using a reduction to communication protocols for 𝑘-party General
Planted Problem and Lemma 4.5, contributes Ω(𝑑/𝑐𝑡) to the multi-pass information cost of M𝑤.𝑟 .𝑡 .

𝐷0. Recall that,

𝑀𝐼𝐶 (M) =
𝑝+1∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
+
𝑝+1∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
.

Fix a good 𝑅 = {𝑖1, 𝑖2, . . . , 𝑖𝑘 } in sorted order. We will denote 𝑅’s contribution to𝑀𝐼𝐶 (M) by𝑀𝐼𝐶𝑅 ,
which is defined as

𝑀𝐼𝐶𝑅 =

𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

𝑎−1∑︁
𝑏=1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑏 | M(≤ℓ,𝑖𝑏−1) ,M(<ℓ,𝑖𝑎−1) , 𝑃

)
+

+
𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

𝑘∑︁
𝑏=𝑎+1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑏 | M(<ℓ,𝑖𝑏−1) ,M(<ℓ,𝑖𝑎−1) , 𝑃

)
.

Using M, we will construct a communication protocol Π = Π(𝑅) for the 𝑘-party General Planted
Problem, with success probability at least 0.9, such that the information complexity of Π is less
than 𝑀𝐼𝐶𝑅 . Lemma 4.5 would then imply that 𝑀𝐼𝐶𝑅 ≥ Ω

(
𝑑
𝑐 ·𝑡

)
. We restate this as the following

formal claim.

Claim 4.7. For every good 𝑅 (where 𝑞𝑅 as defined above is at least 0.9), 𝑀𝐼𝐶𝑅 ≥ Ω
(
𝑑
𝑐 ·𝑡

)
.

This claim is proved by converting the streaming algorithm into a communication protocol in
the standard way so as to invoke Lemma 4.5, and using calculations similar those used in the proof
of Claim 5.4 in [BGL+24]. We defer the details of this proof to Appendix B.

We now show how to use Claim 4.7 to get an Ω
(
𝑛2𝑑
𝑐𝑘2𝑡

)
bound on𝑀𝐼𝐶 (M). The next argument is

almost identical to [BGL+24, Section 5.2], with the difference in how 𝑅 is sampled.
Notice that since 𝑅 is good with probability at least 0.5, the claim implies that 𝔼

𝑅∼( [𝑛]
𝑘 )𝑀𝐼𝐶

𝑅 ≥

Ω
(
𝑑
𝑐 ·𝑡

)
. We will show that𝑀𝐼𝐶 (M) ≥ Ω

( (
𝑛
𝑘

)2 · 𝔼
𝑅∼( [𝑛]

𝑘 )𝑀𝐼𝐶
𝑅
)
, which would suffice for Theorem 4.3.
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We begin by writing

𝔼
𝑅∼( [𝑛]

𝑘 )𝑀𝐼𝐶
𝑅 = 𝔼

𝑅∼( [𝑛]
𝑘 )

𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

𝑎−1∑︁
𝑏=1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑏 | M(≤ℓ,𝑖𝑏−1) ,M(<ℓ,𝑖𝑎−1) , 𝑃

)
+

+ 𝔼
𝑅∼( [𝑛]

𝑘 )
𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

𝑘∑︁
𝑏=𝑎+1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑏 | M(<ℓ,𝑖𝑏−1) ,M(<ℓ,𝑖𝑎−1) , 𝑃

)
.

We will compare the first term in the expectation, with the first term of 𝑀𝐼𝐶 (M), that is,

𝑝+1∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
.

For a random 𝑅, each term I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
for an (𝑖, 𝑗) pair with 𝑗 ≤ 𝑖, appears

in 𝑀𝐼𝐶𝑅 with probability at most
(
𝑛−2
𝑘−2

)
/
(
𝑛
𝑘

)
=
𝑘 (𝑘−1)
𝑛 (𝑛−1) , since this happens only if both 𝑖 + 1 and 𝑗 are

in 𝑅. Similarly, we will compare the second term in expectation with the second term of 𝑀𝐼𝐶 (M),
that is,

𝑝+1∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
.

For a random 𝑅, each term I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 )

)
for an (𝑖, 𝑗) pair with 𝑗 > 𝑖 +1, appears

in 𝑀𝐼𝐶𝑅 with probability at most
(
𝑛−2
𝑘−2

)
/
(
𝑛
𝑘

)
=
𝑘 (𝑘−1)
𝑛 (𝑛−1) , since again, this happens only if both 𝑖 + 1 and

𝑗 are in 𝑅. When 𝑗 = 𝑖 + 1, no such term appears in 𝑀𝐼𝐶𝑅 , as 𝑏 ≠ 𝑎. This implies that

𝔼
𝑅∼( [𝑛]

𝑘 )𝑀𝐼𝐶
𝑅 ≤ 𝑘 (𝑘 − 1)

𝑛(𝑛 − 1) ·𝑀𝐼𝐶 (M).

4.2 Generalized distributed data processing inequalities

Theorem 4.8. Consider a family of distributions {𝜇𝜃 } : X → [0, 1] parameterized by a random variable 𝜽 ,
which takes values in some domain Ω and has distribution 𝑃 . Let 𝜇1 = 𝔼𝜃∼𝑃 [𝜇𝜃 ]. Consider the distributed
detection setting where if 𝑉 = 0 then each party receives 𝑋𝑖 ∼ 𝜇0 (for some distribution 𝜇0 : X → [0, 1]),
and if 𝑉 = 1 then we first draw 𝜃 ∼ 𝑃 , and then each party receives 𝑋𝑖 ∼ 𝜇𝜃 . If 𝜇1 ≤ 𝑐𝜇0, then for some
constant 𝐾 > 0, for any multi-party communication protocol Π,

𝔼𝜃∼𝑃
[
ℎ2(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≤ 𝐾 (𝑐 + 1)𝐼 (𝑋 ;𝚷 | 𝑉 = 0) . (11)

Here, 𝚷 |𝑉=0 and 𝚷 |𝑉=1,𝜽=𝜃 represent the random variables for the transcript of protocol Π, when inputs to
the parties are drawn from 𝜇0 and 𝜇𝜃 , respectively.

Proof. Our proof builds on the proof of Theorem 3.1 in [BGM+16]. Let Π be an𝑚-party communi-
cation protocol (𝑚 ≥ 2). We first note that since 𝑋𝑖 ’s are independent conditioned on𝑉 = 0, that is,
I(𝑋𝑖 ;𝑋<𝑖 | 𝑉 = 0) = 0, the RHS of (11) tensorizes and we get,

I(𝑋 ;𝚷 | 𝑉 = 0) =
𝑚∑︁
𝑖=1

I(𝑋𝑖 ;𝚷 | 𝑉 = 0, 𝑋<𝑖) (Chain Rule)

25



≥
𝑚∑︁
𝑖=1

I(𝑋𝑖 ;𝚷 | 𝑉 = 0) . (12)

Fix 𝑖 ∈ [𝑚]. To bound I(𝑋𝑖 ;Π | 𝑉 = 0), we consider the following single-machine setting. Fix 𝜃 .
Let𝑊 be a random variable which is uniformly distributed in {0, 1}. Let data 𝑋 ′ be generated as
follows: 𝑋 ′

𝑖 ∼ 𝜇𝜃
𝑊

(where 𝜇𝜃0 = 𝜇0 and 𝜇𝜃1 = 𝜇𝜃 ) and for any 𝑗 ≠ 𝑖, 𝑋 ′
𝑗 ∼ 𝜇0. We apply the protocol

Π on the input 𝑋 ′, and consider the resulting transcript Π′. We will also use Π′ to denote the one
argument randomized function, that takes in 𝑥 ′𝑖 , samples 𝑥 ′𝑗 ∼ 𝜇0∀𝑗 ≠ 𝑖, and outputs Π(𝑥). Note
that the function Π′ doesn’t depend on 𝜃 . Then𝑊 → 𝑋 ′

𝑖 → Π′ forms a Markov chain, and by the
data processing inequality,

I(𝑊 ;𝚷′) ≤ I(𝑋 ′
𝑖 ;𝚷′).

Here, 𝚷′ denotes the random variable for output of Π′. (When the distribution for input 𝑥𝑖 to Π′,
say 𝑥𝑖 ∼ 𝑌 , is not clear from the context, we will use Π′(𝑌 ) to denote the random variable for output
of Π′). Using Lemma 10 in [BGM+16], we can lower bound I(𝑊 ;𝚷′) using the squared Hellinger
distance,

ℎ2(𝚷′
|𝑊 =0 ∥ 𝚷′

|𝑊 =1) ≤ I(𝑊 ;𝚷′) =⇒ ℎ2(𝚷′
|𝑊 =0 ∥ 𝚷′

|𝑊 =1) ≤ I(𝑋 ′
𝑖 ;𝚷′) . (13)

Equation (13) relates the mutual information and squared Hellinger distance for the single
machine case; next we want to relate the single machine setting to the distributed setting. To do
this, we first establish some notation. For any fixed vector b = (b1, . . . ,b𝑚) ∈ {0, 1}𝑚, let 𝜇𝜃b denote
the product distribution on𝑚 inputs, where input to each machine 𝑖 is drawn independently from
𝜇𝜃b𝑖

. We use notation 𝚷
𝜃
b to denote the random variable for transcript of protocol Π when inputs

(𝑥1, . . . , 𝑥𝑚) ∼ 𝜇𝜃b.
With this notation, we note that the random variable 𝚷

′
|𝑊 =0 has distribution as 𝚷𝜃

0 . And 𝚷
′
|𝑊 =1

has the same distribution as 𝚷𝜃
e𝑖 . Here, e𝑖 is the standard basis vector with 1 at the 𝑖th coordinate.

Then we can rewrite (13) as,

ℎ2(𝚷𝜃
0 ∥ 𝚷𝜃

e𝑖 ) ≤ I(𝑋 ′
𝑖 ;𝚷′) = I(𝑋 ′𝜃

𝑖 ;Π′(𝑋 ′𝜃
𝑖 )) . (14)

By taking expectation over 𝜃 ∼ 𝑃 , we get

𝔼𝜃∼𝑃
[
ℎ2(𝚷𝜃

0 ∥ 𝚷𝜃
e𝑖 )

]
≤ 𝔼𝜃∼𝑃

[
I(𝑋 ′𝜃

𝑖 ;Π′(𝑋 ′𝜃
𝑖 ))

]
. (15)

Next, we will show that 𝔼𝜃∼𝑃
[
I(𝑋 ′𝜃

𝑖
;Π′(𝑋 ′𝜃

𝑖
))

]
≤ 𝑐+1

2 ·I(𝑋𝑖 ;𝚷 | 𝑉 = 0). Let𝑌 be a random variable
that takes values according to 𝜇0. First, note that

I(𝑋𝑖 ;𝚷 | 𝑉 = 0) = I(𝑌 ;Π′(𝑌 )),

as conditioned on 𝑉 = 0, ∀𝑖 ∈ [𝑚], 𝑋𝑖 ∼ 𝜇0; thus the joint distribution of (𝑋𝑖 ,Π) is identical to
(𝑌,Π′(𝑌 )). Hence, it suffices to prove that 𝔼𝜃∼𝑃

[
I(𝑋 ′𝜃

𝑖
;Π′(𝑋 ′𝜃

𝑖
))

]
≤ 𝑐+1

2 · I(𝑌 ;Π′(𝑌 )).
We will first prove a generalization of Lemma 11 in [BGM+16], and then come back to proving

the above inequality.

Lemma 4.9. Consider a family of distributions {𝜇′𝑠 } parameterized by 𝑠 ∼ 𝑆 , and let 𝜇′ = 𝔼𝑠∼𝑆
[
𝜇′𝑠

]
. For

some distribution 𝜇, let 𝜇 ≥ 𝑐𝜇′. Let 𝑓 (𝑧) be a random function that depends only on 𝑧, and whose range is
discrete. If 𝑍 ∼ 𝜇 and 𝑠 ∼ 𝑆, 𝑍 ′ ∼ 𝜇′𝑠 , then we have that,

I(𝑍 ; 𝑓 (𝑍 )) ≥ 𝑐 · I(𝑍 ′; 𝑓 (𝑍 ′) | 𝑆).
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Proof. Since 𝑓 is a random function which depends only on 𝑧 and 𝜇 ≥ 𝑐 · 𝜇′, we have

I(𝑍 ; 𝑓 (𝑍 )) = 𝔼𝑧∼𝑍 [𝐷𝐾𝐿 (𝑓 (𝑧) ∥ 𝑓 (𝑍 ))] = 𝔼𝑧∼𝜇 [𝐷𝐾𝐿 (𝑓 (𝑧) ∥ 𝑓 (𝑍 ))] ≥ 𝑐 · 𝔼𝑧∼𝜇′ [𝐷𝐾𝐿 (𝑓 (𝑧) ∥ 𝑓 (𝑍 ))] .
(16)

Note that,

𝔼𝑧∼𝜇′ [𝐷𝐾𝐿 (𝑓 (𝑧) ∥ 𝑓 (𝑍 ))] = 𝔼𝑠∼𝑆𝔼𝑧∼𝜇′𝑠 [𝐷𝐾𝐿 (𝑓 (𝑧) ∥ 𝑓 (𝑍 ))]

= 𝔼𝑠∼𝑆

∫
𝑧

[∑︁
𝜋

Pr[𝑓 (𝑧) = 𝜋] log
(

Pr[𝑓 (𝑧) = 𝜋]∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇 (𝑧)

)]
𝑑𝜇′𝑠 (𝑧)

= 𝔼𝑠∼𝑆

∫
𝑧

[∑︁
𝜋

Pr[𝑓 (𝑧) = 𝜋] log
(

Pr[𝑓 (𝑧) = 𝜋]∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇′𝑠 (𝑧)

)]
𝑑𝜇′𝑠 (𝑧)

+ 𝔼𝑠∼𝑆

∫
𝑧

[∑︁
𝜋

Pr[𝑓 (𝑧) = 𝜋] log
( ∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇′𝑠 (𝑧)∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇 (𝑧)

)]
𝑑𝜇′𝑠 (𝑧)

= 𝔼𝑠∼𝑆𝔼𝑧∼𝑍 ′
|𝑆=𝑠

[
𝐷𝐾𝐿 (𝑓 (𝑧) ∥ 𝑓 (𝑍 ′

|𝑆=𝑠))
]
+ 𝔼𝑠∼𝑆

∑︁
𝜋

[
log

( ∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇′𝑠 (𝑧)∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇 (𝑧)

) ∫
𝑧

Pr[𝑓 (𝑧) = 𝜋]𝑑𝜇′𝑠 (𝑧)
]

= I(𝑍 ′; 𝑓 (𝑍 ′) | 𝑆) + 𝔼𝑠∼𝑆𝐷𝐾𝐿 (𝑓 (𝑍 ′
|𝑆=𝑠) ∥ 𝑓 (𝑍 )) .

Since 𝐾𝐿-divergence is always non-negative, plugging into Equation (16), we get that

I(𝑍 ; 𝑓 (𝑍 )) ≥ 𝑐 · I(𝑍 ′; 𝑓 (𝑍 ′) | 𝑆). □

We now apply Lemma 4.9 with 𝜃 as the parameterization. We take 𝑍 = 𝑌 ; 𝜇 = 𝜇0. We take 𝑍 ′

conditioned on parameter 𝜃 to be 𝑋 ′𝜃
𝑖

; thus, 𝜇′𝑠 =
𝜇0+𝜇𝜃

2 and 𝜇′ = 𝔼𝜃∼𝑃
𝜇0+𝜇𝜃

2 =
𝜇0+𝜇1

2 . Since 𝜇1 ≤ 𝑐𝜇0,
𝜇0 ≥ 2

𝑐+1
( 𝜇0+𝜇1

2
)
. As Π′ is a randomized function only of 𝑥𝑖 , Lemma 4.9 says that,

𝔼𝜃∼𝑃 I(𝑋 ′𝜃
𝑖 ;Π′(𝑋 ′𝜃

𝑖 )) ≤ 𝑐 + 1
2 · I(𝑌 ;Π′(𝑌 )) .

Plugging this into (15), and using the fact that I(𝑋𝑖 ;𝚷 | 𝑉 = 0) = I(𝑌 ;Π′(𝑌 )), we get,

𝔼𝜃∼𝑃
[
ℎ2(𝚷𝜃

0 ∥ 𝚷𝜃
e𝑖 )

]
≤ 𝑐 + 1

2 · I(𝑋𝑖 ;𝚷 | 𝑉 = 0) . (17)

Next, we lower bound the LHS of (17). In the following claim, we first show that the distributions
𝚷
𝜃
b (over the transcripts under protocol Π) satisfies the cut-paste property developed in [BYJKS04]

and used in [BGM+16], because after fixing𝜃 the inputs to each machine are independent. The proof
relies on basic properties of transcripts established in [BGM+16] and is deferred to Appendix B.

Claim 4.10 (Cut-paste property of the protocol). For any 𝜃 and transcript 𝜋 , and any b1,b2,b3,b4 with
{𝑏1
𝑖 , 𝑏

2
𝑖 } = {𝑏3

𝑖
, 𝑏4
𝑖 } (in a multi-set sense) for every 𝑖 ∈ [𝑚],

Pr
[
𝚷
𝜃

b1 = 𝜋

]
· Pr

[
𝚷
𝜃

b2 = 𝜋
]
= Pr

[
𝚷
𝜃

b3 = 𝜋
]
· Pr

[
𝚷
𝜃

b4 = 𝜋

]
,

and therefore,
ℎ2

(
𝚷
𝜃

b1 ∥ 𝚷𝜃

b2

)
= ℎ2

(
𝚷
𝜃

b3 ∥ 𝚷𝜃

b4

)
.
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We now use a result for transcript distributions that satisfy the cut-paste property.

Claim 4.11 (Theorem E.1 in [BGM+16], corollary of Theorem 7 in [Jay09]). Suppose a family of
distribution {𝑃b : b ∈ {0, 1}𝑚} satisfies the cut-paste property: for any a,b and c,d with {𝑎𝑖 , 𝑏𝑖} = {𝑐𝑖 , 𝑑𝑖}
(in a multi-set sense) for every 𝑖 ∈ [𝑚], ℎ2(𝑃a, 𝑃b) = ℎ2(𝑃c, 𝑃d). Then we have

𝑚∑︁
𝑖=1

ℎ2(𝑃0, 𝑃e𝑖 ) ≥ Ω(1) · ℎ2(𝑃0, 𝑃1),

where 0 and 1 are all 0’s and all 1’s vectors respectively, and e𝑖 is the unit vector that only takes 1 in the 𝑖 th
entry.

Using Claim 4.11 and Claim 4.10,

ℎ2(𝚷𝜃
0 ∥ 𝚷𝜃

1) ≤ 𝑂 (1)
𝑚∑︁
𝑖=1

ℎ2(𝚷𝜃
0 ∥ Π𝜃e𝑖 ),

=⇒ 𝔼𝜃∼𝑃
[
ℎ2(𝚷𝜃

0 ∥ 𝚷𝜃
1)

]
≤ 𝑂 (1)

𝑚∑︁
𝑖=1

𝔼𝜃∼𝑃
[
ℎ2(𝚷𝜃

0 ∥ 𝚷𝜃
e𝑖 )

]
.

Using (17) to simplify the RHS above,

𝔼𝜃∼𝑃
[
ℎ2(𝚷𝜃

0 ∥ 𝚷𝜃
1)

]
≤ 𝑂 (1)

𝑚∑︁
𝑖=1

𝑐 + 1
2 · I(𝑋𝑖 ;𝚷 | 𝑉 = 0),

≤ 𝑂 (1)𝑐 + 1
2 ·

𝑚∑︁
𝑖=1

I(𝑋𝑖 ;𝚷 | 𝑉 = 0)

≤ 𝑂 (1)𝑐 + 1
2 I(𝑋 ;𝚷 | 𝑉 = 0),

where in the last step we use the tensorization from (12). Note that the distribution 𝚷
𝜃
0 is identical

to 𝚷 |𝑉=0, for all 𝜃 . And distribution Π𝜃1 is identical to 𝚷 |𝑉=1,𝜽=𝜃 . Therefore for some constant 𝐾 > 0
we get,

𝔼𝜃∼𝑃
[
ℎ2(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≤ 𝐾 (𝑐 + 1)I(𝑋 ;𝚷 | 𝑉 = 0),

proving the theorem. □

Finally, we prove that, for any protocol Π that solves the distributed detection problem with
probability at least 0.9, the expected hellinger distance as in Theorem 4.8 is Ω(1). The proof of this
result is a calculation and is deferred to Appendix B.

Lemma 4.12. Consider a family of distributions {𝜇𝜃 } : X → [0, 1] parameterized by a random variable
𝜽 , which takes values in some domain Ω and has distribution 𝑃 . Consider the distributed detection setting
where if𝑉 = 0 then each party receives 𝑋𝑖 ∼ 𝜇0 (for some distribution 𝜇0 : X → [0, 1]), and if𝑉 = 1 then we
first draw 𝜃 ∼ 𝑃 , and then each party receives 𝑋𝑖 ∼ 𝜇𝜃 . Suppose there is an𝑚-party communication protocol
Π that detects whether 𝑉 = 0 or 𝑉 = 1 with probability at least 0.9. Then

𝔼𝜃∼𝑃
[
ℎ2(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≥ Ω(1) .
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5 Multi-pass Streaming Lower Bound for Bi-Clique

In this section, we will prove multi-pass memory lower bounds for detecting planted bi-cliques in
random bipartite graphs. Formally, we study the following distinguishing problem.

Problem 5.1 (Planted Bi-Clique). Let 1 < 𝑘 ≤ min(𝑚,𝑛), and 0 < 𝑞 ≤ 1/2. The goal is to distinguish
between the following joint distributions on 𝑛-bit vectors 𝑥1, . . . , 𝑥𝑚:

1. 𝐷uniform: ∀𝑖 ∈ [𝑚], ∀𝑗 ∈ [𝑛], 𝑥𝑖𝑗 is drawn as Ber(𝑞).

2. 𝐷planted: 𝑆 ⊆ [𝑛] is drawn uniformly at random from all subsets of [𝑛] of size 𝑘 . 𝑅 is drawn uniformly
at random from all subsets of [𝑚] of size 𝑘 .
∀𝑖 ∉ 𝑅, ∀𝑗 ∈ [𝑛], 𝑥𝑖𝑗 is drawn as Ber(𝑞).
∀𝑖 ∈ 𝑅, ∀𝑗 ∈ 𝑆 , 𝑥𝑖𝑗 = 1, and ∀𝑗 ∉ 𝑆 , 𝑥𝑖𝑗 is drawn as Ber(𝑞).

Our main hardness result for Problem 5.1 is the following:

Theorem 5.2 (Memory Lower Bound for Planted Bi-clique). Let 0 < 𝑞 ≤ 1/2 and 0 < 𝑘 <

𝑂

(√︃
𝑞 ·𝑛

log(𝑛𝑚)

)
. Any 𝑝-pass streaming algorithm (using public as well as private randomness), that dis-

tinguishes between 𝐷uniform and 𝐷planted (as in Problem 5.1) when 𝑥1, 𝑥2, . . . , 𝑥𝑚 arrive in a stream requires
at least Ω

(
𝑛𝑚𝑞

𝑝𝑘4 log(𝑛𝑚)

)
bits of memory.

Remark 5.3. It is straightforward to modify the above theorem to obtain a memory lower bound of
Ω

(
𝑛𝑚𝑞

𝑝𝑘 ′2𝑘2 log(𝑛𝑚)

)
for any 𝑝-pass streaming algorithm detecting cliques of size (𝑘 ′ × 𝑘) in𝐺 (𝑚,𝑛, 𝑞). Taking

𝑘 ′ = 𝑘
𝑛
𝑚 yields the bound stated in Equation (1). The only subtlety is that Problem 1.1 is a distributional

version, whereas the target statement concerns exact detection of a clique of size (𝑘 ′×𝑘). This can be resolved
by noting that any algorithm for the distributional version works for some 𝑘 ′ ≈ 𝑘

𝑛
𝑚.

Our objective will be to frame Problem 5.1 as an instantiation of Problem 4.1, and thereafter
leverage the lower bound for the general problem. For this, we will require partitioning [𝑛] into
𝑛/𝑡 subsets of size 𝑡 ≥ Ω((𝑘2 log(𝑛𝑚))/𝑞). We define the distributions 𝜇0, {𝜇𝜃 }𝜃 ∈Ω over such 𝑡-sized
subsets in terms of the following specialized distributions 𝑃0

trunc and
{
𝑃

1,𝑆
trunc

}
𝑆

Let 𝐶 > 0 be a large enough constant. We define 𝑃0
trunc to be the uniform distribution over the

set

𝑇 :=
{
𝑥 ∈ {0, 1}𝑡 : |𝑥 | ∈

[
𝑡𝑞 −𝐶

√︃
𝑡𝑞 log(𝑛𝑚), 𝑡𝑞 +𝐶

√︃
𝑡𝑞 log(𝑛𝑚)

]}
. (18)

In words, this set comprises of all 𝑡-bit vectors 𝑥 that have |𝑥 | in the typical range of a 𝐵𝑖𝑛(𝑡, 𝑞)
random variable. Additionally, for 𝑆 ⊆ [𝑡], |𝑆 | = 𝑘 , we define 𝑃1,𝑆

trunc to be the uniform distribution
over the set

𝑇𝑆 :=
{
𝑥 ∈ {0, 1}𝑡 : 𝑥𝑆 =

−→
1 , |𝑥 | ∈

[
𝑡𝑞 −𝐶

√︃
𝑡𝑞 log(𝑛𝑚), 𝑡𝑞 +𝐶

√︃
𝑡𝑞 log(𝑛𝑚)

]}
. (19)

In words, this set comprises of all 𝑡-bit vectors 𝑥 that have 𝑆 set to 1, and have |𝑥 | in the same typical
range as the support of 𝑃0

trunc.
For the distributions 𝑃0

trunc and 𝑃
1,𝑆
trunc thus defined, we can derive the technical condition

necessary in Theorem 4.2 about 𝔼𝑆
[
𝑃

1,𝑆
trunc

]
being pointwise upper-bounded by 𝑃0

trunc.
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Claim 5.4. Let 𝑡 ≥ 𝐶𝑘2 log(𝑛𝑚)
𝑞

for some large enough constant𝐶. Suppose 𝑆 is drawn uniformly at random
from all subsets of [𝑡] of size 𝑘 . Let 𝜇0 and 𝜇1 be the probability mass functions of 𝑃0

trunc and 𝔼𝑆 [𝑃1,𝑆
trunc]

respectively. Then,

𝜇1 ≤ 𝑂 (1) · 𝜇0.

The proof of Claim 5.4 is a calculation, and is deferred to Appendix C. It crucially uses two
properties: that 𝑆 is chosen uniformly at random over subsets of [𝑡], together with the fact that
the sparsity of vectors in the supports of both 𝑃0

trunc and 𝑃
1,𝑆
trunc are constrained to be in the typical

range of a 𝐵𝑖𝑛(𝑡, 𝑞) random variable.
Now, we define the following distinguishing problem defined over a given fixed partition of

[𝑛], when all sub-vectors in each vector in the stream are “typical", and also, the planted set of
coordinates (in the planted distribution) belongs wholly to a single 𝑡-sized partition. As we will
prove formally, any algorithm that solves Problem 5.1 also solves the following distinguishing
problem.

Problem 5.5 (Partition Planted Bi-Clique). Let 0 < 𝑘 ≤ min(𝑚,𝑛) and 𝐶𝑘2 log(𝑛𝑚)
𝑞

≤ 𝑡 ≤ 𝑛, where 𝐶 is
a large enough constant. Let 𝑛′ = 𝑡 ·

⌊
𝑛
𝑡

⌋
. Let T = {𝑇𝑟 }𝑟 ∈[𝑛′/𝑡 ] be a partition of [𝑛′], where ∀𝑟, |𝑇𝑟 | = 𝑡 . The

goal is to distinguish between the following joint distributions on 𝑛′-bit vectors 𝑥1, . . . , 𝑥𝑚:

1. 𝐷0: ∀𝑖 ∈ [𝑚] and ∀𝑟 ∈ [𝑛′/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝑃0
trunc.

2. 𝐷T
1 : Draw 𝑟 uniformly from [𝑛′/𝑡]. ∀𝑖 ∈ [𝑚] and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖

𝑇𝑟 ′
is drawn from 𝑃0

trunc.
Draw a uniformly random subset 𝑆 ⊆ 𝑇𝑟 of size 𝑘 .
Draw a uniformly random subset 𝑅 ⊆ [𝑚] of size 𝑘 .
∀𝑖 ∉ 𝑅, 𝑥𝑖

𝑇𝑟
is drawn from 𝑃0

trunc, whereas, ∀𝑖 ∈ 𝑅, 𝑥𝑖
𝑇𝑟

is drawn from 𝑃
1,𝑆
trunc.

Informally, under distribution 𝐷0, at each time-step, 𝑥𝑖 is drawn from the uniform distribution
on 𝑛′-bit vectors conditioned on the number of ones in each partition being typical. On the other
hand, under distribution 𝐷T

1 , for all but 𝑘 time-steps, 𝑥𝑖 is drawn as in distribution 𝐷0; otherwise,
some partition in 𝑥𝑖 is drawn from the planted distribution while still conditioning on the number
of ones being typical. Note again that we assume 𝑘 <<

√
𝑡 .

Problem 5.5 fits into the framework of Problem 4.1, and we can therefore show the following
hardness result for it.

Lemma 5.6 (Memory Lower Bound for Partition Planted Bi-Clique). Let 0 < 𝑘 ≤ min(𝑚,𝑛) and
𝐶𝑘2 log(𝑛𝑚)

𝑞
≤ 𝑡 ≤ 𝑛, where 𝐶 is a large enough constant. Let 𝑛′ = 𝑡 ·

⌊
𝑛
𝑡

⌋
. Let T = {𝑇𝑟 }𝑟 ∈[𝑛′/𝑡 ] be a

partition of [𝑛′], where ∀𝑟, |𝑇𝑟 | = 𝑡 . Then, any 𝑝-pass streaming algorithm (using public as well as private
randomness), that distinguishes between 𝐷0 and 𝐷T

1 (as defined in Problem 5.5) requires at least Ω
(
𝑚𝑛′

𝑝𝑘2𝑡

)
bits of memory.

Proof. Observe that Problem 5.5 is a specific instantiation of Problem 4.1 with 𝑛 =𝑚 and 𝑑 = 𝑛′. Let
𝜇0, 𝜇1 denote the probability mass functions of 𝑃0

trunc and 𝔼𝑆 [𝑃1,𝑆
trunc] respectively. Claim 5.4 shows

that 𝜇1 ≤ 𝑂 (1) · 𝜇0, which satisfies the assumption of Theorem 4.2. The result follows. □
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With Lemma 5.6 established, we now sketch how Theorem 5.2 is derived. The proof is a
reduction: given a low-memory streaming algorithm A for Problem 5.1, we obtain a low-memory
streaming algorithm for Problem 5.5, with the partition size 𝑡 set to 𝑡 =

⌈
𝐶𝑘2 log(𝑛𝑚)

𝑞

⌉
. For simplicity,

assume that 𝑡 divides 𝑛. The high-level strategy is as follows: Given an input from Problem 5.5, A′

first uses public randomness to permute the coordinates of all the inputs consistently according
to a uniformly random permutation, and feeds it to A. This has the effect of turning the fixed
partition into a uniformly random partition of [𝑛]. Under the null, every group in the partition
for each input is a draw from 𝑃0

trunc. We now realize that the inputs under the null distribution of
Problem 5.1 follow the same distribution, except that every group in the partition for each input
is a draw from {0, 1}𝑡 where every bit is drawn as Ber(𝑞). Since 𝑃0

trunc is the uniform distribution
over the subset of {0, 1}𝑡 that is typical, these distributions are close. Conversely, under the planted
distribution, we have that precisely 𝑘 inputs each have a group in the partition which is a draw
from 𝑃

1,𝑆
trunc, where 𝑆 is a random subset of size 𝑘 within the group. All the other groups are draws

from 𝑃0
trunc. Again, we realize that the inputs under the planted distribution of Problem 5.1 follow

the same distribution, except that the planted groups are drawn from {0, 1}𝑡 where every bit is
drawn as Ber(𝑞), and then a uniformly random subset of size 𝑘 is forced to 1. The typical support of
this distribution is precisely the support𝑇𝑆 of 𝑃1,𝑆

trunc, and hence we can again show that the planted
distributions of both the problems are close in TV distance. So, A′ can solve Problem 5.5 by simply
returning the output of A. The formal details are given in Appendix C.

5.1 Application: Densest at-most 𝛽 Subgraph

Theorem 5.2 allows us to derive a hardness of approximation result for the “Densest at-most 𝛽
Subgraph Problem“ (see Section 3.12 in [LMFB24]) in the Vertex Arrival streaming model. We
define the model and problem here.

Definition 5.7 (Vertex Arrival Streaming Model). In the vertex arrival streaming model, the algorithm
is presented with vertices from an undirected graph, and their neighbors amongst previously revealed vertices
in an arbitrary, worst-case order. That is, the algorithm sees a stream {(𝑣𝑖 , 𝐸≤𝑖)}𝑖≤𝑛, where 𝐸≤𝑖 only contains
edges that 𝑣𝑖 shares with vertices 𝑣1, . . . , 𝑣𝑖 .

Problem 5.8 (Densest at-most 𝛽 Subgraph). Consider an undirected graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices
(self-edges allowed), and let 1 ≤ 𝛽 ≤ 𝑛. For any subset 𝐻 ⊆ 𝑉 , let 𝐺 (𝐻 ) = (𝐻, 𝐸 (𝐻 )) be the induced
subgraph (i.e., 𝐺 (𝐻 ) has vertex set 𝐻 and all edges (𝑢, 𝑣) ∈ 𝐸 that satisfy 𝑢, 𝑣 ∈ 𝐻 ). The edge density of
𝐺 (𝐻 ) is defined as |𝐸 (𝐻 ) |

|𝐻 | . The goal is to approximate the largest edge density among all subgraphs of size at

most 𝛽 in 𝐺 , i.e., max𝐻⊆𝑉 ,1≤ |𝐻 | ≤𝛽
{
|𝐸 (𝐻 ) |
|𝐻 |

}
. For 𝛼 ≥ 1, an 𝛼-approximation to a quantity 𝑦 is any number

𝑥 such that (1/𝛼)𝑦 ≤ 𝑥 ≤ 𝑦.

Corollary 5.9 (Memory Lower Bound for Densest at-most 𝛽 Subgraph). Consider any 𝛼 ≥ 1 and
200𝛼 log𝑛 ≤ 𝛽 ≤ 𝑜

(
𝑛

𝛼2 log2
𝑛

)
. Any 𝑝-pass streaming algorithm that approximates the size of the largest

edge density among all subgraphs of size at most 𝛽 in an undirected graph that is presented in the Vertex
Arrival Model to a factor 𝛼 requires at least Ω̃

(
𝑛2

𝑝𝛽𝛼4

)
bits of memory.

Proof. We will reduce from the planted bi-clique problem with𝑚 = 𝑛, and an appropriate choice
of 𝑘 and 𝑞. Let A be a 𝑝-pass streaming algorithm that uses 𝑜

(
𝑛2

𝑝𝛽𝛼4

)
bits of memory and always
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approximates the size of the densest at-most 𝛽 subgraph in a graph presented in the Vertex Arrival
Model to a factor 𝛼 . Using A, we will construct a 𝑝-pass streaming algorithm A′ that processes
𝑥1, . . . , 𝑥𝑛 arriving in a stream, which solves Problem 5.1 for 𝑘 = 600𝛼 log𝑛 and 𝑞 =

log𝑛
𝛽

, while using

only 𝑜
(
𝑛2

𝑝𝛽𝛼4

)
= 𝑜

(
𝑛2𝑞

𝑝𝑘4 log𝑛

)
bits of memory. This would contradict Theorem 5.2, and give us the

claimed result.
The algorithm A′ operates as follows. Given an input stream 𝑥1, 𝑥2, . . . , 𝑥𝑛, A′ interprets each

𝑥𝑖 in the stream as a vertex 𝑣𝑖 in an undirected graph 𝐺 , and presents it to A in the Vertex Arrival
Model. For each 𝑣𝑖 , it will read off connectivity to 𝑣1, . . . , 𝑣𝑖 from 𝑥𝑖[1:𝑖 ] . That is, for 𝑗 ≤ 𝑖, there is an
undirected edge between 𝑣 𝑗 and 𝑣𝑖 iff 𝑥𝑖𝑗 = 1. Note that A′ can simulate this input space-efficiently
for A (it only needs to keep track of a counter).

Now, suppose 𝑥1, 𝑥2, . . . , 𝑥𝑛 are drawn from 𝐷uniform. Then, observe that the graph 𝐺 that A′

presents to A is a random graph, where every (𝑣𝑖 , 𝑣 𝑗 ) is connected by an edge with probability 𝑞.
We claim that the maximum edge density in this graph is at most𝑂 (log𝑛) with high probability. To
see this, observe that for every fixed 𝐻 ⊆ 𝑉 of size at most 𝛽, we have that 𝔼 [|𝐸 (𝐻 ) |] = |𝐻 |2𝑞, since
|𝐸 (𝐻 ) | is precisely the sum of |𝐻 |2 independent 𝐵𝑒𝑟 (𝑞) random variables. By a Chernoff bound, we
have that

Pr
[
|𝐸 (𝐻 ) | ≥ (1 + 𝛿) |𝐻 |2𝑞

]
≤ exp

(
− |𝐻 |2𝑞𝛿2

2 + 𝛿

)
.

Plugging in 𝛿 =
100 log𝑛
|𝐻 |𝑞 , we get that

Pr
[
|𝐸 (𝐻 ) | ≥ |𝐻 |2𝑞 + 100|𝐻 | log𝑛

]
≤ exp

(
−Ω

(
|𝐻 |2𝑞 ·

log𝑛
|𝐻 |𝑞

))
= exp

(
−Ω

(
|𝐻 | log𝑛

) )
≤ 𝑛−2 |𝐻 | .

Therefore, with probability at least 1 − 𝑛−2 |𝐻 | , |𝐸 (𝐻 ) | is at most

|𝐻 |2𝑞 + 100|𝐻 | log𝑛 = |𝐻 | · |𝐻 |𝑞 + 100|𝐻 | log𝑛 ≤ 101|𝐻 | log𝑛,

where we plugged in 𝑞 =
log𝑛
𝛽

and used |𝐻 | ≤ 𝛽 in the last inequality. By a union bound, the
probability that |𝐸 (𝐻 ) | ≤ 101|𝐻 | log𝑛 for every 𝐻 ⊆ [𝑛], |𝐻 | ≤ 𝛽 is at most

𝛽∑︁
𝑖=1

(
𝑛

𝑖

)
· 𝑛−2𝑖 ≤

𝛽∑︁
𝑖=1

𝑛−𝑖 ≤ 𝑂
(
1
𝑛

)
.

This means that the edge density of every 𝐻 ⊆ [𝑛], |𝐻 | ≤ 𝛽 is at most |𝐸 (𝐻 ) |
|𝐻 | ≤ 101 log𝑛 with

probability 𝑂 (1/𝑛), which means that the output of A when A′ presents this undirected random
graph 𝐺 to it will be at most 101 log𝑛.

On the other hand, suppose 𝑥1, 𝑥2, . . . , 𝑥𝑛 are drawn from 𝐷planted. Recall that 𝑆, 𝑅 are uniformly
random subsets of [𝑛] drawn without replacement of size 𝑘 . By Hoeffding’s bound (e.g., Propo-
sition 1.2 in [BM15]), the size of {𝑖 ∈ 𝑆 : 𝑖 ≥ 𝑛/2} is at least 𝑘

3 with probability at least 1 − 𝑒−Ω (𝑘 ) .
Similarly, the size of { 𝑗 ∈ 𝑅 : 𝑗 ≤ 𝑛/2} is at least 𝑘

3 with probability at least 1 − 𝑒−Ω (𝑘 ) . Together
with a union bound, we get that the size of both these sets is at least 𝑘

3 with probability at least
1−𝑒−Ω (𝑘 ) . But then note that conditioned on this event, in the undirected graph𝐺 that A′ presents
to A, at least 𝑘3 vertices in 𝑣𝑛/2, . . . , 𝑣𝑛 are all connected to at least 𝑘3 vertices in 𝑣1, . . . , 𝑣𝑛/2. Note also
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that 𝑘/3 ≤ 𝛽, and hence the maximum edge density amongst at most 𝛽-sized subgraphs of 𝐺 is at
least 𝑘

2/9
𝑘/3 = 𝑘/3, meaning that output of A will be at least 𝑘/3𝛼 = 200 log𝑛.

Therefore, A′ can distinguish between 𝐷uniform and 𝐷planted with constant advantage by
checking if the output of A is at most 101 log𝑛 or at least 200 log𝑛. It does so using only
𝑜

(
𝑛2

𝑝𝛽𝛼4

)
= 𝑜

(
𝑛2𝑞

𝑝𝑘4 log𝑛

)
bits of memory, which gives us the desired contradiction.

□

6 Multi-pass Streaming Lower Bounds in the Semi-random Model

In this section, we will prove multi-pass memory lower bounds for detecting planted bi-cliques in
random bipartite graphs under the presence of a monotone adversary. While the general outline
will follow that of the previous section, we will require making subtle and crucial updates, which
will allow us to prove a stronger lower bound for this model.

Formally, we will study the following distinguishing problem.

Problem 6.1 (Semi-random Planted Bi-Clique). Let 0 < 𝑘1, 𝑘2 ≤ 𝑛. Consider the following joint
distributions on 𝑛-bit vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷uniform: ∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from the uniform distribution over {0, 1}𝑛.

2. 𝐷planted: 𝑆 ⊆ [𝑛] is drawn uniformly at random from all subsets of [𝑛] of size 𝑘2. 𝑅 is drawn uniformly
at random from all subsets of [𝑛] of size 𝑘1.
∀𝑖 ∉ 𝑅, 𝑥𝑖 is drawn from the uniform distribution over {0, 1}𝑛.
∀𝑖 ∈ 𝑅, ∀𝑗 ∈ 𝑆 𝑥𝑖𝑗 = 1, and ∀𝑗 ∉ 𝑆 𝑥𝑖𝑗 is a uniform {0, 1} bit.

Let 𝐴 be a matrix with rows as 𝑥1, . . . , 𝑥𝑛, we consider it as an adjacency matrix of a bipartite graph with 𝑛
left vertices and 𝑛 right vertices. A (computationally unbounded) monotone adversary is allowed to examine
the rows of 𝐴, and if the matrix was drawn from 𝐷planted the adversary is allowed to delete any edges which
did not belong to the planted bi-clique. More formally, for 𝑖 ∉ 𝑅, the adversary can set 𝑥𝑖𝑗 = 0 for any 𝑗 ∈ [𝑛];
for 𝑖 ∈ 𝑅, the adversary can set 𝑥𝑖𝑗 = 0 for any 𝑗 ∉ 𝑆 . Given (possibly modified) vectors 𝑥1, . . . , 𝑥𝑛, the goal is
to distinguish if the vectors were originally drawn from 𝐷uniform or 𝐷planted.

To show hardness for Problem 6.1, we define a distinguishing problem which is similar to the
Planted Bi-clique problem, but instead of planting the

−→
1 pattern, allows planting an arbitrary

pattern on some of the rows of the data.

Problem 6.2 (Pattern Planted Bi-Clique). Let 0 < 𝑘 ≤ 𝑛. The goal is to distinguish between the following
joint distributions on 𝑛-bit vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷uniform: ∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from uniform distribution over {0, 1}𝑛.

2. 𝐷planted: 𝑆 ⊆ [𝑛] is drawn uniformly at random from all subsets of [𝑛] of size𝑘 . Let 𝑆 = { 𝑗1, 𝑗2, . . . , 𝑗𝑘 }.
A vector 𝑣 is drawn uniformly at random from {0, 1}𝑘 . 𝑅 is drawn uniformly at random from all
subsets of [𝑛] of size 𝑘 .
∀𝑖 ∉ 𝑅, 𝑥𝑖 is drawn from uniform distribution over {0, 1}𝑛.
∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [𝑘] 𝑥𝑖𝑗𝑚 = 𝑣𝑚, and ∀𝑗 ∉ 𝑆 𝑥𝑖𝑗 is a uniform {0, 1} bit.
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We can show the following memory lower bound for Problem 6.2:

Theorem 6.3. [Memory Lower Bound for Pattern Planted Bi-Clique] Let 0 < 𝑘 ≤ 𝑛. Any 𝑝-pass streaming
algorithm that solves Problem 6.2, when 𝑥1, 𝑥2, . . . , 𝑥𝑛 arrive in a stream, requires at least Ω

(
𝑛2

𝑝𝑘3

)
bits of

memory.

The proof of Theorem 6.3 (given in Appendix D) uses arguments similar to those in the proof of
Theorem 5.2, by first decomposing the problem into a partitioned version, and showing hardness
for the partitioned version. Crucially, because the planted pattern is a random pattern, this allows
us to use smaller-sized partitions, and also simplifies the calculations involved in upper-bounding
𝜇1 by 𝜇0.

Using the hardness of Problem 6.2, we can derive the following memory lower bound for
detecting planted bi-cliques in the monotone adversary/semi-random model.

Theorem 6.4 (Memory Lower Bound for Semi-random Planted Bi-Clique). Consider any 0 < 𝑘 ≤ 𝑛.
For any 𝑝-pass streaming algorithm that processes 𝑥1, 𝑥2, . . . , 𝑥𝑛 arriving in a stream and only ever uses
𝑜

(
𝑛2

𝑝𝑘3

)
bits of memory, there exists some integer𝑘 ′ ∈

[
𝑘
3 ,

2𝑘
3
]

and instance of Problem 6.1 with𝑘1 = 𝑘, 𝑘2 = 𝑘 ′,
for which the algorithm does not have advantage better than 0.9.

We note that the theorem above holds for any algorithm that knows 𝑘 , but does not know the
precise value of 𝑘 ′ ∈

[
𝑘
3 ,

2𝑘
3
]
.

Proof. Let A be any 𝑝-pass streaming algorithm that processes 𝑥1, . . . , 𝑥𝑛 arriving in a stream, uses
only 𝑜

(
𝑛2

𝑝𝑘3

)
bits of memory, and satisfies that:

(1) If 𝑥1, . . . , 𝑥𝑛 ∼ 𝐷uniform, then A outputs 𝐷uniform with probability at least 0.9.

(2) For every 𝑘 ′ ∈
[
𝑘
2 − 100

√︁
𝑘 log𝑛, 𝑘2 + 100

√︁
𝑘 log𝑛

]
: if 𝑥1, . . . , 𝑥𝑛 ∼ 𝐷planted (as in Problem 6.2)

conditioned on |𝑣 | = 𝑘 ′, then A outputs 𝐷planted with probability at least 0.9.

But notice that when 𝑣 is drawn uniformly at random from {0, 1}𝑘 , the probability that |𝑣 | ∈[
𝑘
2 − 100

√︁
𝑘 log𝑛, 𝑘2 + 100

√︁
𝑘 log𝑛

]
is at least 1 − 𝑛−10. Together with (2) above, we conclude that:

if 𝑥1, . . . , 𝑥𝑛 ∼ 𝐷planted (as in Problem 6.2), then A outputs 𝐷planted with probability at least 0.89.
But this contradicts the lower bound from Theorem 6.3. Thus, it must be the case that there
exists 𝑘 ′ ∈

[
𝑘
2 − 100

√︁
𝑘 log𝑛, 𝑘2 + 100

√︁
𝑘 log𝑛

]
such that A does not distinguish between 𝐷uniform and

𝐷planted conditioned on |𝑣 | = 𝑘 ′, with advantage 0.9.
For such a 𝑘 ′, consider a problem instance of Problem 6.1 with 𝑘1 = 𝑘 , 𝑘2 = 𝑘 ′, and a monotone

adversary, who upon seeing 𝑥1, . . . , 𝑥𝑛 ∼ 𝐷planted (as in Problem 6.1), corrupts the non-planted
columns (i.e., [𝑛] \ 𝑆) in the planted rows 𝑅 as follows: the adversary chooses a uniformly random
subset 𝐼 ⊆ [𝑛] \ 𝑆 of size 𝑘 − 𝑘 ′, and for every 𝑖 ∈ 𝑅, the adversary sets 𝑥𝑖

𝐼
= 0. Then, observe

that the final distribution of 𝑥1, . . . , 𝑥𝑛 after the corruption is exactly the distribution 𝐷planted (from
Problem 6.2), conditioned on |𝑣 | = 𝑘 ′. From our reasoning in the above paragraph, for this particular
monotone adversary, A cannot distinguish between 𝐷uniform and 𝐷planted (as in Problem 6.1) with
advantage 0.9. The theorem follows. □
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6.1 Application: Maximum Bi-Clique

Theorem 6.4 implies a multi-pass streaming lower bound for approximating the size of the largest
bi-clique in a graph in the Vertex Arrival Model (Definition 5.7).

Problem 6.5 (Maximum Bi-Clique). Consider an undirected graph 𝐺 on 𝑛 vertices (self-edges allowed).
Let 1 < 𝑘 ′ ≤ 𝑛. A 𝑘 ′-biclique in 𝐺 corresponds to subsets 𝑆, 𝑅 ⊆ [𝑛], |𝑆 | = |𝑅 | = 𝑘 ′, such that for every
𝑢 ∈ 𝑆, 𝑣 ∈ 𝑅, 𝑢 and 𝑣 are connected by an edge in𝐺 . The goal is to approximate the size of the largest biclique
in 𝐺 , i.e., 𝑘 = max{𝑘 ′ : ∃𝑘 ′-biclique in 𝐺}. For 𝛼 ≥ 1, an 𝛼-approximation to 𝑘 is any number 𝑥 such that
(1/𝛼)𝑘 ≤ 𝑥 ≤ 𝑘 .

Corollary 6.6 (Memory Lower Bound for Maximum Bi-Clique). Consider any 1 < 𝛼 ≤ 𝑛. Any 𝑝-pass
streaming algorithm that approximates the size of the largest bi-clique in an undirected graph that is presented
in the Vertex Arrival Model to a factor 𝛼 requires at least Ω̃

(
𝑛2

𝑝𝛼3

)
bits of memory.

Proof. Let A be a 𝑝-pass streaming algorithm that uses only 𝑜
(
𝑛2

𝑝𝛼3

)
bits of memory and always

approximates the size of the largest biclique in a graph presented in the worst-case, vertex-arrival
model to a factor 𝛼 . We will set 𝑘 = 40𝛼 log𝑛. Using A, we will construct a 𝑝-pass streaming
algorithm A′ that processes 𝑥1, . . . , 𝑥𝑛 arriving in a stream, which solves every instance of Prob-
lem 6.1 for which 𝑘1 = 𝑘, 𝑘2 ∈

[
𝑘
3 ,

2𝑘
3
]
, while using only 𝑜

(
𝑛2

𝑝𝛼3

)
= 𝑜

(
𝑛2

𝑝𝑘3

)
bits of memory. This would

contradict Theorem 6.4, and give us the claimed result.
The algorithm A′ operates as follows. Given an input stream 𝑥1, 𝑥2, . . . , 𝑥𝑛, A′ interprets each

𝑥𝑖 in the stream as a vertex 𝑣𝑖 in an undirected graph 𝐺 , and presents it to A in the vertex-arrival
model. For each 𝑣𝑖 , it will read off connectivity to 𝑣1, . . . , 𝑣𝑖 from 𝑥𝑖[1:𝑖 ] . That is, for 𝑗 ≤ 𝑖, there is an
undirected edge between 𝑣 𝑗 and 𝑣𝑖 iff 𝑥𝑖𝑗 = 1. Note that A′ can simulate this input space-efficiently
for A (it only needs to keep track of a counter).

Now, suppose 𝑥1, 𝑥2, . . . , 𝑥𝑛 are drawn from 𝐷uniform. Then, observe that the graph 𝐺 that A′

presents to A is a random graph, where every (𝑣𝑖 , 𝑣 𝑗 ) is connected by an edge with probability
1/2. The size of the maximum biclique in such a graph is at most 3 log𝑛 with probability 1 − 𝑜 (1)
[Tre17], and hence, the output of A will be at most 3 log𝑛.

On the other hand, suppose 𝑥1, 𝑥2, . . . , 𝑥𝑛 are drawn from 𝐷planted in the semi-random model
for 𝑘1 = 𝑘 , and any 𝑘2 ∈

[
𝑘
3 ,

2𝑘
3
]
. Recall that 𝑆, 𝑅 are uniformly random subsets of [𝑛] drawn without

replacement of size 𝑘2, 𝑘1 respectively. By Hoeffding’s bound (e.g., Proposition 1.2 in [BM15]), the
size of {𝑖 ∈ 𝑆 : 𝑖 ≥ 𝑛/2} is at least 𝑘2

3 ≥ 𝑘
10 with probability at least 1 − 𝑒−Ω (𝑘2 ) = 1 − 𝑒−Ω (𝑘 ) . Similarly,

the size of { 𝑗 ∈ 𝑅 : 𝑗 ≤ 𝑛/2} is at least 𝑘1
3 = 𝑘

3 with probability at least 1 − 𝑒−Ω (𝑘1 ) = 1 − 𝑒−Ω (𝑘 ) .
Together with a union bound, we get that the size of both these sets is at least 𝑘

10 with probability
at least 1 − 𝑒−Ω (𝑘 ) . But then note that conditioned on this event, in the undirected graph𝐺 that A′

presents to A, at least 𝑘
10 vertices in 𝑣𝑛/2, . . . , 𝑣𝑛 are all connected to at least 𝑘

10 vertices in 𝑣1, . . . , 𝑣𝑛/2,
meaning that the size of the largest biclique in 𝐺 is at least 𝑘

10 . Hence, the output of A will be at
least 𝑘

10𝛼 = 4 log𝑛.
Therefore, A′ can distinguish between 𝐷uniform and 𝐷planted with constant advantage by check-

ing if the output of A is at most 3 log𝑛 or at least 4 log𝑛. It does so using only 𝑜
(
𝑛2

𝑝𝛼3

)
= 𝑜

(
𝑛2

𝑝𝑘3

)
bits

of memory, which gives us the desired contradiction.
□

35



7 Memory-Sample Tradeoffs for Distinguishing Sparse Gaussians

In this section, we prove our result for the sparse Gaussian distinguishing problem. We begin by
stating the formal definition of the problem.

Problem 7.1. Let 0 < ℓ ≤ 𝑑 and 𝛼 ∈ (0, 1]. The goal is to distinguish between the following joint
distributions on 𝑑-dimensional vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷null: ∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from the standard Gaussian distribution 𝑁 (0, 𝐼𝑑 ).

2. 𝐷planted: A vector 𝑣 ∈ ℝ𝑑 is drawn as follows: first, choose 𝑆 ⊆ [𝑑], |𝑆 | = ℓ uniformly at random. For
every 𝑖 ∈ 𝑆 , set 𝑣𝑖 = 𝛼 , and for every 𝑖 ∈ [𝑑] \ 𝑆 , set 𝑣𝑖 = 0. Then ∀ 𝑖 ∈ [𝑛],

𝑥𝑖 ∼
{
𝑁 (𝑣, 𝐼𝑑 ), w.p. 𝑞,
𝑁 (0, 𝐼𝑑 ), w.p. 1 − 𝑞.

(20)

A primary qualitative difference in the problem above compared to the distinguishing problems
stated previously is that earlier, the planted distribution had exactly a fixed number 𝑘 of vectors
from amongst 𝑥1, . . . , 𝑥𝑛 that were drawn from the planted distribution; in contrast, in the problem
above, each 𝑥𝑖 independently has a probability 𝑞 of being drawn from the planted distribution.

We show the following memory-sample tradeoff for Problem 7.1.

Theorem 7.2. Let 𝜖 ∈ (0, 0.01) be a constant, 𝑑 be sufficiently large, ℓ ≤ 𝑑 , 𝑛 ≤ 𝑑10 and 𝛼 ∈
(

1
ℓ
√

log𝑑
, 1

]
.

Any 𝑠-bit, 𝑝-pass algorithm (using public as well as private randomness) that solves Problem 7.1 for every
ℓ ′ ∈ [2ℓ/3, 4ℓ/3] satisfies that 𝑠 · 𝑛 ≥ Ω̃

(
𝑑1−𝜖

𝑝 (𝛼ℓ )2𝑞2

)
.

Again, the theorem above holds for any algorithm that knows ℓ , but does not know the precise
value of ℓ ′ ∈ [2ℓ/3, 4ℓ/3].

Proof. As in the other proofs, we consider a partition version of the problem, where the planted
coordinates in the vector 𝑣 are confined to being within a partition. Furthermore, while Problem 7.1
has the property that 𝑛𝑞 vectors, in expectation, have a plant corresponding to a vector 𝑣 of fixed
sparsity ℓ , this property is flipped in the partition version; namely, it will be the case that a fixed
number 𝑘 = 𝑛𝑞 of the vectors have a plant corresponding to a vector 𝑣 of expected sparsity ℓ .

Concretely, consider the following distribution𝐷 over vectors in ℝ𝑡 , for 𝑡 ≥ (𝛼ℓ)2𝑑𝜖 log2(200𝑛𝑑).
Independently, for every co-ordinate 𝑣 𝑗 , 𝑗 ∈ [𝑡],

𝑣 𝑗 =

{
𝛼, w.p. ℓ/𝑡,
0, w.p. 1 − ℓ/𝑡 .

(21)

We can see that originally in Problem 7.1, there were exactly ℓ coordinates where 𝑣 was non-zero,
whereas 𝑣 ∼ 𝐷 above has ℓ coordinates that are non-zero in expectation, and all these coordinates
are contained within the same partition (of size 𝑡). Consider now the following problem, for which
we will show hardness.

Problem 7.3. Let 𝑡 ≥ max{(𝛼ℓ)2𝑑𝜖 log2(200𝑛𝑑), 2ℓ} and suppose that 𝑡 divides 𝑑 . Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] be
a partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . The goal is to distinguish between the following joint distributions on
𝑑-bit vectors 𝑥1, . . . , 𝑥𝑛:
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1. 𝐷0 (no instance): ∀𝑖 ∈ [𝑛] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝑁 (0, 𝐼𝑡 ).

2. 𝐷T
1 (yes instance): Draw 𝑟 uniformly from [𝑑/𝑡]. ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖

𝑇𝑟 ′
is drawn from 𝑁 (0, 𝐼𝑡 ).

Draw 𝑣 ∼ 𝐷 . Draw a uniformly random subset 𝑅 ⊆ [𝑛] of size 𝑘 .
∀𝑖 ∉ 𝑅, 𝑥𝑖

𝑇𝑟
is drawn from 𝑁 (0, 𝐼𝑡 ), whereas, ∀𝑖 ∈ 𝑅, 𝑥𝑖

𝑇𝑟
is drawn from 𝑁 (𝑣, 𝐼𝑡 ).

In the following lemma, we show that proving hardness for Problem 7.3 is enough to prove the
theorem. The proof of this lemma is a sequence of reductions that uses arguments similar to those
used earlier in the paper, and is deferred to Appendix E.

Lemma 7.4. Let 𝜖 ∈ (0, 0.01) be a constant, 𝑑 be sufficiently large, ℓ ≤ 𝑑 , 𝑛 ≤ 𝑑10 and 𝛼 ∈
(

1
ℓ
√

log𝑑
, 1

]
. Let

A be a 𝑝-pass streaming algorithm that uses 𝑠 bits of memory and 𝑛/400 samples, and solves Problem 7.1
with probability 0.99 for every value of ℓ ′ ∈ [2ℓ/3, 4ℓ/3]. Then, there exists a 𝑝-pass streaming algorithm
A′ that uses 𝑠 + 𝑂̃ (1) bits of memory and 𝑛 samples, and solves Problem 7.3 for 𝑘 = 𝑛𝑞 with probability 0.97

We note that the assumption of 𝑡 dividing 𝑑 in Problem 7.3 is for convenience; we can handle
the technicality of 𝑡 not dividing 𝑑 similarly to how we did in the proof of Theorem 5.2; this is
fleshed out in more detail in the proof of the lemma.

Using Lemma 7.4, it suffices to show hardness for Problem 7.3. For this, however, we will need
to define a truncation, on both the 𝑥𝑖s and 𝑣 . There are some steps where we will not be able to
get a good bound for all vectors 𝑣 . So, we define a set 𝑉𝑔𝑜𝑜𝑑 = {𝑣 : ∥𝑣 ∥0 ≤ 100ℓ} and let 𝐷𝑔𝑜𝑜𝑑 be
the distribution 𝐷 that is restricted to vectors in the set 𝑉𝑔𝑜𝑜𝑑 . We will also need to truncate the
distribution over 𝑥𝑖s to get our bound. We define the set

𝑇 =

𝑥 ∈ ℝ𝑡 :
𝑡∑︁
𝑗=1

𝑒𝛼𝑥 𝑗 ≤ 𝑡𝑒𝛼2/2 + (𝐶1𝛼)
√
𝑡𝑑𝜖/2 log(200𝑛𝑑)

 (22)

for a constant𝐶1 to be later determined. Let 𝑃0
trunc be the restriction of the (𝑡-dimensional) Gaussian

distributions 𝑁 (0, 𝐼𝑡 ) to this set 𝑇 . For a vector 𝑣 ∈ ℝ𝑡 , we let 𝑃1,𝑣
trunc denote the restriction of the

Gaussian distribution 𝑁 (𝑣, 𝐼𝑡 ) to the set 𝑇 .
We now further define a truncated version of Problem 7.3.

Problem 7.5. Let 𝑡 ≥ max{(𝛼ℓ)2𝑑𝜖 log2(200𝑛𝑑), 2ℓ} and suppose that 𝑡 divides 𝑑 . Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ] be
a partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . The goal is to distinguish between the following joint distributions on
𝑑-bit vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷0: ∀𝑖 ∈ [𝑛] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝑃0
trunc.

2. 𝐷T
1 : Draw 𝑟 uniformly from [𝑑/𝑡]. ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖

𝑇𝑟 ′
is drawn from 𝑃0

trunc.
Draw 𝑣 ∼ 𝐷𝑔𝑜𝑜𝑑 . Draw a uniformly random subset 𝑅 ⊆ [𝑛] of size 𝑘 .

∀𝑖 ∉ 𝑅, 𝑥𝑖
𝑇𝑟

is drawn from 𝑃0
trunc, whereas, ∀𝑖 ∈ 𝑅, 𝑥𝑖

𝑇𝑟
is drawn from 𝑃

1,𝑣
trunc.

The following lemma, proved in Appendix E, shows that the truncated distributions are close
to the original ones.

37



Lemma 7.6. Let 𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 be arbitrary. The distributions 𝑁 (0, 𝐼𝑡 ) and 𝑁 (𝑣, 𝐼𝑡 ) are close (in TV distance) to
their respective truncations 𝑃0

trunc and 𝑃1,𝑣
trunc:

𝑃0

trunc − 𝑁 (0, 𝐼𝑡 )



𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡),


𝑃1,𝑣
trunc − 𝑁 (𝑣, 𝐼𝑡 )





𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡) .

Also, Pr𝑣∼𝐷 [𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] ≥ 0.99.

By Lemma 7.6 and the triangle inequality applied to the partitions of 𝑡 coordinates, the TV
distance between 𝐷0 defined in Problem 7.3 and in Problem 7.5 is at most 0.01. Similarly, the TV
distance between 𝐷T

1 in these problems, taking additionally into account that Pr𝑣∼𝐷 [𝑣 ∉ 𝑉𝑔𝑜𝑜𝑑 ] ≤
0.01, is at most 0.02; note that in both cases, the TV distance for a fixed setting of 𝑟, 𝑅, 𝑣 is at most
0.02, and the random processes by which 𝑟, 𝑅, 𝑣 are selected in both problems are identical.

Since the respective distributions in Problem 7.3 and Problem 7.5 are close, it follows that if
some algorithm can solve Problem 7.3 with advantage 0.99, then the algorithm can also solve
Problem 7.5 with advantage 0.97. Therefore, we will now show a lower bound for Problem 7.5,
which as we can observe, conveniently fits the template of Problem 4.1. With a view to invoke
Theorem 4.2, the next claim, whose proof is a calculation and is also given in Appendix E, bounds
the ratio 𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑

[𝑃1,𝑣
trunc]/𝑃0

trunc.

Claim 7.7. Let 𝜇0 and 𝜇𝑣1 be the probability density functions of 𝑃0
trunc and 𝑃1,𝑣

trunc respectively. Then, there
exists a positive constant 𝐶 such that

𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑
[𝜇𝑣1] ≤ 𝐶𝜇0.

We have thus shown that Problem 7.5 fits the generic description of Problem 4.1, and also
satisfies the requirement of Theorem 4.2. The statement of the theorem then implies that any
𝑠-bit, 𝑝-pass streaming algorithm which solves the problem satisfies 𝑠 = Ω

(
𝑛𝑑

𝑝𝑘2𝑡

)
. Taking 𝑘 = 𝑛𝑞

and 𝑡 = (𝛼ℓ)2𝑑𝜖 log2(200𝑛𝑑) gives us that 𝑠 · 𝑛 ≥ Ω̃
(

𝑑1−𝜖

𝑝 (𝛼ℓ )2𝑞2

)
. Invoking Lemma 7.6 and Lemma 7.4

completes the proof of the theorem.
□

We now discuss how our memory-sample tradeoff established in Theorem 7.2 relates to those
of algorithms that solve Problem 7.1. First, consider a statistical test that computes the sum of all
the coordinate values across the 𝑛 samples it receives (i.e., the sum

∑𝑛
𝑖=1

∑𝑑
𝑗=1 𝑥

𝑖
𝑗 ). When samples

are drawn from 𝐷null, the sum is a Gaussian with mean 0 and variance 𝑛𝑑 . On the other hand,
when samples are drawn from 𝐷planted, the sum is a Gaussian with mean 𝑛𝑞ℓ𝛼 and variance 𝑛𝑑 .
Now suppose that the test declares 𝐷null if and only if the sum is at most 𝑛𝑞ℓ𝛼/2. By a Gaussian tail
bound, the test’s failure probability is at most 𝛿 if 𝑛 = 𝑂 (𝑑 log(1/𝛿)/(𝑞ℓ𝛼)2). For a constant success
probability, this test would require 𝑂 (𝑑/(𝛼ℓ𝑞)2) samples. Note also that the test can be computed
with 𝑂 (log𝑑) bits of precision.7 Therefore, our bound given in Theorem 7.2 is nearly optimal for
algorithms in the 𝑂 (log𝑑) memory regime.

7The accumulation error for the sum computation is at most 𝑛𝑑 · 2−𝜌 , where 𝜌 is the precision of bits for each
coordinate’s floating points. Since we require the accumulation error to not exceed each distribution’s standard deviation
of

√
𝑛𝑑 , we can take 𝜌 = 𝑂 (log𝑛 + log𝑑) bits. Furthermore, Chebyshev’s inequality implies that the computed sum is at

most 2𝑛𝑑 with high probability, so we can also take𝑂 (log𝑛 + log𝑑) bits for the integral component of the sum. Since we
assume 𝑛 ≤ 𝑑10, we therefore need 𝑂 (log𝑑) bits altogether.
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We remark that Problem 7.1 can also be solved with improved sample complexity via the
following procedure. The algorithm fixes a set 𝑅 of randomly chosen coordinates and for each
sample 𝑥 𝑗 it receives, it stores all the entries at those coordinates (that is, the value 𝑥 𝑗

𝑅
). For

each subset 𝑆1 ⊆ [𝑛] of the received samples with |𝑆1 | = 𝑠1 and each subset of the coordinates
𝑆2 ⊆ 𝑅 with |𝑆2 | = 𝑠2, the algorithm computes the statistic 𝑌𝑆1,𝑆2 =

∑
𝑗∈𝑆1

∑
𝑖∈𝑆2 𝑥

𝑗

𝑖
. The algorithm

declares 𝐷null if no statistic 𝑌𝑆1,𝑆2 exceeds some fixed threshold; otherwise, it declares 𝐷planted. In
the following claim, we show that there is a regime in which this test is able to distinguish between
the distributions 𝐷null and 𝐷planted using 𝑂̃ (1/(𝑞𝛼2)) samples and 𝑂̃

(
𝑑

ℓ𝛼2𝑞

)
memory.

Claim 7.8. Fix a constant 𝛿 ∈ (0, 1) and let 𝐶𝛿,𝛼 =

(
8+4 log(4/𝛿 )

𝛼2

)
. For all 𝑛,𝑑 sufficiently large that satisfy

𝑛𝑞 ≥ 2𝐶𝛿,𝛼 log(𝑛𝑑), the following holds. If |𝑅 | = 2𝐶𝛿,𝛼 (𝑑/ℓ) log(𝑛𝑑/𝛿) log(𝑛𝑑), ℓ ≥ 𝑠1 = 𝑠2 = 𝐶𝛿,𝛼 log(𝑛𝑑)

and 𝜏 =
√︂

2𝑠1𝑠2 log
(
2
(
𝑛
𝑠1

) ( |𝑅 |
𝑠2

)
/𝛿

)
, then

max
 Pr
𝐷null

 max
𝑆1⊆[𝑛], |𝑆1 |=𝑠1
𝑆2⊆𝑅, |𝑆2 |=𝑠2

∑︁
𝑗∈𝑆1

∑︁
𝑖∈𝑆2

𝑥
𝑗

𝑖
≥ 𝜏

 , Pr
𝐷planted

 max
𝑆1⊆[𝑛], |𝑆1 |=𝑠1
𝑆2⊆𝑅, |𝑆2 |=𝑠2

∑︁
𝑗∈𝑆1

∑︁
𝑖∈𝑆2

𝑥
𝑗

𝑖
≤ 𝜏

 ,
 ≤ 𝛿.

8 Memory-Sample Tradeoffs for Sparse PCA Detection

In this section, we prove our result for the sparse PCA detection problem. We begin by stating the
formal definition of the problem.

Problem 8.1. Let ℓ ≤ 𝑑 be some integers and let 𝛼 > 0 be some parameter. The goal is to distinguish
between the following joint distributions on 𝑑-dimensional vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷null: ∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from 𝑁 (0, 𝐼𝑑 ).

2. 𝐷planted: Draw a uniformly random subset of ℓ indices, 𝑆 ⊆ [𝑑] and let 𝑣 = 1√
ℓ
1𝑆 .

∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from 𝑁 (0, Σ𝑆 ), where Σ𝑆 = 𝐼𝑑 + 𝛼𝑣𝑣⊺.

We show the following memory-sample tradeoff for Problem 8.1.

Theorem 8.2. Let 𝜖 ∈ (0, 0.01) be a constant, 𝛼 ∈
(
0, 𝜖22

)
be a constant, 𝑑 be sufficiently large, ℓ ≤ 𝑑 ,

and 𝑛 ≤ 𝑑10. Then, any 𝑠-bit, 𝑝-pass algorithm (using public as well as private randomness) that solves
Problem 8.1 satisfies 𝑠 · 𝑛 ≥ Ω̃

(
𝑑1−𝜖

𝑝ℓ

)
.

Proof. Our approach is to show a lower bound for the following simpler distinguishing problem
where the planted distribution is a more structured mixture of ℓ-sizes subsets of indices. A lower
bound for this problem implies a lower bound for the more general Problem 8.1.

Problem 8.3. Let ℓ ≤ 𝑑 be some integers and let 𝛼 > 0 be some parameter. The goal is to distinguish
between the following joint distributions on 𝑑-dimensional vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷null: ∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from 𝑁 (0, 𝐼𝑑 ).

2. 𝐷planted: Draw 𝑆 uniformly from {[1, ℓ], [ℓ + 1, 2ℓ], . . . , [𝑑 − ℓ + 1, 𝑑]} and let 𝑣 = 1√
ℓ
1𝑆 .

∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from 𝑁 (0, Σ𝑆 ), where Σ𝑆 = 𝐼𝑑 + 𝛼𝑣𝑣⊺.
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As in the other proofs, we consider a partition version of the problem, where the planted
coordinates in the vector 𝑣 are confined to being within a partition. Consider now the following
problem for which we will show hardness.

Problem 8.4. Let 𝑡 ≥ ℓ𝑑𝜖 log(400𝑛𝑑) and suppose that ℓ divides 𝑡 and that 𝑡 divides 𝑑 . Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ]
be a partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . The goal is to distinguish between the following joint distributions
on 𝑑-bit vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷0 (no instance): ∀𝑖 ∈ [𝑛] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝑁 (0, 𝐼𝑡 ).

2. 𝐷T
1 (yes instance): Draw 𝑟 uniformly from [𝑑/𝑡]. ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖

𝑇𝑟 ′
is drawn from 𝑁 (0, 𝐼𝑡 ).

Draw 𝑆 uniformly from S = {[1, ℓ], [ℓ + 1, 2ℓ], . . . , [𝑡 − ℓ + 1, 𝑡]} and let 𝑣 = 1√
ℓ
1𝑆 .

∀𝑖 ∈ [𝑛], 𝑥𝑖
𝑇𝑟

is drawn from 𝑁 (0, Σ𝑆 ), where Σ𝑆 = 𝐼𝑡 + 𝛼𝑣𝑣⊺.

We will need to truncate the distribution over 𝑥𝑖s to get our bound. We define the set

𝑇 =

{
𝑥 ∈ ℝ𝑡 :

∑︁
𝑅∈S

exp
(

𝛼

2(𝛼 + 1) ·
1
ℓ
(𝑥⊺1𝑅)2

)
≤ (𝑡/ℓ) (1 − 𝛼)−1/2 + 𝛿

}
, (23)

where 𝛿 = 𝐶𝑑𝜖/2
√︁
(𝑡/ℓ) log(400𝑛𝑑). Let 𝑃0

trunc be the restriction of the Gaussian distribution 𝑁 (0, 𝐼𝑡 )
to this set 𝑇 . For each set 𝑆 ∈ S, we let 𝑃1,𝑆

trunc denote the restriction of the Gaussian distribution
𝑁 (0, Σ𝑆 ) to the set 𝑇 , where Σ𝑆 = 𝐼𝑡 + 𝛼𝑣𝑣⊺ and 𝑣 = 1√

ℓ
1𝑆 .

We now further define a truncated version of Problem 8.4.

Problem 8.5. Let 𝑡 ≥ ℓ𝑑𝜖 log(400𝑛𝑑) and suppose that ℓ divides 𝑡 and that 𝑡 divides 𝑑 . Let T = {𝑇𝑟 }𝑟 ∈[𝑑/𝑡 ]
be a partition of [𝑑], where ∀𝑟, |𝑇𝑟 | = 𝑡 . The goal is to distinguish between the following joint distributions
on 𝑑-bit vectors 𝑥1, . . . , 𝑥𝑛:

1. 𝐷0: ∀𝑖 ∈ [𝑛] and ∀𝑟 ∈ [𝑑/𝑡], 𝑥𝑖
𝑇𝑟

is drawn from 𝑃0
trunc.

2. 𝐷T
1 : Draw 𝑟 uniformly from [𝑑/𝑡]. ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟 , 𝑥𝑖

𝑇𝑟 ′
is drawn from 𝑃0

trunc.
Draw 𝑆 uniformly from S = {[1, ℓ], [ℓ + 1, 2ℓ], . . . , [𝑡 − ℓ + 1, 𝑡]}.
∀𝑖 ∈ [𝑛], 𝑥𝑖

𝑇𝑟
is drawn from 𝑃

1,𝑆
trunc.

The following lemma, proved in Appendix F, shows that the truncated distributions are close
to the original ones.

Lemma 8.6. For any set 𝑆 ∈ S, the distributions 𝑁 (0, 𝐼𝑡 ) and 𝑁 (0, Σ𝑆 ) are close (in TV distance) to their
respective truncations 𝑃0

trunc and 𝑃1,𝑆
trunc:

𝑃0

trunc − 𝑁 (0, 𝐼𝑡 )



𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡),


𝑃1,𝑆
trunc − 𝑁 (0, Σ𝑆 )





𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡) .
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By Lemma 8.6 and the triangle inequality applied to the partitions of 𝑡 coordinates, the TV
distance between 𝐷0 defined in Problem 8.4 and in Problem 8.5 is at most 0.01. Similarly, the TV
distance between 𝐷T

1 in these problems is at most 0.01.
Since the respective distributions in Problem 8.4 and Problem 8.5 are close, it follows that if

some algorithm can solve Problem 8.4 with advantage 0.99, then the algorithm can also solve
Problem 8.5 with advantage 0.98. Therefore, we will now show a lower bound for Problem 8.5,
which as we can observe, conveniently fits the template of Problem 4.1. With a view to invoke
Theorem 4.2, the next claim, whose proof is a calculation and is also given in Appendix F, bounds
the ratio 𝔼𝑆 [𝑃1,𝑆

trunc]/𝑃0
trunc.

Claim 8.7. Let 𝜇0 and 𝜇𝑆1 be the probability density functions of 𝑃0
trunc and 𝑃1,𝑆

trunc respectively. Then, there
exists a positive constant 𝐶 such that

𝔼𝑆∼S [𝜇𝑆1 ] ≤ 𝐶𝜇0.

We have thus shown that Problem 8.5 fits the generic description of Problem 4.1, and also
satisfies the requirement of Theorem 4.2. The statement of Theorem 4.2 then implies that any 𝑠-bit,
𝑝-pass streaming algorithm which solves the problem satisfies 𝑠 = Ω

(
𝑛𝑑

𝑝𝑘2𝑡

)
. Taking 𝑘 = 𝑛 and

𝑡 = ℓ𝑑𝜖 log(400𝑛𝑑) gives us that 𝑠 · 𝑛 ≥ Ω̃
(
𝑑1−𝜖

𝑝ℓ

)
. Invoking Lemma 8.6 completes the proof of the

theorem. □

We now discuss how our memory-sample tradeoff established in Theorem 8.2 relates to those
of algorithms that solve Problem 8.3. Consider the statistical test that squares the sum of co-
ordinates within each block and computes the cumulative sum across samples (i.e, the sum∑𝑛
𝑗=1

∑
𝑅∈S (

∑
𝑖∈𝑅 𝑥

𝑗

𝑖
)2). If the sum exceeds the threshold 𝜏 = 𝑛𝑑 + 𝑛𝛼ℓ/2, then the test declares

𝐷planted; otherwise it declares 𝐷null. In the following claim, whose proof is a calculation given in
Appendix F, we show that the test is able to distinguish between 𝐷null and 𝐷planted with a constant
failure probability using 𝑂 (𝑑/ℓ) samples.

Claim 8.8. Fix a constant 𝛿 ∈ (0, 1) and suppose that 𝑛 ≥ log
(

2
𝛿

) [
4𝐶2

1 (1+𝛼 )
2

𝑐𝛼2 · 𝑑
ℓ

]
. Then,

max
 Pr
𝐷null


𝑛∑︁
𝑗=1

∑︁
𝑅∈S

(∑︁
𝑖∈𝑅

𝑥
𝑗

𝑖

)2

≥ 𝜏
 , Pr
𝐷planted


𝑛∑︁
𝑗=1

∑︁
𝑅∈S

(∑︁
𝑖∈𝑅

𝑥
𝑗

𝑖

)2

≤ 𝜏

 ≤ 𝛿

It is straightforward to verify that the statistical test can be computed with𝑂 (log𝑑) bits of pre-
cision (and the justification mirrors that given for the Gaussian mean distinguishing in Section 7).
Therefore, our bound given in Theorem 8.2 is nearly optimal for algorithms in the𝑂 (log𝑑) memory
regime that solve Problem 8.3.
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A Proofs from Section 3

We first restate and prove Lemma 3.1.

Lemma 3.1 (Claim 3.4 in [BGL+24]). Consider a stream𝑋 1, . . . , 𝑋𝑛 from a product distribution, and let M
be a 𝑝-pass streaming protocol that uses public randomness 𝑃 and private randomness 𝑅M = {𝑅M

𝑙,𝑖
}𝑙∈[𝑝 ],𝑖∈[𝑛] ,

where the private randomness at every step is mutually independent, as well as independent of the public
randomness. Then, for any 𝑖, 𝑗 ∈ [𝑛], 𝑖 < 𝑗 , and any 𝑙 ∈ [𝑝], it holds that:

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M<𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃) = 0, (5)

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃) = 0. (6)

Proof. We will prove this lemma by induction. For the base case, consider (5) for 𝑙 = 1. In this case,
the memory states conditioned on are simply the initial memory state M0. So, we have that

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M0, 𝑃) = 0,

precisely because the inputs, the public randomness, the private randomness at every time step,
and the initial memory state, are all independent of each other. Now, assume as the induction
hypothesis that (5) holds for some 𝑙 . We will first show that, if 𝑙 ≤ 𝑝, then (6) holds. For this,
observe that

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃)

≤ 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) ,M𝑙,𝑖−1 | M<𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃)

(chain rule and non-negativity of mutual information)
= 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋

[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M<𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃)
+ 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; M𝑙,𝑖−1 | M<𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑋

[1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) , 𝑃)

(chain rule)
= 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; M𝑙,𝑖−1 | M<𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑋

[1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) , 𝑃)

(induction hypothesis)
= 0. (M𝑙,𝑖−1 is determined by M<𝑙, 𝑗−1, 𝑋

[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) , 𝑋
[1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑃)

Next, we will show that if 𝑙 ≤ 𝑝 − 1, then (5) holds for 𝑙 + 1. Namely, observe that

𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M≤𝑙,𝑖−1,M≤𝑙, 𝑗−1, 𝑃)

≤ 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) ,M𝑙, 𝑗−1 | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃)

(chain rule and non-negativity of mutual information)
= 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; 𝑋 [1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋

[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑃)
+ 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; M𝑙, 𝑗−1 | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑋

[1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) , 𝑃)

(chain rule)
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= 𝐼 (𝑋 [𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) ; M𝑙, 𝑗−1 | M≤𝑙,𝑖−1,M<𝑙, 𝑗−1, 𝑋
[1,𝑖−1], 𝑅 ( [𝑝 ],[1,𝑖−1] ) , 𝑋

[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) , 𝑃)
(since we showed above that (6) holds for 𝑙)

= 0. (M𝑙, 𝑗−1 is determined by M≤𝑙,𝑖−1, 𝑋
[𝑖, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖, 𝑗−1] ) , 𝑃)

This completes the proof by induction. □

We now restate and prove Lemma 3.2.

Lemma 3.2 (Lemma 1.1, [BGL+24]). Let (𝑋 1, 𝑋 2, · · · , 𝑋𝑛) be drawn from a product distribution 𝜇. Then,
for any 𝑝-pass streaming algorithm M that uses public as well as private randomness, has memory size 𝑠 and
runs on input stream 𝑋 1, · · · , 𝑋𝑛, it holds that:

𝑀𝐼𝐶 (M, 𝜇) ≤ 2𝑝 · 𝑠 · 𝑛.

Proof. The proof mimics the proof of Lemma 1.1 in [BGL+24], albeit with the addition of public
randomness 𝑃 . We will prove that, for every pass ℓ ∈ [𝑝], it holds that

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
≤ 𝑠 · 𝑛 (24)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
≤ 𝑠 · 𝑛, (25)

which implies the lemma.
We start by establishing (24).

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
≤

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 , 𝑋 [1, 𝑗−1],M≤ℓ,≤ 𝑗−2 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
(chain rule and non-negativity of mutual information)

=

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 [1, 𝑗−1],M≤ℓ,≤ 𝑗−2 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
+

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ,≤ 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑋

[1, 𝑗−1], 𝑃
)

(chain rule)

=

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ,≤ 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑋

[1, 𝑗−1], 𝑃
)

(★)

≤
𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 ,M(≤ℓ, 𝑗 ) | M(≤ℓ,≤ 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑋

[1, 𝑗−1], 𝑃
)

(chain rule and non-negativity of mutual information)

=

𝑛∑︁
𝑖=1

I
(
M(ℓ,𝑖 ) ;𝑋 [1,𝑖 ],M(≤ℓ,≤𝑖 ) | M(≤ℓ−1,𝑖 ) , 𝑃

)
(chain rule)
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≤ 𝑠 · 𝑛, (Claim A.1)

which establishes (24). In the above, (★) follows due to the fact that every summand in the first
double-summation in the previous step is 0, namely,

I
(
M(ℓ,𝑖 ) ;𝑋 [1, 𝑗−1],M≤ℓ,≤ 𝑗−2 | M(≤ℓ, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
= 0. (26)

To see this, recall that (6) in Lemma 3.1 implies that

𝐼 (𝑋 [ 𝑗,𝑖 ], 𝑅 ( [𝑝 ],[ 𝑗,𝑖 ] ) ; 𝑋 [1, 𝑗−1], 𝑅 ( [𝑝 ],[1, 𝑗−1] ) , 𝑋
[𝑖+1,𝑛], 𝑅 ( [𝑝 ],[𝑖+1,𝑛] ) | M≤ℓ, 𝑗−1,M≤ℓ−1,𝑖 , 𝑃) = 0.

Now, observe that M(ℓ,𝑖 ) is a deterministic function of 𝑋 [ 𝑗,𝑖 ], 𝑅[𝑝 ],[ 𝑗,𝑖 ] , conditioned on M(≤ℓ, 𝑗−1) , 𝑃
Similarly, 𝑋 [1, 𝑗−1],M≤ℓ,≤ 𝑗−2 is a deterministic function of 𝑋 [1, 𝑗−1], 𝑅 ( [𝑝 ],[1, 𝑗−1] ) , 𝑋

[𝑖+1,𝑛], 𝑅 ( [𝑝 ],[𝑖+1,𝑛] ) ,
conditioned on M(≤ℓ−1,𝑖 ) , 𝑃 . This implies (26).

Similarly, for (25), we have that
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
≤

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 , 𝑋 [𝑖+1, 𝑗−1],M(≤ℓ−1,[𝑖+1, 𝑗−2] ) | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
(chain rule and non-negativity of mutual information)

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 [𝑖+1, 𝑗−1],M(≤ℓ−1,[𝑖+1, 𝑗−2] ) | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
+

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1,[𝑖+1, 𝑗−1] ) ,M(≤ℓ−1,𝑖 ) , 𝑋

[𝑖+1, 𝑗−1], 𝑃
)

(chain rule)

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 | M(≤ℓ−1,[𝑖+1, 𝑗−1] ) ,M(≤ℓ−1,𝑖 ) , 𝑋

[𝑖+1, 𝑗−1], 𝑃
)

(★)

≤
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

I
(
M(ℓ,𝑖 ) ;𝑋 𝑗 ,M(≤ℓ−1, 𝑗 ) | M(≤ℓ−1,[𝑖+1, 𝑗−1] ) ,M(≤ℓ−1,𝑖 ) , 𝑋

[𝑖+1, 𝑗−1], 𝑃
)

(chain rule and non-negativity of mutual information)

=

𝑛∑︁
𝑖=1

I
(
M(ℓ,𝑖 ) ;𝑋 [𝑖+1,𝑛],M(≤ℓ−1,[𝑖+1,𝑛] ) | M(≤ℓ−1,𝑖 ) , 𝑃

)
(chain rule)

≤ 𝑠 · 𝑛, (Claim A.1)

which establishes (25). Again, (★) above follows because every summand in the first double-
summation in the previous step is 0, namely,

I
(
M(ℓ,𝑖 ) ;𝑋 [𝑖+1, 𝑗−1],M(≤ℓ−1,[𝑖+1, 𝑗−2] ) | M(≤ℓ−1, 𝑗−1) ,M(≤ℓ−1,𝑖 ) , 𝑃

)
= 0. (27)

To see this, recall that (5) in Lemma 3.1 implies that

𝐼 (𝑋 [𝑖+1, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖+1, 𝑗−1] ) ; 𝑋 [1,𝑖 ], 𝑅 ( [𝑝 ],[1,𝑖 ] ) , 𝑋
[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) | M≤ℓ−1,𝑖 ,M≤ℓ−1, 𝑗−1, 𝑃) = 0,
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Now, observe that 𝑋 [𝑖+1, 𝑗−1],M(≤ℓ−1,[𝑖+1, 𝑗−2] ) is a deterministic function of 𝑋 [𝑖+1, 𝑗−1], 𝑅 ( [𝑝 ],[𝑖+1, 𝑗−1] ) ,
conditioned on M≤ℓ−1,𝑖 , 𝑃 . Similarly, M(ℓ,𝑖 ) is a deterministic function of
𝑋 [1,𝑖 ], 𝑅 ( [𝑝 ],[1,𝑖 ] ) , 𝑋

[ 𝑗,𝑛], 𝑅 ( [𝑝 ],[ 𝑗,𝑛] ) , conditioned on M(≤ℓ−1, 𝑗−1) , 𝑃 . This implies (27). □

Claim A.1. If 𝐴 is a discrete random variable with probability mass function 𝑝𝐴, and 𝐵 is an arbitrary
random variable, then 𝐼 (𝐴;𝐵) ≤ 𝐻 (𝐴), where 𝐻 (𝐴) = −𝔼𝐴 [log(𝑝 (𝐴))] is the entropy of 𝐴. In particular, if
𝐴 has finite support of size 𝑁 , then 𝐼 (𝐴;𝐵) ≤ log( |𝑁 |).

Proof. By definition,

𝐼 (𝐴;𝐵) = 𝔼𝐵 [𝐷𝐾𝐿 (𝑝𝐴 |𝐵 | | 𝑝𝐴)] = 𝔼𝐵

[∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎) log
(
𝑝𝐴 |𝐵 (𝑎)
𝑝𝐴 (𝑎)

)]
= 𝔼𝐵

[∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 |𝐵 (𝑎))
]
− 𝔼𝐵

[∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 (𝑎))
]

= 𝔼𝐵

[∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 |𝐵 (𝑎))
]
−

∑︁
𝑎

log(𝑝𝐴 (𝑎))𝔼𝐵
[
𝑝𝐴 |𝐵 (𝑎)

]
= 𝔼𝐵

[∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 |𝐵 (𝑎))
]
−

∑︁
𝑎

log(𝑝𝐴 (𝑎))𝑝𝐴 (𝑎)

= 𝔼𝐵

[∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 |𝐵 (𝑎))
]
+ 𝐻 (𝐴) .

It remains to argue that the first summand above is non-positive. Note that
∑
𝑎 𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 |𝐵 (𝑎))

is the expectation of the concave function log(𝑝𝐴 |𝐵 (·)) where the argument is drawn from the
conditional distribution 𝐴|𝐵. Applying Jensen’s inequality, we get that∑︁

𝑎

𝑝𝐴 |𝐵 (𝑎) log(𝑝𝐴 |𝐵 (𝑎)) ≤ log
(∑︁
𝑎

𝑝𝐴 |𝐵 (𝑎)2

)
≤ log(1) = 0.

This concludes the proof. □

B Proofs from Section 4

We restate and prove Claim 4.7

Claim 4.7. For every good 𝑅 (where 𝑞𝑅 as defined above is at least 0.9), 𝑀𝐼𝐶𝑅 ≥ Ω
(
𝑑
𝑐 ·𝑡

)
.

Proof of Claim 4.7. We begin by reiterating that M is a (𝑝 + 1)-pass algorithm that solves the distin-
guishing problem DP(𝜇0, {𝜇𝜃 }𝜃 ∈Ω, 𝑃,T , 𝑘, 𝑛) with large enough constant probability, say 1 − 𝛿 (and
recalling that, we added another pass that doesn’t do any operations to M).

We will convert the streaming algorithm into a communication protocol and use calculations
similar those used in the proof of Claim 5.4 in [BGL+24].
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Communication Protocol Π for 𝑘-party General Planted Problem using M. Given input
𝑧1, 𝑧2, . . . 𝑧𝑘 ∈ X𝑑 to the 𝑘-parties respectively, all the parties together prepare an input to the
multi-pass streaming algorithm M with 𝑧 embedded at rows in 𝑅. For all 𝑎 ∈ [𝑘 − 1], the 𝑎-th
player, using private randomness, samples {𝑥𝑖}𝑖𝑎<𝑖<𝑖𝑎+1 independently according to 𝐷0 (under 𝐷0,
each row is 𝑖 .𝑖 .𝑑 .) and sets 𝑥𝑖𝑎 = 𝑧𝑎. The last player sets 𝑥𝑖𝑘 = 𝑧𝑘 , and samples {𝑥𝑖}𝑖𝑘<𝑖≤𝑛 as well as
{𝑥𝑖}1≤𝑖<𝑖1 .

All players then simulate M one pass at a time, using their part of the input stream, public
randomness 𝑃 , and any additional private randomness that M requires. Knowing {𝑥𝑖}1≤𝑖<𝑖1 , the
𝑘-th player publishes memory state 𝑚 (1,𝑖1−1) , then knowing {𝑥𝑖}𝑖1≤𝑖<𝑖2 , 1st player adds 𝑚 (1,𝑖2−1)
to the blackboard and so on. Finally, the last player adds the output of M, given 𝑚 (𝑝,𝑖𝑘−1) and
knowing {𝑥𝑖}𝑖𝑘≤𝑖≤𝑛. As the (𝑝 + 1)th pass doesn’t do any operations, ∀𝑖,𝑚 (𝑝+1,𝑖 ) = 𝑚 (𝑝,𝑛) . Thus,
the transcript under Π is the public randomness 𝑃 , together with a sequence of memory states
𝑚 (1,𝑖1−1) ,𝑚 (1,𝑖2−1) , . . . ,𝑚 (1,𝑖𝑘−1) ,𝑚 (2,𝑖1−1) , . . . ,𝑚 (2,𝑖𝑘−1) , . . . ,𝑚 (𝑝,𝑖𝑘−1) ,𝑚 (𝑝+1,𝑖1−1) .

When 𝑍 1, 𝑍 2, . . . 𝑍𝑘 are distributed according to the No distribution for the 𝑘-party General
Planted Problem, then 𝑋 1, 𝑋 2, . . . , 𝑋𝑛 are distributed according to 𝐷0, and when 𝑍 1, 𝑍 2, . . . 𝑍𝑘

are distributed according to the Yes distribution for the 𝑘-party General Planted Problem, then
𝑋 1, 𝑋 2, . . . , 𝑋𝑛 are distributed according to𝐷T

1 with the fixed 𝑅. As 𝑅 is good, the success probability
of Π is at least 0.9. By Lemma 4.5,

I
(
𝚷;𝑍 1, . . . , 𝑍𝑘

)
≥ Ω

(
𝑑

𝑐 · 𝑡

)
.

When 𝑍 1, . . . , 𝑍𝑘 are distributed according to the No distribution for 𝑘-party General Planted
Problem, 𝑋 1, 𝑋 2, . . . , 𝑋𝑛 are distributed according to 𝐷0, and we can rewrite the information com-
plexity of Π as

I
(
𝑃,M(1,𝑖1−1) ,M(1,𝑖2−1) , . . . ,M(1,𝑖𝑘−1) ,M(2,𝑖1−1) , . . . ,M(2,𝑖𝑘−1) , . . . ,M(𝑝,𝑖𝑘−1) ,M(𝑝+1,𝑖1−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘

)
.

Using Chain Rule, we can now rewrite the above mutual information as

𝐼
(
𝑃 ;𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘

)︸                     ︷︷                     ︸
= 0

+
𝑝∑︁
ℓ=1

𝑘∑︁
𝑎=1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) ,M(ℓ,{𝑖1−1,...,𝑖𝑎−1−1}) , 𝑃

)
+

I
(
M(𝑝+1;𝑖1−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(≤𝑝,{𝑖1−1,...,𝑖𝑘−1}) , 𝑃

)
≤
𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) ,M(ℓ,{𝑖1−1,...,𝑖𝑎−1−1}) , 𝑃

)
. (28)

In the inner summation above, let us first consider any summand corresponding to a value of
𝑎 satisfying 1 < 𝑎 ≤ 𝑘 . For such a summand, define:

M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = (M<𝑙,𝑖𝑎−1,M≤𝑙,𝑖𝑎−1−1, 𝑃), (29)
M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = (M≤𝑙,𝑖1−1, . . . ,M≤𝑙,𝑖𝑎−2−1,M<𝑙,𝑖𝑎+1−1, . . . ,M<𝑙,𝑖𝑘−1) . (30)

Observe that

(M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = (M𝑙,{𝑖1−1,...,𝑖𝑎−1−1},M<𝑙,{𝑖1−1,...,𝑖𝑘−1}, 𝑃).
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Now, let 𝑋≠𝑖𝑎−1 = (𝑋 𝑖1, . . . , 𝑋 𝑖𝑎−2, 𝑋 𝑖𝑎 , . . . , 𝑋 𝑖𝑘 ). Notice then that we can write the summand in the
inner summation, using the chain rule, as

𝐼
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) ,M(ℓ,{𝑖1−1,...,𝑖𝑎−1−1}) , 𝑃

)
= 𝐼

(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑎−1 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)
+ 𝐼

(
M(ℓ,𝑖𝑎−1) ; 𝑋≠𝑖𝑎−1 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝑋

𝑖𝑎−1
)

(31)

We now focus on the second term in (31). From (6) in Lemma 3.1, where we consider 𝑖 = 𝑖𝑎−1, 𝑗 = 𝑖𝑎,
we know that,

𝐼 (𝑋 [𝑖𝑎−1,𝑖𝑎−1], 𝑅 ( [𝑝 ],[𝑖𝑎−1,𝑖𝑎−1] ) ; 𝑋 [1,𝑖𝑎−1−1], 𝑅 ( [𝑝 ],[1,𝑖𝑎−1−1] ) , 𝑋
[𝑖𝑎,𝑛], 𝑅 ( [𝑝 ],[𝑖𝑎,𝑛] ) | M≤𝑙,𝑖𝑎−1−1,M<𝑙,𝑖𝑎−1, 𝑃︸                     ︷︷                     ︸

M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

) = 0

=⇒ 𝐼 (𝑋 [𝑖𝑎−1,𝑖𝑎−1], 𝑅 ( [𝑝 ],[𝑖𝑎−1,𝑖𝑎−1] ) ; 𝑋 [1,𝑖𝑎−1−1], 𝑅 ( [𝑝 ],[1,𝑖𝑎−1−1] ) , 𝑋
[𝑖𝑎,𝑛], 𝑅 ( [𝑝 ],[𝑖𝑎,𝑛] ) | 𝑋 𝑖𝑎−1,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = 0.

(since 𝐼 (𝐴, 𝐵;𝐶 |𝐷) = 0 =⇒ 𝐼 (𝐴, 𝐵;𝐶 |𝐵, 𝐷) = 0)

Now observe that M(𝑙,𝑖𝑎−1) is a deterministic function of 𝑋 [𝑖𝑎−1,𝑖𝑎−1], 𝑅 ( [𝑝 ],[𝑖𝑎−1,𝑖𝑎−1] )—the first argu-
ment in the mutual information above—conditioned on 𝑋 𝑖𝑎−1,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . Similarly, observe that
(𝑋≠𝑖𝑎−1,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) are deterministic functions of 𝑋 [1,𝑖𝑎−1−1], 𝑅 ( [𝑝 ],[1,𝑖𝑎−1−1] ) , 𝑋

[𝑖𝑎,𝑛], 𝑅 ( [𝑝 ],[𝑖𝑎,𝑛] )—
the second argument in the mutual information above—conditioned on 𝑋 𝑖𝑎−1,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . Account-
ing this in, we get that

𝐼 (M(𝑙,𝑖𝑎−1) ; 𝑋≠𝑖𝑎−1,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | 𝑋 𝑖𝑎−1,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = 0 (32)
=⇒ 𝐼 (M(𝑙,𝑖𝑎−1) ; M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | 𝑋 𝑖𝑎−1,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = 0 (33)

as well as 𝐼
(
M(ℓ,𝑖𝑎−1) ; 𝑋≠𝑖𝑎−1 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝑋

𝑖𝑎−1
)
= 0. (34)

where the last two implications follow by chain rule. Substituting (34) in (31), we get that

𝐼
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) ,M(ℓ,{𝑖1−1,...,𝑖𝑎−1−1}) , 𝑃

)
= 𝐼

(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑎−1 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)
≤ 𝐼

(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑎−1 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)
= 𝐼

(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑎−1 | M<𝑙,𝑖𝑎−1,M≤𝑙,𝑖𝑎−1−1, 𝑃

)
. (35)

In the inequality above, we used (33), together with the fact that, if 𝐼 (𝐴;𝐵 |𝐶, 𝐷) = 0, then
𝐼 (𝐶;𝐵 |𝐷,𝐴) ≤ 𝐼 (𝐶;𝐵 |𝐷) (for us, 𝐴 = M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝐵 = M(𝑙,𝑖𝑎−1) ,𝐶 = 𝑋 𝑖𝑎−1, 𝐷 = M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠). In the
last equality, we simply recalled the definition (29) of M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 .

We now consider the summand in the inner summation in (28) corresponding to 𝑎 = 1. For this
summand, define

M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = (M<𝑙,𝑖1−1,M<𝑙,𝑖𝑘−1, 𝑃), (36)
M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = (M<𝑙,{𝑖2−1,...,𝑖𝑘−1−1}). (37)

We have that

(M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = (M<𝑙,{𝑖1−1,...,𝑖𝑘−1}, 𝑃) .

Now, let𝑋≠𝑖𝑘 = (𝑋 𝑖1, . . . , 𝑋 𝑖𝑘−1). Notice then that we can write the summand in the inner summation,
using the chain rule, as

𝐼
(
M(ℓ,𝑖1−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) , 𝑃

)
47



= 𝐼
(
M(ℓ,𝑖1−1) ; 𝑋 𝑖𝑘 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)
+ 𝐼

(
M(ℓ,𝑖1−1) ; 𝑋≠𝑖𝑘 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝑋

𝑖𝑘
)
(38)

We now focus on the second term in (38). From (5) in Lemma 3.1 where we consider 𝑖 = 𝑖1, 𝑗 = 𝑖𝑘 ,
we know that,

𝐼 (𝑋 [𝑖1,𝑖𝑘−1], 𝑅 ( [𝑝 ],[𝑖1,𝑖𝑘−1] ) ; 𝑋 [1,𝑖1−1], 𝑅 ( [𝑝 ],[1,𝑖1−1] ) , 𝑋
[𝑖𝑘 ,𝑛], 𝑅 ( [𝑝 ],[𝑖𝑘 ,𝑛] ) | M<𝑙,𝑖1−1,M<𝑙,𝑖𝑘−1, 𝑃︸                   ︷︷                   ︸

M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

) = 0

=⇒ 𝐼 (𝑋 [𝑖1,𝑖𝑘−1], 𝑅 ( [𝑝 ],[𝑖1,𝑖𝑘−1] ) ; 𝑋 [1,𝑖1−1], 𝑅 ( [𝑝 ],[1,𝑖1−1] ) , 𝑋
[𝑖𝑘 ,𝑛], 𝑅 ( [𝑝 ],[𝑖𝑘 ,𝑛] ) | 𝑋 𝑖𝑘 ,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = 0.

(since 𝐼 (𝐴, 𝐵;𝐶 |𝐷) = 0 =⇒ 𝐼 (𝐴, 𝐵;𝐶 |𝐵, 𝐷) = 0)

Now observe that M(𝑙,𝑖1−1) is a deterministic function of 𝑋 [1,𝑖1−1], 𝑅 ( [𝑝 ],[1,𝑖1−1] ) , 𝑋
[𝑖𝑘 ,𝑛], 𝑅 ( [𝑝 ],[𝑖𝑘 ,𝑛] )—

the second argument in the mutual information above—conditioned on 𝑋 𝑖𝑘 ,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . Similarly,
observe that (𝑋≠𝑖𝑘 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) are deterministic functions of 𝑋 [𝑖1,𝑖𝑘−1], 𝑅 ( [𝑝 ],[𝑖1,𝑖𝑘−1] )—the first
argument in the mutual information above—conditioned on 𝑋 𝑖𝑘 ,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . Accounting for this,
we get that

𝐼 (M(𝑙,𝑖1−1) ; 𝑋≠𝑖𝑘 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | 𝑋 𝑖𝑘 ,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = 0 (39)
=⇒ 𝐼 (M(𝑙,𝑖1−1) ; M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | 𝑋 𝑖𝑘 ,M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = 0 (40)

as well as 𝐼
(
M(ℓ,𝑖1−1) ; 𝑋≠𝑖𝑘 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝑋

𝑖𝑘
)
= 0. (41)

where the last two implications follow by chain rule. Substituting (41) in (38), we get that

𝐼
(
M(ℓ,𝑖1−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) , 𝑃

)
= 𝐼

(
M(ℓ,𝑖1−1) ; 𝑋 𝑖𝑘 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ,M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)
≤ 𝐼

(
M(ℓ,𝑖1−1) ; 𝑋 𝑖𝑘 | M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

)
= 𝐼

(
M(ℓ,𝑖1−1) ; 𝑋 𝑖𝑘 | M<𝑙,𝑖1−1,M<𝑙,𝑖𝑘−1, 𝑃

)
. (42)

In the inequality above, we used (40), together with the fact that, if 𝐼 (𝐴;𝐵 |𝐶, 𝐷) = 0, then
𝐼 (𝐶;𝐵 |𝐷,𝐴) ≤ 𝐼 (𝐶;𝐵 |𝐷) (for us, 𝐴 = M𝑛𝑜𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , 𝐵 = M(𝑙,𝑖1−1) ,𝐶 = 𝑋 𝑖𝑘 , 𝐷 = M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠). In the
last equality, we simply recalled the definition (36) of M𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 .

To conclude, observe that (35) and (42) together imply that (28) is upper bounded as

𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

I
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖1, 𝑋 𝑖2 . . . , 𝑋 𝑖𝑘 | M(<ℓ,{𝑖1−1,...,𝑖𝑘−1}) ,M(ℓ,{𝑖1−1,...,𝑖𝑎−1−1}) , 𝑃

)
≤
𝑝+1∑︁
ℓ=1

𝐼
(
M(ℓ,𝑖1−1) ; 𝑋 𝑖𝑘 | M<𝑙,𝑖1−1,M<𝑙,𝑖𝑘−1, 𝑃

)
+
𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=2

𝐼
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑎−1 | M<𝑙,𝑖𝑎−1,M≤𝑙,𝑖𝑎−1−1, 𝑃

)
≤
𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

𝑘∑︁
𝑏=𝑎+1

𝐼
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑏 | M<𝑙,𝑖𝑎−1,M<𝑙,𝑖𝑏−1, 𝑃

)
+
𝑝+1∑︁
ℓ=1

𝑘∑︁
𝑎=1

𝑎−1∑︁
𝑏=1

𝐼
(
M(ℓ,𝑖𝑎−1) ; 𝑋 𝑖𝑏 | M<𝑙,𝑖𝑎−1,M≤𝑙,𝑖𝑏−1, 𝑃

)
(non-negativity of mutual information)

= 𝑀𝐼𝐶𝑅 .

This completes the proof.
□

We restate and prove Claim 4.10.
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Claim 4.10 (Cut-paste property of the protocol). For any 𝜃 and transcript 𝜋 , and any b1,b2,b3,b4 with
{𝑏1
𝑖 , 𝑏

2
𝑖 } = {𝑏3

𝑖
, 𝑏4
𝑖 } (in a multi-set sense) for every 𝑖 ∈ [𝑚],

Pr
[
𝚷
𝜃

b1 = 𝜋

]
· Pr

[
𝚷
𝜃

b2 = 𝜋
]
= Pr

[
𝚷
𝜃

b3 = 𝜋
]
· Pr

[
𝚷
𝜃

b4 = 𝜋

]
,

and therefore,
ℎ2

(
𝚷
𝜃

b1 ∥ 𝚷𝜃

b2

)
= ℎ2

(
𝚷
𝜃

b3 ∥ 𝚷𝜃

b4

)
.

Proof of Claim 4.10. As in [BGM+16] we use certain basic properties of transcripts established in
[BYJKS04]. We first note that fixing input 𝑥1, 𝑥2, . . . , 𝑥𝑚, the probability of any transcript can be
factored as,

Pr[Π(𝑥) = 𝜋] = 𝑝1,𝜋 (𝑥1) · · · 𝑝𝑚,𝜋 (𝑥𝑚), (43)

where 𝑝𝑖,𝜋 (𝑥𝑖) is some function which depends only on 𝜋 and 𝑥𝑖 . Recall that 𝚷𝜃
b is the distribution

of Π(𝑥1, . . . , 𝑥𝑚) when (𝑥1, . . . , 𝑥𝑚) ∼ 𝜇𝜃b, which is a product distribution. Therefore, if 𝑋̃ ∼ 𝜇𝜃b and
since 𝜇𝜃b is a product measure (for fixed 𝜃 ), we can marginalize over 𝑋̃ and obtain the marginal
distribution over the transcripts Π for all b;

Pr[Π(𝑋̃ ) = 𝜋] = 𝑞1,𝜋,𝜃 (b1) · · ·𝑞𝑚,𝜋,𝜃 (b𝑚), (44)

where 𝑞𝑖,𝜋,𝜃 (b𝑖) =
∫
𝑥𝑖
𝑝𝑖,𝜋 (𝑥𝑖)𝑑𝜇𝜃b𝑖

is the marginal distribution of 𝑝𝑖,𝜋 (𝑥𝑖) over 𝑥𝑖 ∼ 𝜇𝜃b𝑖
. Therefore, for

all b;
Pr

[
𝚷
𝜃
b = 𝜋

]
= 𝑞1,𝜋,𝜃 (b1) · · ·𝑞𝑚,𝜋,𝜃 (b𝑚),

and the claim follows because of this decomposition. Since the squared Hellinger distance
ℎ2

(
𝚷
𝜃

b1 ∥ 𝚷𝜃

b2

)
only depends on the two distributions through the product of the probabilities,

that is, Pr
[
𝚷
𝜃

b1 = 𝜋

]
· Pr

[
𝚷
𝜃

b2 = 𝜋
]

for all transcripts 𝜋 , the result follows. □

We now restate and prove Lemma 4.12

Lemma 4.12. Consider a family of distributions {𝜇𝜃 } : X → [0, 1] parameterized by a random variable
𝜽 , which takes values in some domain Ω and has distribution 𝑃 . Consider the distributed detection setting
where if𝑉 = 0 then each party receives 𝑋𝑖 ∼ 𝜇0 (for some distribution 𝜇0 : X → [0, 1]), and if𝑉 = 1 then we
first draw 𝜃 ∼ 𝑃 , and then each party receives 𝑋𝑖 ∼ 𝜇𝜃 . Suppose there is an𝑚-party communication protocol
Π that detects whether 𝑉 = 0 or 𝑉 = 1 with probability at least 0.9. Then

𝔼𝜃∼𝑃
[
ℎ2(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≥ Ω(1) .

Proof of Lemma 4.12. Fix 𝜃 . If the protocol succeeds with probability 𝛼 conditioned on 𝜽 = 𝜃 , then
we have,

(1/2) Pr
∀𝑖,𝑥𝑖∼𝜇0

[Π(𝑥1, 𝑥2, . . . , 𝑥𝑚) = "No"] + (1/2) Pr
∀𝑖,𝑥𝑖∼𝜇𝜃

[Π(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) = "Yes"] = 𝛼,

=⇒ Pr
∀𝑖,𝑥𝑖∼𝜇0

[Π(𝑥1, 𝑥2, . . . , 𝑥𝑚) = "No"] − Pr
∀𝑖,𝑥𝑖∼𝜇𝜃

[Π(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) = "No"] ≥ 2𝛼 − 1,

=⇒ ∥𝚷 |𝑉=0 − 𝚷 |𝑉=1,𝜽=𝜃 ∥𝑇𝑉 ≥ 2𝛼 − 1.
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Since the protocol has overall success probability at least 0.9 on average over the randomness in
the choice of 𝜃 , we have

𝔼𝜃∼𝑃 ∥𝚷 |𝑉=0 − 𝚷 |𝑉=1,𝜽=𝜃 ∥𝑇𝑉 ≥ 2(0.9) − 1 = 0.8. (45)

We will next use the following folklore result to relate the TV distance to the Hellinger distance.

Fact B.1. For any two distributions 𝑃 and 𝑄 we have,

ℎ2(𝑃,𝑄) ≤ ∥𝑃 −𝑄 ∥𝑇𝑉 ≤
√

2ℎ(𝑃,𝑄) .

Using Fact B.1,

𝔼𝜃∼𝑃
[
ℎ(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≥ 1

√
2
𝔼𝜃∼𝑃 ∥𝚷 |𝑉=0 − 𝚷 |𝑉=1,𝜽=𝜃 ∥𝑇𝑉 . (46)

By Jensen’s inequality,

𝔼𝜃∼𝑃
[
ℎ2(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≥

(
𝔼𝜃∼𝑃

[
ℎ(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

] )2
.

Using (46),

𝔼𝜃∼𝑃
[
ℎ2(𝚷 |𝑉=0 ∥ 𝚷 |𝑉=1,𝜽=𝜃 )

]
≥ (1/2)

(
𝔼𝜃∼𝑃 ∥𝚷 |𝑉=0 − 𝚷 |𝑉=1,𝜽=𝜃 ∥𝑇𝑉

)2
.

Combining this with (45) completes the proof. □

C Proofs from Section 5

We first restate and prove Claim 5.4

Claim 5.4. Let 𝑡 ≥ 𝐶𝑘2 log(𝑛𝑚)
𝑞

for some large enough constant𝐶. Suppose 𝑆 is drawn uniformly at random
from all subsets of [𝑡] of size 𝑘 . Let 𝜇0 and 𝜇1 be the probability mass functions of 𝑃0

trunc and 𝔼𝑆 [𝑃1,𝑆
trunc]

respectively. Then,

𝜇1 ≤ 𝑂 (1) · 𝜇0.

Proof of Claim 5.4. Note that a draw 𝑋 from the distribution 𝔼𝑆 [𝑃1,𝑆
trunc] corresponds to first drawing

a 𝑘-sized 𝑆 ⊆ [𝑡] uniformly at random, and then drawing 𝑋 ∼ 𝑃
1,𝑆
trunc. Fix any 𝑥 : we will upper

bound the mass that 𝜇1 assigns to 𝑥 in terms of the mass that 𝜇0 assigns to 𝑥 . This will establish the
claim.

Note first that 𝜇0(𝑥) = 1/|𝑇 |, where 𝑇 was defined in (18). Now let 𝐼𝑥 = {𝑖 ∈ [𝑡] : 𝑥𝑖 = 1}, and
observe that

𝜇1(𝑥) =
∑︁

𝑆⊆𝐼𝑥 , |𝑆 |=𝑘
𝜇1(𝑆) · 𝜇1(𝑥 |𝑆) .
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But conditioned on 𝑆 , the distribution 𝜇1(·|𝑆) is uniform on the set 𝑇𝑆 defined in (19). Noting that
every 𝑇𝑆 has the same size, this immediately gives us that

𝜇1(𝑥) =
1
|𝑇𝑆 |

∑︁
𝑆⊆𝐼𝑥 , |𝑆 |=𝑘

𝜇1(𝑆) =
( |𝐼𝑥 |
𝑘

)
|𝑇𝑆 |

(
𝑡
𝑘

) .
Thus, we obtain

𝜇1(𝑥)
𝜇0(𝑥)

=

( |𝐼𝑥 |
𝑘

)
|𝑇 |(

𝑡
𝑘

)
|𝑇𝑆 |

=

( |𝐼𝑥 |
𝑘

) ∑𝑡𝑞+𝐶
√
𝑡𝑞 log(𝑛𝑚)

𝑦=𝑡𝑞−𝐶
√
𝑡𝑞 log(𝑛𝑚)

(
𝑡
𝑦

)
(
𝑡
𝑘

) ∑𝑡𝑞+𝐶
√
𝑡𝑞 log(𝑛𝑚)

𝑦=𝑡𝑞−𝐶
√
𝑡𝑞 log(𝑛𝑚)

(
𝑡−𝑘
𝑦−𝑘

) ≤
( |𝐼𝑥 |
𝑘

)(
𝑡
𝑘

) max
𝑦

(
𝑡
𝑦

)(
𝑡−𝑘
𝑦−𝑘

) ≤
(𝑡𝑞+𝐶√𝑡𝑞 log(𝑛𝑚)

𝑘

)(
𝑡
𝑘

) max
𝑦

(
𝑡
𝑦

)(
𝑡−𝑘
𝑦−𝑘

)
=

(𝑡𝑞 +𝐶
√︁
𝑡𝑞 log(𝑛𝑚))!(𝑡 − 𝑘)!

𝑡 !(𝑡𝑞 +𝐶
√︁
𝑡𝑞 log(𝑛𝑚) − 𝑘)!

max
𝑦

(
𝑡
𝑦

)(
𝑡−𝑘
𝑦−𝑘

) ,
where we used that

∑𝑛
𝑖=1 𝑎𝑖∑𝑛
𝑖=1 𝑏𝑖

≤ max𝑖 𝑎𝑖𝑏𝑖 for positive 𝑎𝑖 , 𝑏𝑖 . Observe that

(𝑡𝑞 +𝐶
√︁
𝑡𝑞 log(𝑛𝑚))!(𝑡 − 𝑘)!

𝑡 !(𝑡𝑞 +𝐶
√︁
𝑡𝑞 log(𝑛𝑚) − 𝑘)!

=
(𝑡𝑞 +𝐶

√︁
𝑡𝑞 log(𝑛𝑚)) (𝑡𝑞 +𝐶

√︁
𝑡𝑞 log(𝑛𝑚) − 1) . . . (𝑡𝑞 +𝐶

√︁
𝑡𝑞 log(𝑛𝑚) − (𝑘 − 1))

𝑡 (𝑡 − 1) . . . (𝑡 − (𝑘 − 1))

=

(
𝑡𝑞 +𝐶

√︁
𝑡𝑞 log(𝑛𝑚)
𝑡

)
. . .

(
(𝑡 − (𝑘 − 1))𝑞 +𝐶

√︁
𝑡𝑞 log(𝑛𝑚) − (1 − 𝑞) (𝑘 − 1)
𝑡 − (𝑘 − 1)

)
= 𝑞𝑘

(
1 +

𝐶
√︁
𝑡𝑞 log(𝑛𝑚)
𝑡𝑞

)
. . .

(
1 +

𝐶
√︁
𝑡𝑞 log(𝑛𝑚) − (1 − 𝑞) (𝑘 − 1)

(𝑡 − (𝑘 − 1))𝑞

)
≤ 𝑞𝑘

(
1 +

𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

(𝑡 − (𝑘 − 1))𝑞

)𝑘
= 𝑞𝑘

1 +𝑂 ©­«𝑘
√︄

log(𝑛𝑚)
𝑡𝑞

ª®¬
 ,

where in the last step, we used that 𝑡 ≥ 𝐶𝑘2 log(𝑛𝑚)
𝑞

.
Furthermore, for any 𝑦, observe also that(

𝑡
𝑦

)(
𝑡−𝑘
𝑦−𝑘

) =
𝑡 !(𝑦 − 𝑘)!
𝑦!(𝑡 − 𝑘)! =

𝑡 (𝑡 − 1) . . . (𝑡 − (𝑘 − 1))
𝑦 (𝑦 − 1) . . . (𝑦 − (𝑘 − 1)) =

(
1 + 𝑡 − 𝑦

𝑦

)
. . .

(
1 + 𝑡 − 𝑦

𝑦 − (𝑘 − 1)

)
≤

(
1 + 𝑡 − 𝑦

𝑦 − (𝑘 − 1)

)𝑘
≤

(
1 +

𝑡 − 𝑡𝑞 +𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

𝑡𝑞 −𝐶
√︁
𝑡𝑞 log(𝑛𝑚) − 𝑘 + 1

)𝑘
≤

(
1 +

𝑡 − 𝑡𝑞 +𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

𝑡𝑞 − 2𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

)𝑘 (
since 𝑘 ≤

√︄
𝑡𝑞

𝐶 log(𝑛𝑚) < 𝐶

√︃
𝑡𝑞 log(𝑛𝑚)

)
=

(
1
𝑞
+

2𝐶
√︁
𝑡𝑞 log(𝑛𝑚) −𝐶𝑞

√︁
𝑡𝑞 log(𝑛𝑚)

𝑞(𝑡𝑞 − 2𝐶
√︁
𝑡𝑞 log(𝑛𝑚))

)𝑘
=

1
𝑞𝑘

(
1 +

𝐶 (2 − 𝑞)
√︁
𝑡𝑞 log(𝑛𝑚)

𝑡𝑞 − 2𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

)𝑘
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≤ 1
𝑞𝑘

(
1 +

2𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

𝑡𝑞 − 2𝐶
√︁
𝑡𝑞 log(𝑛𝑚)

)𝑘
≤ 1
𝑞𝑘

1 +𝑂 ©­«𝑘
√︄

log(𝑛𝑚)
𝑡𝑞

ª®¬
 ,

where in the last step, we again used the assumption that 𝑡 ≥ 𝐶𝑘2 log(𝑛𝑚)
𝑞

. Thus, we get that

𝜇1(𝑥)
𝜇0(𝑥)

≤ 𝑞𝑘
1 +𝑂 ©­«𝑘

√︄
log(𝑛𝑚)
𝑡𝑞

ª®¬
 ·

1
𝑞𝑘

1 +𝑂 ©­«𝑘
√︄

log(𝑛𝑚)
𝑡𝑞

ª®¬
 ≤ 1 +𝑂 ©­«𝑘

√︄
log(𝑛𝑚)
𝑡𝑞

ª®¬ = 𝑂 (1).

□

We now restate and prove Theorem 5.2

Theorem 5.2 (Memory Lower Bound for Planted Bi-clique). Let 0 < 𝑞 ≤ 1/2 and 0 < 𝑘 <

𝑂

(√︃
𝑞 ·𝑛

log(𝑛𝑚)

)
. Any 𝑝-pass streaming algorithm (using public as well as private randomness), that dis-

tinguishes between 𝐷uniform and 𝐷planted (as in Problem 5.1) when 𝑥1, 𝑥2, . . . , 𝑥𝑚 arrive in a stream requires
at least Ω

(
𝑛𝑚𝑞

𝑝𝑘4 log(𝑛𝑚)

)
bits of memory.

Proof. Suppose there was a 𝑝-pass streaming algorithm A that solves Problem 5.1 using only
𝑜

(
𝑚𝑛𝑞

𝑝𝑘4 log𝑛

)
bits of memory. Our approach will be to use the existence of A to construct a 𝑝-pass

streaming algorithm A’ for Problem 5.5 that circumvents the lower bound of Lemma 5.6, yielding
a contradiction.

For this, let 𝑡 =
⌈
𝐶𝑘2 log(𝑛𝑚)

𝑞

⌉
for a suitably large constant 𝐶. Let 𝑛′ = 𝑡 ·

⌊
𝑛
𝑡

⌋
. The algorithm A′

operates as follows: First, using public randomness, it draws 𝐼 ⊆ [𝑛] of size 𝑛 − 𝑛′ uniformly at
random, and then draws 𝑏1, . . . , 𝑏𝑚 ∈ {0, 1}𝑛−𝑛′ , where every bit in every 𝑏𝑖 is independently drawn
as Ber(𝑞). Then, using public randomness again, it draws a uniformly random permutation 𝜋 of
[𝑛′]. Upon receiving a stream 𝑧1, . . . , 𝑧𝑚 of 𝑛′-bit vectors from an instance of Problem 5.5, algorithm
A′ translates this stream into a stream of 𝑛-bit vectors 𝑦1, . . . , 𝑦𝑚. Namely, 𝑦𝑖 is constructed from 𝑧𝑖

as follows: First, 𝑦𝑖
𝐼

is assigned to be 𝑏𝑖 . Then, 𝑧𝑖 is permuted according to 𝜋 , yielding 𝑧𝑖𝜋 . Finally,
𝑦𝑖[𝑛]\𝐼 is assigned to be 𝑧𝑖𝜋 . Observe that A′ can construct this stream𝑦1, . . . , 𝑦𝑚 using only a constant
memory overhead (since the public randomness does not contribute to the memory requirement).
The algorithm A′ then feeds this stream 𝑦1, . . . , 𝑦𝑚 to A, and returns the output of A. The total
memory requirement of A′ and A is thus the same, upto an additive constant.

We will now argue that A′ correctly solves Problem 5.5.

Case 1: First, consider the case that 𝑧1, . . . , 𝑧𝑚 were draws from 𝐷0 in Problem 5.5. We observe
that on account of permuting uniformly at random according to 𝜋 , the distribution of 𝑦1, . . . , 𝑦𝑚

that A′ constructs is equivalent to the following random process:

(1) Draw a subset 𝐼 ⊆ [𝑛] of size 𝑛 − 𝑛′ uniformly at random.

(2) Draw 𝑏1, . . . , 𝑏𝑚 ∈ {0, 1}𝑛−𝑛′ , where every bit in every 𝑏𝑖 is independently drawn as Ber(𝑞).

(3) Set 𝑦𝑖
𝐼
= 𝑏𝑖 for every 𝑖 ∈ [𝑚].
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(4) Draw a uniformly random partition T = {𝑇𝑟 ′}𝑟 ′∈[𝑛′/𝑡 ] of [𝑛] \ 𝐼 , where ∀𝑟 ′, |𝑇𝑟 ′ | = 𝑡 .

(5) For every 𝑖 ∈ [𝑚], 𝑟 ′ ∈ [𝑛′/𝑡], draw 𝑦𝑖
𝑇𝑟 ′

∼ 𝑃0
trunc.

But on the other hand, notice also that a draw 𝑥1, . . . , 𝑥𝑚 from 𝐷uniform in Problem 5.1 is
equivalent to the same random process as above, but with (5) replaced as (5’) ahead:

(5’) For every 𝑖 ∈ [𝑚], 𝑟 ′ ∈ [𝑛′/𝑡], draw 𝑥𝑖
𝑇𝑟 ′

∈ {0, 1}𝑡 , where every bit in 𝑥𝑖
𝑇𝑟 ′

is drawn as Ber(𝑞).

We observe that the distributions of 𝑦1, . . . , 𝑦𝑚 and 𝑥1, . . . , 𝑥𝑚 can be decomposed respectively
as as 𝐷𝑦 =

∑
𝐼 ,𝑏,T 𝐷

𝐼 ,𝑏,T · 𝐷𝐼 ,𝑏,T𝑦 and 𝐷𝑥 =
∑
𝐼 ,𝑏,T 𝐷

𝐼 ,𝑏,T · 𝐷𝐼 ,𝑏,T𝑥 , where the marginal distribution over
𝐼 , bit-strings 𝑏 = {𝑏1, . . . , 𝑏𝑚} and partition T , corresponding to Steps (1)-(4) above, is the same in
both cases, and 𝐷

𝐼 ,𝑏,T
𝑦 and 𝐷

𝐼 ,𝑏,T
𝑥 are the conditional distributions according to Step (5) and (5’)

respectively. The difference between 𝐷
𝐼 ,𝑏,T
𝑦 and 𝐷

𝐼 ,𝑏,T
𝑥 is that in 𝐷

𝐼 ,𝑏,T
𝑦 , every 𝑦𝑖

𝑇𝑟 ′
is drawn from

𝑃0
trunc; on the other hand, in 𝐷

𝐼 ,𝑏,T
𝑥 , every 𝑥𝑖

𝑇𝑟 ′
is drawn such that every bit in it is an independent

Ber(𝑞). Let 𝐴, 𝐵 be random variables such that 𝐴 has the distribution of 𝑦𝑖
𝑇𝑟 ′

in the former case,
whereas 𝐵 has the distribution of 𝑥𝑖

𝑇𝑟 ′
in the latter case. Observe that the distribution of 𝐴 is

identical to the distribution of 𝐵, conditioned on the event that the number of ones in 𝐵 is in the
range 𝑡𝑞±𝐶

√︁
𝑡𝑞 log(𝑛𝑚). We therefore have that the TV distance between the distributions of𝐴 and

𝐵 is at most the probability that a 𝐵𝑖𝑛(𝑡, 𝑞) random variable is not in the range 𝑡𝑞 ±𝐶
√︁
𝑡𝑞 log(𝑛𝑚),

which, by a Chernoff bound, is at most 1/(𝑛𝑚)10 (for suitably large 𝐶). Therefore, the TV distance
between 𝐷

𝐼 ,𝑏,T
𝑦 and 𝐷

𝐼 ,𝑏,T
𝑥 , which is the TV distance between the product distribution of 𝑚 · 𝑛′/𝑡

such random variables, is at most 1/(𝑛𝑚)9.
Summarily, we have shown that the distribution of 𝑦1, . . . , 𝑦𝑚, in the case that 𝑧1, . . . , 𝑧𝑚 were

drawn from𝐷0 in Problem 5.5 is 𝑜 (1) close in TV distance to the distribution𝐷uniform in Problem 5.1.

Case 2: Now, consider the case that𝑧1, . . . , 𝑧𝑚 were draws from𝐷T
1 in Problem 5.5. The distribution

of 𝑦1, . . . , 𝑦𝑚 that A′ constructs can then be described by the random process comprising of Steps
(1)-(4) above in Case 1, followed by the steps ahead:

(5) Draw 𝑟 uniformly at random from [𝑛′/𝑡].

(6) Draw 𝑆 ⊆ 𝑇𝑟 uniformly at random of size 𝑘 , and 𝑅 ⊆ [𝑚] uniformly at random of size 𝑘 .

(7) For every 𝑖 ∉ 𝑅 and 𝑟 ′ ∈ [𝑛′/𝑡], draw 𝑦𝑖
𝑇𝑟 ′

∼ 𝑃0
trunc.

(8) For every 𝑖 ∈ 𝑅, draw 𝑦𝑖
𝑇𝑟

∼ 𝑃1,𝑆
trunc. Whereas for every 𝑟 ′ ≠ 𝑟 , draw 𝑦𝑖

𝑇𝑟 ′
∼ 𝑃0

trunc.

But on the other hand, notice also that a draw𝑥1, . . . , 𝑥𝑚 from𝐷planted in Problem 5.1 is equivalent
to the same random process as above, but with Steps (7) and (8) replaced as (7’) and (8’) ahead:

(7’) For every 𝑖 ∉ 𝑅, 𝑟 ′ ∈ [𝑛′/𝑡], draw 𝑥𝑖
𝑇𝑟 ′

∈ {0, 1}𝑡 , where every bit in 𝑥𝑖
𝑇𝑟 ′

is drawn as Ber(𝑞).

(8’) For every 𝑖 ∈ 𝑅, for every 𝑗 ∈ 𝑇𝑟 , set 𝑥𝑖𝑗 = 1 if 𝑗 ∈ 𝑆 , else set it to Ber(𝑞). Whereas for every
𝑟 ′ ≠ 𝑟 , draw 𝑥𝑖

𝑇𝑟 ′
∈ {0, 1}𝑡 , where every bit in 𝑥𝑖

𝑇𝑟 ′
is drawn as Ber(𝑞).
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Again, we observe that the distributions of 𝑦1, . . . , 𝑦𝑚 and 𝑥1, . . . , 𝑥𝑚 can be decomposed respec-
tively as

𝐷𝑦 =
∑︁

𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅
𝐷𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅 · 𝐷𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅𝑦 , 𝐷𝑥 =

∑︁
𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅

𝐷𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅 · 𝐷𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅𝑥 ,

where the marginal distribution over 𝐼 , bit-strings 𝑏 = {𝑏1, . . . , 𝑏𝑚}, partition T , planted partition 𝑟 ,
planted columns𝑆 and planted rows𝑅 corresponding to Steps (1)-(6) above, is the same in both cases,
and 𝐷

𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅
𝑦 and 𝐷

𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅
𝑥 are the conditional distributions corresponding to Steps (7), (8) and

(7’), (8’) respectively. Furthermore, both these conditional distributions are product distributions
on𝑚 ·𝑛′/𝑡 := 𝑀 random variables—denote these as𝐴1, . . . , 𝐴𝑀 and 𝐵1, . . . , 𝐵𝑀 respectively. Observe
that all but 𝑘 of the random variables 𝐴𝑖 are distributed identically as the random variable 𝐴 in
Case 1 above, and the corresponding random variables 𝐵𝑖 are distributed identically as the random
variable 𝐵—the TV distance between the distribution of each such 𝐴𝑖 and 𝐵𝑖 is hence at most
1/(𝑛𝑚)10 as reasoned there. The distribution of each of the remaining 𝑘 random variables 𝐴𝑖 is
identical to the distribution of the corresponding 𝐵𝑖 , if we further condition on the number of ones
in 𝐵𝑖 to be in the range 𝑡𝑞±𝐶

√︁
𝑡𝑞 log(𝑛𝑚). The probability that the number of ones in 𝐵𝑖 is not in this

range is the probability that a 𝐵𝑖𝑛(𝑡 −𝑘, 𝑞) random variable is not in the range 𝑡𝑞−𝑘 ±𝐶
√︁
𝑡𝑞 log(𝑛𝑚),

which, by a Chernoff bound, is again at most 1/(𝑛𝑚)10. Thus, the TV distance between 𝐷𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅𝑦

and 𝐷𝐼 ,𝑏,T,𝑟 ,𝑆,𝑅𝑥 is again at most 𝑀 · (1/(𝑛𝑚)10) ≤ 1/(𝑛𝑚)9.
Summarily, we have shown that the distribution of 𝑦1, . . . , 𝑦𝑚, in the case that 𝑧1, . . . , 𝑧𝑚 were

drawn from𝐷T
1 in Problem 5.5, is𝑜 (1) close in TV distance to the distribution𝐷planted in Problem 5.1.

To conclude, the analysis in Cases 1 and 2 above shows that if A distinguishes between 𝐷uniform

and𝐷planted with advantage 0.9 using only𝑜
(

𝑛𝑚𝑞

𝑝𝑘4 log(𝑛𝑚)

)
= 𝑜

(
𝑚𝑛′

𝑝𝑘2𝑡

)
bits of memory, A′ distinguishes

between 𝐷0 and 𝐷T
1 with advantage 0.89 using (asymptotically) the same amount of memory. This

contradicts Lemma 5.6. □

D Proofs from Section 6

We restate and prove Theorem 6.3 below.

Theorem 6.3. [Memory Lower Bound for Pattern Planted Bi-Clique] Let 0 < 𝑘 ≤ 𝑛. Any 𝑝-pass streaming
algorithm that solves Problem 6.2, when 𝑥1, 𝑥2, . . . , 𝑥𝑛 arrive in a stream, requires at least Ω

(
𝑛2

𝑝𝑘3

)
bits of

memory.

Proof of Theorem 6.3. First, we consider the following distinguishing problem:

Problem D.1. Let 0 < 𝑘, 𝑛′ ≤ 𝑛. Let 𝑡 divide 𝑛′, T = {𝑇𝑟 }𝑟 ∈[𝑛′/𝑡 ] be a partition of [𝑛′], where ∀𝑟, |𝑇𝑟 | = 𝑡 .
The goal is to distinguish between the following joint distributions on 𝑛′-dimensional vectors 𝑧1, . . . , 𝑧𝑛:

1. 𝐷0: ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ∈ [𝑛′/𝑡], 𝑧𝑖
𝑇𝑟 ′

is drawn uniformly at random from {0, 1}𝑡 .

2. 𝐷T
1 : Pick 𝑟 uniformly from [𝑛′/𝑡]. ∀𝑖 ∈ [𝑛] and ∀𝑟 ′ ≠ 𝑟 , 𝑧𝑖

𝑇𝑟 ′
is drawn uniformly at random from

{0, 1}𝑡 .
𝑅 is drawn uniformly at random from all subsets of [𝑛] of size 𝑘 . Draw 𝑣 uniformly at random from
{0, 1}𝑡 .
∀𝑖 ∉ 𝑅, 𝑧𝑖

𝑇𝑟
is drawn uniformly at random from {0, 1}𝑡 . Whereas, ∀𝑖 ∈ 𝑅, 𝑧𝑖

𝑇𝑟
is set to 𝑣 .
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We first note that Problem D.1 is a specific instantiation of Problem 4.1, with 𝑛 = 𝑛 and 𝑑 = 𝑛′.
Furthermore, for the purposes of instantiating Theorem 4.2, if we denote by 𝜇𝑣 a point mass on a
vector 𝑣 ∈ {0, 1}𝑡 , we have that 𝜇1 = 𝔼𝑣𝜇𝑣 = 𝜇0. Thus, Theorem 4.2 guarantees that any algorithm,
which is allowed to use public randomness, that distinguishes between 𝐷0 and 𝐷T

1 above requires
at least Ω

(
𝑛𝑛′

𝑝𝑘2𝑡

)
bits of memory.

Now, suppose there was a 𝑝-pass streaming algorithm A that solves Problem 6.2 using only
𝑜

(
𝑛2

𝑝𝑘3

)
bits of memory. Our approach will be to use the existence of A to construct a 𝑝-pass stream-

ing algorithm A’ that circumvents the lower bound for Problem D.1, yielding a contradiction.
For this, let 𝑡 = 𝑘 and 𝑛′ = 𝑡 ·

⌊
𝑛
𝑡

⌋
. The algorithm A′ operates as follows: First, using public

randomness, it draws 𝐼 ⊆ [𝑛] of size 𝑛 − 𝑛′ uniformly at random, and then draws 𝑏1, . . . , 𝑏𝑛 ∈
{0, 1}𝑛−𝑛′ , where every 𝑏𝑖 is sampled uniformly at random from {0, 1}𝑛−𝑛′ . Then, using public
randomness again, it draws a uniformly random permutation 𝜋 of [𝑛′]. Upon receiving a stream
𝑧1, . . . , 𝑧𝑛 of 𝑛′-bit vectors from an instance of Problem D.1, algorithm A′ translates this stream
into a stream of 𝑛-bit vectors 𝑦1, . . . , 𝑦𝑛. Namely, 𝑦𝑖 is constructed from 𝑧𝑖 as follows: First, 𝑦𝑖

𝐼
is

assigned to be 𝑏𝑖 . Then, 𝑧𝑖 is permuted according to 𝜋 , yielding 𝑧𝑖𝜋 . Finally, 𝑦𝑖[𝑛]\𝐼 is assigned to be
𝑧𝑖𝜋 . Observe that A′ can construct this stream 𝑦1, . . . , 𝑦𝑛 using only a constant memory overhead
(since the public randomness does not contribute to the memory requirement). The algorithm A′

then feeds this stream 𝑦1, . . . , 𝑦𝑛 to A, and returns the output of A. The total memory requirement
of A′ and A is thus the same, upto an additive constant.

We will now argue that A′ correctly solves Problem 5.5.

Case 1: First, consider the case that 𝑧1, . . . , 𝑧𝑛 were draws from𝐷0 in Problem D.1. The distribution
of 𝑦1, . . . , 𝑦𝑛 constructed by A′, since 𝜋 is a random permutation, is equivalent to the following:

(1) Draw a subset 𝐼 ⊆ [𝑛] of size 𝑛 − 𝑛′ uniformly at random.

(2) Draw 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1}𝑛−𝑛′ , where every 𝑏𝑖 is sampled uniformly at random from {0, 1}𝑛−𝑛′ .

(3) Set 𝑦𝑖
𝐼
= 𝑏𝑖 for every 𝑖 ∈ [𝑛].

(4) Draw a uniformly random partition T = {𝑇𝑟 ′}𝑟 ′∈[𝑛′/𝑡 ] of [𝑛] \ 𝐼 , where ∀𝑟 ′, |𝑇𝑟 ′ | = 𝑡 .

(5) For every 𝑖 ∈ [𝑛], 𝑟 ′ ∈ [𝑛′/𝑡], draw 𝑦𝑖
𝑇𝑟 ′

uniformly at random from {0, 1}𝑡 .

Observe that the distribution of each 𝑦𝑖 thus drawn is simply the uniform distribution over
{0, 1}𝑛.

Case 2: We will now reason about the distribution of 𝑦1, . . . , 𝑦𝑛 above when 𝑧1, . . . , 𝑧𝑛 were draws
from 𝐷T

1 in Problem D.1. The distribution of 𝑦1, . . . , 𝑦𝑛 that A′ constructs can then be described by
the random process comprising of Steps (1)-(4) above in Case 1, followed by the steps ahead:

(5) Draw 𝑟 uniformly at random from [𝑛′/𝑡], 𝑣 uniformly at random from {0, 1}𝑡 , a subset 𝑅 ⊆ [𝑛]
uniformly at random of size 𝑘 .

(6) For every 𝑖 ∉ 𝑅, 𝑟 ′ ∈ [𝑛′/𝑡], draw 𝑦𝑖
𝑇𝑟 ′

uniformly at random from {0, 1}𝑡 .
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(7) For every 𝑖 ∈ 𝑅, set 𝑦𝑖
𝑇𝑟

= 𝑣 , and for every 𝑟 ′ ≠ 𝑟 , draw 𝑦𝑖
𝑇𝑟 ′

uniformly at random from {0, 1}𝑡 .

Observe that 𝑦1, . . . , 𝑦𝑛 thus drawn is identical in distribution to a draw from 𝐷planted in Prob-
lem 6.2.

Summarily, we have shown that the the distribution of 𝑦1, . . . , 𝑦𝑛, in the case that 𝑧1, . . . , 𝑧𝑛

were drawn from 𝐷0 in Problem D.1, is identical to the distribution 𝐷uniform in Problem 6.2.
Similarly, we have also shown that the distribution of 𝑦1, . . . , 𝑦𝑛, in the case that 𝑧1, . . . , 𝑧𝑛 were
drawn from𝐷T

1 in Problem D.1, is identical to the distribution𝐷planted in Problem 6.2. So, it follows
that if A distinguishes between 𝐷uniform and 𝐷planted with advantage 0.9 using only 𝑜

(
𝑛2

𝑝𝑘3

)
=

𝑜

(
𝑛𝑛′

𝑝𝑘2𝑡

)
bits of memory, A′ distinguishes between 𝐷0 and 𝐷T

1 with advantage 0.9 using the same
amount of memory (asymptotically). This contradicts the lower bound that we derived in the first
paragraph. □

E Proofs from Section 7

We first restate and prove Lemma 7.4

Lemma 7.4. Let 𝜖 ∈ (0, 0.01) be a constant, 𝑑 be sufficiently large, ℓ ≤ 𝑑 , 𝑛 ≤ 𝑑10 and 𝛼 ∈
(

1
ℓ
√

log𝑑
, 1

]
. Let

A be a 𝑝-pass streaming algorithm that uses 𝑠 bits of memory and 𝑛/400 samples, and solves Problem 7.1
with probability 0.99 for every value of ℓ ′ ∈ [2ℓ/3, 4ℓ/3]. Then, there exists a 𝑝-pass streaming algorithm
A′ that uses 𝑠 + 𝑂̃ (1) bits of memory and 𝑛 samples, and solves Problem 7.3 for 𝑘 = 𝑛𝑞 with probability 0.97

Proof of Lemma 7.4. In this proof, we will construct a reduction between Problem 7.1 and Prob-
lem 7.3.

Consider first the intermediate Problem A of distinguishing between:

1. 𝐷0 (no instance): ∀𝑖 ∈ [𝑛], 𝑥𝑖 is drawn from 𝑁 (0, 𝐼𝑑 ).

2. 𝐷1 (yes instance): Draw 𝑠 ∼ 𝐵𝑖𝑛(𝑡, ℓ/𝑡). Draw 𝑆 ⊆ [𝑑] of size 𝑠. Obtain 𝑣 ∈ ℝ𝑑 , where 𝑣 𝑗 = 𝛼 for
every 𝑗 ∈ 𝑆 , and 𝑣 𝑗 = 0 otherwise. Draw 𝑅 ⊆ [𝑛] uniformly at random of size 𝑛𝑞. For every
𝑖 ∈ [𝑛] \ 𝑅, 𝑥𝑖 ∼ 𝑁 (0, 𝐼𝑑 ), whereas for every 𝑖 ∈ 𝑅, 𝑥𝑖 ∼ 𝑁 (𝑣, 𝐼𝑑 ).

The main reason to introduce Problem A above is to get rid of the partition in Problem 7.3—
observe that there is no notion of such a “partition” in Problem 7.1. We will first relate the hardness
of Problem A to Problem 7.3.

Suppose there were a 𝑝-pass algorithm A that uses 𝑠 bits of memory and 𝑛 samples to solve
Problem A with probability 0.97. We will show that there exists a 𝑝-pass algorithm A′ that uses
𝑠 + 𝑂̃ (1) bits of memory and 𝑛 samples to solve Problem 7.3 with probability 0.97. The algorithm
A′ operates on the input of Problem 7.3 as follows. First, using public randomness, it draws a
uniformly random permutation 𝜋 of [𝑑]. Upon receiving the stream 𝑥1, . . . , 𝑥𝑛, it permutes each
of 𝑥1, . . . , 𝑥𝑛 according to 𝜋 , and feeds 𝑥1

𝜋 , . . . , 𝑥
𝑛
𝜋 to A. Observe that if 𝑥1, . . . , 𝑥𝑛 were drawn from

the no instance of Problem 7.3, then 𝑥1
𝜋 , . . . , 𝑥

𝑛
𝜋 ∼ 𝐷0 above, and if they were drawn from the yes

instance, 𝑥1
𝜋 , . . . , 𝑥

𝑛
𝜋 ∼ 𝐷1 above.8 Therefore, A′ can simply return the output of A, and solve

Problem 7.3.
8Recall that we assumed for convenience that 𝑡 divides 𝑑 . We can handle the case of 𝑡 not dividing 𝑑 similarly as we

did in the proof of Theorem 5.2. That is, we may instead consider Problem 7.3 with 𝑑′ = 𝑡 · ⌊𝑑/𝑡⌋. In order to prepare
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In the yes instance of Problem A above, there are a fixed number𝑛𝑞 of planted vectors; however,
in Problem 7.1, the number of planted vectors is 𝑛𝑞 only in expectation. The next intermediate
problem bridges this. Concretely, consider Problem B of distinguishing between:

1. 𝐷0 (no instance): ∀𝑖 ∈ [𝑛/400], 𝑥𝑖 is drawn from 𝑁 (0, 𝐼𝑑 ).

2. 𝐷1 (yes instance): Draw 𝑠 ∼ 𝐵𝑖𝑛(𝑡, ℓ/𝑡). Draw 𝑆 ⊆ [𝑑] of size 𝑠. Obtain 𝑣 ∈ ℝ𝑑 , where 𝑣 𝑗 = 𝛼
for every 𝑗 ∈ 𝑆 , and 𝑣 𝑗 = 0 otherwise. For every 𝑖 ∈ [𝑛/400], 𝑥𝑖 ∼ 𝑁 (𝑣, 𝐼𝑑 ) with probability 𝑞,
and 𝑥𝑖 ∼ 𝑁 (0, 𝐼𝑑 ) with probability 1 − 𝑞.

Suppose there were a 𝑝-pass algorithm A that uses 𝑠 bits of memory and 𝑛/400 samples to solve
Problem B with probability 0.98. We will show that there exists a 𝑝-pass algorithm A′ that uses
𝑠 + 𝑂̃ (1) bits of memory and 𝑛 samples to solve Problem A with probability 0.97. The algorithm A′

operates as follows. Upon receiving an input stream 𝑥1, . . . , 𝑥𝑛 from Problem A, it feeds a uniformly
random subset of 𝑛/400 of these vectors to A. Observe first that if the input 𝑥1, . . . , 𝑥𝑛 was from
the no instance of Problem A, then the input given to A is also distributed as the no instance of
Problem B. On the other hand, if the input was drawn from the yes instance of Problem A, exactly
𝑛𝑞 of the vectors in the input were drawn from the planted distribution. Let 𝑋 denote the number
of vectors drawn from the planted distribution that get included in the uniformly random subset
of 𝑛/400 vectors that A′ feeds to A. Now, let 𝑌 denote the number of vectors that get drawn from
the planted distribution, when the input 𝑥1, . . . , 𝑥𝑛/400 is drawn from the yes instance of Problem
B above. Observe that the distribution of 𝑋 corresponds to the number of red balls drawn, when
one draws 𝑛/400 balls uniformly at random from an urn containing 𝑛 (red and blue) balls of which
𝑛𝑞 are red without replacement, while the distribution of 𝑌 corresponds to the number of red balls,
when one draws 𝑛/400 balls uniformly at random from an urn containing 𝑛 balls of which 𝑛𝑞 are
red with replacement. From Theorem (4) in [DF80], we know that the TV distance between the
distributions of 𝑋 and 𝑌 is at most 0.01. That is, the input that A′ feeds to A comprises of 𝑛/400
vectors, of which a uniformly random subset of𝑋 vectors are drawn from the planted distribution,
whereas the input of the yes instance of Problem B corresponds to a uniformly random subset of
𝑌 vectors drawn from the planted distribution, where 𝑇𝑉 (𝑋,𝑌 ) ≤ 0.01. Summarily, we conclude
that if A solves Problem B with probability 0.98, A′ solves Problem A with probability 0.97.

Finally, we relate Problem 7.1 to Problem B above. Let A be a 𝑝-pass streaming algorithm that
uses 𝑠 bits of memory and 𝑛/400 samples, and solves Problem 7.1 with probability 0.99 for every
value of 𝑙 ′ ∈ [2𝑙/3, 4𝑙/3]. Namely, A processes 𝑥1, . . . , 𝑥𝑛/400 arriving in a stream, and satisfies that:

(1) If 𝑥1, . . . , 𝑥𝑛/400 ∼ 𝑁 (0, 𝐼𝑑 ), then A outputs no with probability at least 0.99.

(2) For every ℓ ′ ∈
[ 2ℓ

3 ,
4ℓ
3
]
: if 𝑥1, . . . , 𝑥𝑛/400 ∼ 𝐷planted in Problem 7.1 for sparsity ℓ ′, then A outputs

yes with probability at least 0.99.

We will argue that A also solves Problem 𝐵. Notice that in the yes instance of Problem B, when
𝑠 ∼ 𝐵𝑖𝑛(𝑡, 𝑙/𝑡), the probability that 𝑠 ∈

[ 2ℓ
3 ,

4ℓ
3
]

is at least 1 − 𝑜 (1). Together with (2) above, we
conclude that, if we simply run A on input 𝑥1, . . . , 𝑥𝑛/400 from Problem B above, then A outputs
the correct answer with probability at least 0.98. This concludes the sequence of reductions.

□

𝑑-dimensional inputs to Problem A from 𝑑′-dimensional inputs of Problem 7.3, A’ can first draw 𝑛 i.i.d. vectors from
𝑁 (0, 𝐼𝑑−𝑑 ′ ), and assign these at coordinates corresponding to a uniformly random subset of [𝑑] of size 𝑑 − 𝑑′. The rest
of the 𝑑′ coordinates may then be assigned to be 𝑥1

𝜋 , . . . , 𝑥
𝑛
𝜋 . This generates an input for Problem A.
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In what follows, we will make use of the elementary claim below at multiple places.

Claim E.1. Let 𝐷 be a distribution and let 𝐷trunc be the restriction of 𝐷 to the set 𝑇 . Then,

∥𝐷 − 𝐷trunc∥𝑇𝑉 = Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇 ] .

Proof. Let 𝑓 and 𝑔 be the probability density functions for 𝐷 and 𝐷trunc respectively. Note that the
definition of the truncated distributions implies that

𝑔(𝑥) =
{

𝑓 (𝑥 )∫
𝑇
𝑓 (𝑦) 𝑑𝑦 for 𝑥 ∈ 𝑇,

0 for 𝑥 ∉ 𝑇 .

Let 𝑇 denote the complement of the set 𝑇 , and let 𝑝𝑇 =
∫
𝑇
𝑓 (𝑦) 𝑑𝑦. Note that 𝑝𝑇 < 1. Then,

∥𝐷 − 𝐷trunc∥𝑇𝑉 =
1
2

∫
|𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥

=
1
2

∫
𝑇

|𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥 + 1
2

∫
𝑇

|𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥

=
1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 + 1
2

∫
𝑇

����𝑓 (𝑥) − 𝑓 (𝑥)
𝑝𝑇

���� 𝑑𝑥
=

1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 + 1
2𝑝𝑇

∫
𝑇

|𝑝𝑇 − 1| 𝑓 (𝑥) 𝑑𝑥

=
1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 + 1
2𝑝𝑇

∫
𝑇

(1 − 𝑝𝑇 ) 𝑓 (𝑥) 𝑑𝑥

=
1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 +
𝑝𝑇 − 𝑝2

𝑇

2𝑝𝑇
=

1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 + 1
2 (1 − 𝑝𝑇 )

=
1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 + 1
2

∫
𝑇

𝑓 (𝑥) 𝑑𝑥 = Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇 ] .

□

We restate and prove Lemma 7.6

Lemma 7.6. Let 𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 be arbitrary. The distributions 𝑁 (0, 𝐼𝑡 ) and 𝑁 (𝑣, 𝐼𝑡 ) are close (in TV distance) to
their respective truncations 𝑃0

trunc and 𝑃1,𝑣
trunc:

𝑃0

trunc − 𝑁 (0, 𝐼𝑡 )



𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡),


𝑃1,𝑣
trunc − 𝑁 (𝑣, 𝐼𝑡 )





𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡) .

Also, Pr𝑣∼𝐷 [𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] ≥ 0.99.

Proof of Lemma 7.6. The claim that Pr𝑣 [𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] ≥ 0.99 follows from Markov’s inequality, as the
expected sparsity of a vector drawn from 𝐷 is ℓ , and 𝑉𝑔𝑜𝑜𝑑 consists of vectors whose sparsity is at
most 100ℓ . The remainder of this proof is devoted to bounding the TV distances for the truncated
distributions. Since 0 ∈ 𝑉𝑔𝑜𝑜𝑑 , it suffices to show that ∥𝑃 𝑣trunc − 𝑁 (𝑣, 𝐼𝑡 )∥𝑇𝑉 ≤ 0.01/(𝑛𝑑/𝑡) for an
arbitrary vector 𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑
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Computing ∥𝑃 𝑣trunc − 𝑁 (𝑣, 𝐼𝑡 )∥𝑇𝑉 . By Claim E.1, the TV distance is precisely the probabil-
ity Pr𝑥∼𝑁 (0,𝐼𝑡 ) [𝑥 ∉ 𝑇 ], where 𝑇 is the set defined in Equation (22). We split this prob-
ability into two terms and bound each separately. In particular, we define the set 𝑇 ′ ={
𝑥 ∈ ℝ𝑡 : ∀𝑗 ∈ [𝑡], |𝑥 𝑗 | ≤

√︁
𝐶1 log(200𝑛𝑑)

}
of values 𝑥 with bounded coordinates (where 𝐶1 is a pos-

itive constant that will be determined later). Note that

Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 )

[𝑥 ∉ 𝑇 ] = Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 )

[𝑥 ∉ 𝑇, 𝑥 ∈ 𝑇 ′] + Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 )

[𝑥 ∉ 𝑇, 𝑥 ∉ 𝑇 ′]

≤ Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 ) |𝑥∈𝑇 ′

[𝑥 ∉ 𝑇 ] + Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 )

[𝑥 ∉ 𝑇 ′] . (47)

The majority of our analysis is devoted to obtaining a bound for the first term. Recalling the
definition of 𝑇 , we have

Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 ) |𝑥∈𝑇 ′

[𝑥 ∉ 𝑇 ] = Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 ) |𝑥∈𝑇 ′


𝑡∑︁
𝑗=1

𝑒𝛼𝑥 𝑗 ≥ 𝑡𝑒𝛼2/2 + 𝛿
 ,

where 𝛿 = (𝐶1𝛼)
√
𝑡𝑑𝜖/2 log(200𝑛𝑑). We will apply a concentration inequality for the sum of inde-

pendent, bounded random variables. First, we bound their expected sum.

Claim E.2. For any vector 𝑣 ∈ 𝑉good,

𝔼𝑥∼𝑁 (𝑣,𝐼𝑡 ) |𝑥∈𝑇 ′


𝑡∑︁
𝑗=1

𝑒𝛼𝑥 𝑗

 ≤ 𝑡𝑒𝛼2/2 + 𝛿/2.

Proof. Let 𝐵 =
√︁
𝐶1 log(200𝑛𝑑). Since conditioning on the set 𝑇 ′ preserves independence between

the coordinates of 𝑥 , we first derive an upper bound for the following quantity

𝔼𝑋∼𝑁 (𝑣𝑗 ,1)
[
𝑒𝛼𝑋

�� |𝑋 | ≤ 𝐵
]
=

∫ 𝐵

−𝐵 𝑒
𝛼𝑧 · 1√

2𝜋
𝑒−(𝑧−𝑣𝑗 )2/2𝑑𝑧

Pr𝑋∼𝑁 (𝑣𝑗 ,1) [|𝑋 | ≤ 𝐵] ,

We now bound the numerator. Observe that∫ 𝐵

−𝐵
𝑒𝛼𝑧 · 1

√
2𝜋
𝑒−(𝑧−𝑣𝑗 )2/2𝑑𝑧 =

∫ 𝐵

−𝐵
𝑒𝛼

2/2+𝑣𝑗𝛼 · 1
√

2𝜋
𝑒−(𝑧−(𝛼+𝑣𝑗 ) )2/2𝑑𝑧

= 𝑒𝛼
2/2+𝑣𝑗𝛼

(
Pr

𝑋∼𝑁 (𝛼+𝑣𝑗 ,1)
[𝑋 ≤ 𝐵] − Pr

𝑋∼𝑁 (𝛼+𝑣𝑗 ,1)
[𝑋 ≤ −𝐵]

)
= 𝑒𝛼

2/2+𝑣𝑗𝛼
(

Pr
𝑋∼𝑁 (0,1)

[𝑋 ≤ 𝐵 − 𝛼 − 𝑣 𝑗 ] − Pr
𝑋∼𝑁 (0,1)

[𝑋 ≤ −𝐵 − 𝛼 − 𝑣 𝑗 ]
)

= 𝑒𝛼
2/2+𝑣𝑗𝛼 (

Φ(𝐵 − 𝛼 − 𝑣 𝑗 ) − Φ(−𝐵 − 𝛼 − 𝑣 𝑗 )
)
,

where Φ(·) denotes the cumulative distribution function of a 𝑁 (0, 1) random variable. Consider
the function 𝑓 (𝑦) = Φ(𝐵 − 𝑦) − Φ(−𝐵 − 𝑦), and observe that

𝑓 ′(𝑦) = −𝜙 (𝐵 − 𝑦) + 𝜙 (−𝐵 − 𝑦) = 𝜙 (𝐵 + 𝑦) − 𝜙 (𝐵 − 𝑦),
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where𝜙 denotes the probability density function of a𝑁 (0, 1) random variable. The second equality
follows from the symmetry of the density function 𝜙 . We claim that 𝑓 ′(𝑦) ≤ 0 for 𝑦 ≥ 0, and hence
𝑓 is non-increasing when 𝑦 ≥ 0. Indeed, if 𝑦 ≤ 𝐵, then 𝐵 + 𝑦 ≥ 𝐵 − 𝑦 ≥ 0 and since 𝜙 is non-
increasing for non-negative arguments, we in turn have 𝜙 (𝐵 − 𝑦) ≥ 𝜙 (𝐵 + 𝑦). On the other hand, if
𝑦 > 𝐵, then −𝐵 − 𝑦 ≤ 𝐵 − 𝑦 < 0 and since 𝜙 is increasing for negative arguments, we in turn have
𝜙 (𝐵−𝑦) > 𝜙 (−𝐵−𝑦). Thus, 𝑓 is non-increasing for non-negative arguments. Since 𝛼 ≥ 0 and 𝑣 𝑗 ≥ 0,
we have 𝑓 (𝛼 + 𝑣 𝑗 ) ≤ 𝑓 (𝑣 𝑗 ), which implies that

Φ(𝐵 − 𝛼 − 𝑣 𝑗 ) − Φ(−𝐵 − 𝛼 − 𝑣 𝑗 ) ≤ Φ(𝐵 − 𝑣 𝑗 ) − Φ(−𝐵 − 𝑣 𝑗 )
= Pr
𝑋∼𝑁 (𝑣𝑗 ,1)

[|𝑋 | ≤ 𝐵] .

It follows that our numerator is bounded above by 𝑒𝛼
2/2+𝑣𝑗𝛼 Pr𝑋∼𝑁 (𝑣𝑗 ,1) [|𝑋 | ≤ 𝐵] and thus, the

conditional expectation is bounded above by 𝑒𝛼2/2+𝑣𝑗𝛼 . By linearity of expectation, we have that

𝔼𝑥∼𝑁 (𝑣,𝐼𝑡 ) |𝑥∈𝑇 ′


𝑡∑︁
𝑗=1

𝑒𝛼𝑥 𝑗

 ≤ 𝑒𝛼2/2
𝑡∑︁
𝑗=1

𝑒𝛼𝑣𝑗 .

It remains to upper bound the right hand side of the above inequality. Since 𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 , it has
sparsity 𝜅 ≤ 100ℓ and any nonzero coordinate is by definition equal to 𝛼 . We therefore have

𝑒𝛼
2/2

𝑡∑︁
𝑗=1

𝑒𝛼𝑣𝑗 = 𝑒𝛼
2/2

(
𝑡 − 𝜅 + 𝜅𝑒𝛼2

)
= 𝑡𝑒𝛼

2/2 + 𝜅𝑒𝛼2/2(𝑒𝛼2 − 1)

≤ 𝑡𝑒𝛼2/2 + 𝜅𝑒𝛼2/2(2𝛼2) (since 𝑒𝑥 ≤ 1 + 2𝑥 for 𝑥 ∈ (0, 1])

≤ 𝑡𝑒𝛼2/2 + 200ℓ𝑒𝛼2/2𝛼2. (since 𝜅 ≤ 100ℓ)

Furthermore, taking 𝑑 sufficiently large and recalling that 𝑡 ≥ (ℓ𝛼)2𝑑𝜖 log2(200𝑛𝑑), we get

𝛿/2 = (𝐶1𝛼)
√
𝑡𝑑𝜖/2 log(200𝑛𝑑)/2

≥ 𝐶1ℓ𝛼
2𝑑𝜖 log2(200𝑛𝑑)/2

≥ 200ℓ𝑒𝛼2/2𝛼2,

which proves our desired result. □

Next, we recall that conditioning on the set 𝑇 ′ when 𝑥 is drawn from an isotropic normal dis-
tribution preserves independence between the coordinates of 𝑥 . Hence, we can apply Hoeffding’s
inequality to the random variables 𝑍 𝑗 = 𝑒𝛼𝑥 𝑗 , where 𝑥 is drawn from 𝑁 (𝑣, 𝐼𝑡 ) restricted to the set𝑇 ′.
Note that the preceding Claim E.2 implies that

Pr

𝑡∑︁
𝑗=1

𝑍 𝑗 ≥ 𝑡𝑒𝛼
2/2 + 𝛿

 ≤ Pr

𝑡∑︁
𝑗=1

𝑍 𝑗 − 𝔼


𝑡∑︁
𝑗=1

𝑍 𝑗

 ≥ 𝛿/2
 .
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We will consider two cases based on the magnitude of 𝛼 . First, suppose that 1/
√︁
𝐶1 log(200𝑛𝑑) ≤

𝛼 ≤ 1. Then, we have that the variables 𝑍 𝑗 are bounded as

0 ≤ 𝑒𝛼𝑥 𝑗 := 𝑍 𝑗 ≤ 𝑒
√
𝐶1 log(200𝑛𝑑 ) ≤ 𝑒

√
𝐶1 log(200𝑑11 ) ≤ 𝑒 𝜖

2 log𝑑 = 𝑑𝜖/2,

where we used that 𝑛 ≤ 𝑑10, and that 𝑑 is sufficiently large. Thus, Hoeffding’s inequality gives that

Pr

𝑡∑︁
𝑗=1

𝑍 𝑗 − 𝔼


𝑡∑︁
𝑗=1

𝑍 𝑗

 ≥ 𝛿/2
 ≤ exp

(
−2(𝛿/2)2

𝑡𝑑𝜖

)
= exp

(
−
𝐶2

1𝛼
2𝑡𝑑𝜖 log2(200𝑛𝑑)

2𝑡𝑑𝜖

)
= exp

(
−
𝐶2

1𝛼
2 log2(200𝑛𝑑)

2

)
≤ exp

(
−
𝐶1 log(200𝑛𝑑)

2

)
(since 𝛼 ≥ 1/

√︁
𝐶1 log(200𝑛𝑑))

≤ 0.005/(𝑛𝑑) ≤ 0.005/(𝑛𝑑/𝑡).

The second-to-last inequality holds whenever 𝐶1 ≥ 2.
Now suppose that 0 < 𝛼 ≤ 1/

√︁
𝐶1 log(200𝑛𝑑). In this case, we use the following bound on the

variables 𝑍 𝑗 :

𝑒−𝛼
√
𝐶1 log(200𝑛𝑑 ) ≤ 𝑒𝛼𝑥 𝑗 := 𝑍 𝑗 ≤ 𝑒𝛼

√
𝐶1 log(200𝑛𝑑 ) .

Applying Hoeffding’s inequality then gives that

Pr

𝑡∑︁
𝑗=1

𝑍 𝑗 − 𝔼


𝑡∑︁
𝑗=1

𝑍 𝑗

 ≥ 𝛿/2
 ≤ exp

©­­«−
2(𝛿/2)2

𝑡

(
𝑒𝛼
√
𝐶1 log(200𝑛𝑑 ) − 𝑒−𝛼

√
𝐶1 log(200𝑛𝑑 )

)2

ª®®¬
≤ exp

(
− 𝛿2

2𝑡 (3𝛼
√︁
𝐶1 log(200𝑛𝑑))2

)
(𝑒𝑦 − 𝑒−𝑦 ≤ 3𝑦 if 0 ≤ 𝑦 ≤ 1)

= exp
(
−
𝐶2

1𝛼
2𝑡𝑑𝜖 log2(200𝑛𝑑)

18𝑡𝛼2𝐶1 log(200𝑛𝑑)

)
= exp

(
−
𝐶1𝑑

𝜖 log(200𝑛𝑑)
18

)
≤ 0.005/(𝑛𝑑) ≤ 0.005/(𝑛𝑑/𝑡).

The second-to-last inequality holds whenever 𝐶1 ≥ 18 and 𝑑 is sufficiently large.
In both cases, we have obtained an upper bound of 0.005/(𝑛𝑑/𝑡) for the first term

Pr𝑥∼𝑁 (𝑣,𝐼𝑡 ) |𝑥∈𝑇 ′ [𝑥 ∉ 𝑇 ] in (47). Finally, we compute an upper bound on the second term
Pr𝑥∼𝑁 (𝑣,𝐼𝑡 ) [𝑥 ∉ 𝑇 ′].

Claim E.3. For sufficiently large 𝑑 ,

Pr
𝑥∼𝑁 (𝑣,𝐼𝑡 )

[𝑥 ∉ 𝑇 ′] ≤ 0.005/(𝑛𝑑/𝑡) .

Proof. By a union bound, we note that the left hand side is at most
𝑡∑︁
𝑗=1

Pr
𝑥 𝑗∼𝑁 (𝑣𝑗 ,1)

[
|𝑥 𝑗 | ≥

√︃
𝐶1 log(200𝑛𝑑)

]
≤ 2

𝑡∑︁
𝑗=1

Pr
𝑥 𝑗∼𝑁 (𝑣𝑗 ,1)

[
𝑥 𝑗 ≥

√︃
𝐶1 log(200𝑛𝑑)

]
61



≤ 2𝑡 Pr
𝑧∼𝑁 (1,1)

[
𝑧 ≥

√︃
𝐶1 log(200𝑛𝑑)

]
= 2𝑡 Pr

𝑧∼𝑁 (0,1)

[
𝑧 ≥

√︃
𝐶1 log(200𝑛𝑑) − 1

]
≤ 2𝑡

√
2𝜋

(√︁
𝐶1 log(200𝑛𝑑) − 1

) exp
©­­«−

(√︁
𝐶1 log(200𝑛𝑑) − 1

)2

2
ª®®¬ (Mill’s inequality)

=

√
2𝑡

√
𝜋

(√︁
𝐶1 log(200𝑛𝑑) − 1

) exp
(
−𝐶1 log(200𝑛𝑑) − 1 + 2

√︁
𝐶1 log(200𝑛𝑑)

2

)
=

√
2𝑡 (200𝑛𝑑)−𝐶1/2

√
𝜋𝑒

(√︁
𝐶1 log(200𝑛𝑑) − 1

) exp
(√︃
𝐶1 log(200𝑛𝑑)

)
≤ 𝑡 (200𝑑11)−𝐶1/2

2
(√︁
𝐶1 log(200𝑛𝑑) − 1

) exp
(√︃
𝐶1 log(200𝑑11)

)
≤ 𝑡𝑑−6.5𝐶1+𝜖√︁

𝐶1 log(200𝑛𝑑)
(𝑑 sufficiently large)

≤ 𝑡𝑑−6.5𝐶1+0.01 ≤ 0.005/(𝑑11/𝑡) ≤ 0.005/(𝑛𝑑/𝑡).

The inequality in the first line follows from the fact that 𝑣 𝑗 ∈ [0, 1] (and hence the right tail has
more probability mass). The second inequality follows from the fact that each 𝑣 𝑗 ≤ 1. The final
inequalities use that 𝑑 is sufficiently large, and that 𝐶1 > 5 (say). □

To conclude, we have upper bounded the sum of the two terms on the right in (47) by 0.01/(𝑛𝑑/𝑡)
as desired. Note that to resolve all the dependencies on 𝐶1, we can take 𝐶1 = 20 (say).

□

We now restate and prove Claim 7.7.

Claim 7.7. Let 𝜇0 and 𝜇𝑣1 be the probability density functions of 𝑃0
trunc and 𝑃1,𝑣

trunc respectively. Then, there
exists a positive constant 𝐶 such that

𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑
[𝜇𝑣1] ≤ 𝐶𝜇0.

Proof of Claim 7.7. Since 𝜇0 and 𝜇𝑣1 are distributions truncated to the set 𝑇 defined in Equation (22),
the Gaussian densities need to normalized with the appropriate normalizing constants. However,
we will first get a bound for the unnormalized densities, and then deal with the normalization.

Let 𝑓0 and 𝑓𝑣 respectively be the probability density functions for the (non-truncated) Gaussian
distributions 𝑁 (0, 𝐼𝑡 ) and 𝑁 (𝑣, 𝐼𝑡 ). Notice that for any 𝑥 , we have

𝑓𝑣 (𝑥) = (2𝜋)−𝑡/2 · exp
(
−1

2 (𝑥 − 𝑣)⊺ (𝑥 − 𝑣)
)
= (2𝜋)−𝑡/2 · exp

(
−1

2𝑥
⊺𝑥

)
· exp

(
𝑥⊺𝑣 − 𝑣⊺𝑣

2

)
= 𝑓0(𝑥) · exp

(
𝑥⊺𝑣 − 𝑣⊺𝑣

2

)
.

This in turn implies that, for 𝑣 ∼ 𝐷 as defined in Equation (21) and 𝑥 ∈ 𝑇 ,

𝔼𝑣∼𝐷
𝑓𝑣 (𝑥)
𝑓0(𝑥)

= 𝔼𝑣 exp
(
𝑥⊺𝑣 − 𝑣⊺𝑣

2

)
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=

𝑡∏
𝑗=1

𝔼𝑣𝑗 exp
(
𝑥 𝑗𝑣 𝑗 −

𝑣2
𝑗

2

)
(coordinates of 𝑣 ∼ 𝐷 are independent)

=

𝑡∏
𝑗=1

(
1 − ℓ

𝑡
+ ℓ
𝑡
· 𝑒−𝛼2/2𝑒𝛼𝑥 𝑗

)
(𝑣 𝑗 is 𝛼 w.p. ℓ/𝑡 and 0 otherwise)

≤ exp (−ℓ) · exp ©­« ℓ𝑡 · 𝑒−𝛼2/2
𝑡∑︁
𝑗=1

𝑒𝛼𝑥 𝑗
ª®¬

≤ exp (−ℓ) · exp
(
ℓ

𝑡
𝑒−𝛼

2/2
(
𝑡𝑒𝛼

2/2 + 𝛿
))

(since 𝑥 ∈ 𝑇 )

= exp
(
ℓ𝛿

𝑡
𝑒−𝛼

2/2
)
,

where 𝛿 = (𝐶1𝛼)
√
𝑡𝑑𝜖/2 log(200𝑛𝑑). Since 𝑡 ≥ (𝛼ℓ)2𝑑𝜖 log2(200𝑛𝑑), we further have that

exp
(
ℓ

𝑡
𝑒−𝛼

2/2𝛿

)
= exp

(
ℓ𝑒−𝛼

2/2(𝐶1𝛼)𝑑𝜖/2 log(200𝑛𝑑)
√
𝑡

)
≤ exp

(
ℓ𝑒−𝛼

2/2(𝐶1𝛼)𝑑𝜖/2 log(200𝑛𝑑)
(𝛼ℓ)𝑑𝜖/2 log(200𝑛𝑑)

)
≤ 𝐶′,

for some constant 𝐶′. Now, by the law of total probability, we have

𝔼𝑣∼𝐷

[
𝑓𝑣

𝑓0

]
= Pr

𝑣
[𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] · 𝔼𝑣 |𝑣∈𝑉𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0

]
+ Pr

𝑣
[𝑣 ∉ 𝑉𝑔𝑜𝑜𝑑 ] · 𝔼𝑣 |𝑣∉𝑉𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0

]
≥ Pr

𝑣
[𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] · 𝔼𝑣 |𝑣∈𝑉𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0

]
= Pr

𝑣
[𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] · 𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0

]
.

The inequality above follows since probability density functions are non-negative. The last equality
follows since the distribution of 𝑣 conditioned on 𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 is precisely the distribution 𝐷𝑔𝑜𝑜𝑑 .

Next, since𝔼𝑣∼𝐷 [∥𝑣 ∥0] = ℓ , we note by Markov’s inequality that Pr𝑣 [𝑣 ∈ 𝑉𝑔𝑜𝑜𝑑 ] ≥ 0.99. Therefore,

𝔼𝐷𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0

]
≤ 2 · 𝔼𝑣∼𝐷

[
𝑓𝑣

𝑓0

]
.

We will now tackle our normalizing constants. Let 𝑓0(𝑇 ) = Pr𝑥∼𝑁 (0,𝐼𝑡 ) [𝑥 ∈ 𝑇 ] and 𝑓𝑣 (𝑇 ) =

Pr𝑥∼𝑁 (𝑣,𝐼𝑡 ) [𝑥 ∈ 𝑇 ]. From Claim E.1 and Lemma 7.6, we know that 𝑓𝑣 (𝑇 ) ≥ 1 − 0.01𝑡
𝑛𝑑

≥ 0.99, which
immediately gives that 𝑓0(𝑇 )/𝑓𝑣 (𝑇 ) ≤ 1/0.99 ≤ 2. Finally,

𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑

[
𝜇𝑣1
𝜇0

]
= 𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0
· 𝑓0(𝑇 )
𝑓𝑣 (𝑇 )

]
≤ 2 · 𝔼𝑣∼𝐷𝑔𝑜𝑜𝑑

[
𝑓𝑣

𝑓0

]
≤ 4 · 𝔼𝑣∼𝐷

[
𝑓𝑣

𝑓0

]
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≤ 4𝐶′.

The desired result follows by taking 𝐶 = 4𝐶′.
□

We restate and prove Claim 7.8.

Claim 7.8. Fix a constant 𝛿 ∈ (0, 1) and let 𝐶𝛿,𝛼 =

(
8+4 log(4/𝛿 )

𝛼2

)
. For all 𝑛,𝑑 sufficiently large that satisfy

𝑛𝑞 ≥ 2𝐶𝛿,𝛼 log(𝑛𝑑), the following holds. If |𝑅 | = 2𝐶𝛿,𝛼 (𝑑/ℓ) log(𝑛𝑑/𝛿) log(𝑛𝑑), ℓ ≥ 𝑠1 = 𝑠2 = 𝐶𝛿,𝛼 log(𝑛𝑑)

and 𝜏 =
√︂

2𝑠1𝑠2 log
(
2
(
𝑛
𝑠1

) ( |𝑅 |
𝑠2

)
/𝛿

)
, then

max
 Pr
𝐷null

 max
𝑆1⊆[𝑛], |𝑆1 |=𝑠1
𝑆2⊆𝑅, |𝑆2 |=𝑠2

∑︁
𝑗∈𝑆1

∑︁
𝑖∈𝑆2

𝑥
𝑗

𝑖
≥ 𝜏

 , Pr
𝐷planted

 max
𝑆1⊆[𝑛], |𝑆1 |=𝑠1
𝑆2⊆𝑅, |𝑆2 |=𝑠2

∑︁
𝑗∈𝑆1

∑︁
𝑖∈𝑆2

𝑥
𝑗

𝑖
≤ 𝜏

 ,
 ≤ 𝛿.

Proof of Claim 7.8. Throughout this proof, we will let 𝑌𝑆1,𝑆2 =
∑
𝑗∈𝑆1

∑
𝑖∈𝑆2 𝑥

𝑗

𝑖
for ease of exposition.

We will bound the failure probability for 𝐷null and 𝐷planted separately.
We first bound the probability that the test fails to detect the null distribution 𝐷null. It is

straightforward to verify that when 𝑥1, . . . 𝑥𝑛 ∼ 𝐷null, we have 𝑌𝑆1,𝑆2 ∼ 𝑁 (0, 𝑠1𝑠2) for every 𝑠1-sized
subset 𝑆1 ⊆ {𝑥 𝑗 }𝑛

𝑗=1 and 𝑠2-sized subset 𝑆2 ⊆ 𝑅. . By a union bound, the probability that one of the
test statistics exceeds 𝜏 is at most(

𝑛

𝑠1

) (
|𝑅 |
𝑠2

)
Pr

𝑌∼𝑁 (0,𝑠1𝑠2 )
[𝑌 ≥ 𝜏] ≤

(
𝑛

𝑠1

) (
|𝑅 |
𝑠2

)
exp

(
− 𝜏2

2𝑠1𝑠2

)

≤
(
𝑛

𝑠1

) (
|𝑅 |
𝑠2

)
· exp

©­­­­­«
−

(√︂
2𝑠1𝑠2 log

(
2
(
𝑛
𝑠1

) ( |𝑅 |
𝑠2

)
/𝛿

))2

2𝑠1𝑠2

ª®®®®®¬
≤ 𝛿/2.

Hence the failure probability for the null distribution is bounded as desired.
We now bound the probability that the test fails to detect the planted distribution 𝐷planted. It

will be convenient for us to define two events. Let E1 be the event that at least 𝑠1 of the samples are
drawn from the distribution 𝑁 (𝑣, 𝐼𝑑 ). Let E2 be the event that |𝐴∩𝑅 | ≥ 𝑠2, where𝐴 is the support of
the planted vector 𝑣 . Note that if the event E1 ∩ E2 occurs, then there will be some pair of subsets
𝑆1, 𝑆2 that contain signal from the planted vector. If the statistic 𝑌𝑆1,𝑆2 exceeds the threshold, then
we would correctly detect the planted distribution. It follows that the failure probability is at most

Pr [¬(E1 ∩ E2)] + Pr
𝐷planted

 max
𝑆1⊆[𝑛], |𝑆1 |=𝑠1
𝑆2⊆𝑅, |𝑆2 |=𝑠2

∑︁
𝑗∈𝑆1

∑︁
𝑖∈𝑆2

𝑥
𝑗

𝑖
< 𝜏

��� E1 ∩ E2

 . (48)

We will bound each of these terms separately. We begin with the term ¬(E1 ∩ E2). Note that the
number of samples from the distribution 𝑁 (𝑣, 𝐼𝑑 ) will follow a binomial distribution Bin(𝑛, 𝑞) (and
have mean 𝑛𝑞). Hence, we can show that

Pr[¬E1] ≤ Pr
𝑍∼Bin(𝑛,𝑞)

[𝑍 ≤ 𝑠1]
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≤ Pr
𝑍∼Bin(𝑛,𝑞)

[
𝑍 ≤ 1

2𝑛𝑞
]

(since 𝑛𝑞 ≥ 2𝑠1)

≤ exp
(
− (𝑛𝑞) (1/2)2

2

)
(Chernoff bound)

≤ exp
(
−
𝐶𝛿,𝛼 log(𝑛𝑑)

4

)
(since 𝑛𝑞 ≥ 𝐶𝛿,𝛼 log(𝑛𝑑))

≤ (𝑛𝑑)−2 (since 𝐶𝛿,𝛼 ≥ 8)
≤ 𝛿/4 (for sufficiently large 𝑛,𝑑)

Next, note that the number of coordinates in the intersection |𝐴∩𝑅 | will follow the hypergeometric
distribution Hypergeometric(𝑑, ℓ, |𝑅 |) (and have mean |𝑅 | (ℓ/𝑑) = 2𝐶𝛿,𝛼 log(𝑛𝑑/𝛿) log(𝑛𝑑)). Hence,
we can show that

Pr[¬E2] ≤ Pr
𝑍∼Hyp(𝑑,ℓ, |𝑅 | )

[𝑍 ≤ 𝑠2]

≤ Pr
𝑍∼Bin( |𝑅 |,ℓ/𝑑 )

[𝑍 ≤ 𝑠2]

= Pr
𝑍∼Bin( |𝑅 |,ℓ/𝑑 )

[
𝑍 ≤ 1

2 log(𝑛𝑑/𝛿) · |𝑅 | (ℓ/𝑑)
]

≤ Pr
𝑍∼Bin( |𝑅 |,ℓ/𝑑 )

[
𝑍 ≤ 1

2 · |𝑅 | (ℓ/𝑑)
]

( for sufficiently large 𝑛,𝑑)

≤ exp
(
− |𝑅 | (ℓ/𝑑) (1/2)2

2

)
(Chernoff bound)

= exp
(
−
𝐶𝛿,𝛼 log(𝑛𝑑) log(𝑛𝑑/𝛿)

4

)
≤ exp

(
−
𝐶𝛿,𝛼 log(𝑛𝑑)

4

)
(for sufficiently large 𝑛,𝑑)

≤ 𝛿/4

In the second line we made use of the well-known fact that the binomial distribution stochastically
dominates the hypergeomtric distribution. The final inequality follows from observing a similar
expression in the calculation for Pr[¬E1].

Note that by a union bound we have Pr [¬(E1 ∩ E2)] ≤ 𝛿/2. It remains to show that the second
term in Equation (48) is also upper bounded by 𝛿/2. Recall that if the event E1 ∩ E2 occurs, then
then there will be some pair of subsets 𝑆1, 𝑆2 such that every coordinate contains signal from the
planted vector. Note also that sum of these entries follows the Gaussian distribution 𝑁 (𝛼𝑠1𝑠2, 𝑠1𝑠2).
It is not hard to see that

Pr
𝐷planted

 max
𝑆1⊆[𝑛], |𝑆1 |=𝑠1
𝑆2⊆𝑅, |𝑆2 |=𝑠2

∑︁
𝑗∈𝑆1

∑︁
𝑖∈𝑆2

𝑥
𝑗

𝑖
< 𝜏

��� E1 ∩ E2

 ≤ Pr
𝑍∼𝑁 (𝛼𝑠1𝑠2,𝑠1𝑠2 )

[𝑍 < 𝜏] = Pr
𝑍∼𝑁 (0,1)

[
𝑍 <

𝜏 − 𝑠1𝑠2𝛼√
𝑠1𝑠2

]
.

Let 𝑡 =
√︁

2 log(4/𝛿). It suffices to show that 𝑠1𝑠2𝛼 ≥ 𝜏 + 𝑡√𝑠1𝑠2. Indeed, the application of standard
Gaussian tail bound would imply that the second term in Equation (48) is at most 𝛿/4. This in turn
would confirm that the total failure probability is at most 3𝛿/4.
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We now show through a series of calculations that the desired inequality holds. We will in fact
show that

𝛼2 ≥ 2
(
𝜏

𝑠1𝑠2

)2
+ 2

(
𝑡

√
𝑠1𝑠2

)2
≥

(
𝜏 + 𝑡√𝑠1𝑠2
𝑠1𝑠2

)2

Note that the second inequality follows from the fact that 2𝑎2 + 2𝑏2 ≥ (𝑎 + 𝑏)2, so we only need to
establish the first inequality.

Let 𝑠 = 𝑠1 = 𝑠2 and 𝑁 =
(
𝑛
𝑠1

) ( |𝑅 |
𝑠2

)
. Since 𝑡2 = 2 log(4/𝛿), we can rewrite the constant 𝐶𝛿,𝛼 = 8+2𝑡2

𝛼2 .
Equivalently, we have

𝛼2 =
8 + 2𝑡2
𝐶𝛿,𝛼

=
4

𝐶𝛿,𝛼
+ 4 + 2𝑡2

𝐶𝛿,𝛼
.

We will show that this value of 𝛼 is in fact sufficient. That is, we will show that

𝛼2 ≥ 2𝜏2

𝑠4 + 2𝑡2

𝑠2

Substituting the definition of 𝜏2 = 2𝑠2 log(2𝑁 /𝛿) into the expression on the right hand side of our
target inequality, we can derive that

2𝜏2

𝑠4 + 2𝑡2

𝑠2 =
2
(
2𝑠2 log(2𝑁 /𝛿)

)
𝑠4 + 2𝑡2

𝑠2

=
4 log(𝑁 )

𝑠2 +
4 log(2/𝛿) + 2𝑡2

𝑠2

≤
4
(
log

(
𝑛
𝑠

)
+ log

( |𝑅 |
𝑠

) )
𝑠2 +

4 log(2/𝛿) + 2𝑡2

𝑠2

≤
4 log(𝑛 |𝑅 |)

𝑠
+

4 log(2/𝛿) + 2𝑡2

𝑠2

≤
4 log(𝑛𝑑) (1 + 𝑜 (1))

𝑠
+

4 log(2/𝛿) + 2𝑡2

𝑠2

=
4(1 + 𝑜 (1))

𝐶𝛿,𝛼
+

4 log(2/𝛿) + 2𝑡2

𝑠2

=
4

𝐶𝛿,𝛼
+

(
4 · 𝑜 (1)
𝐶𝛿 , 𝛼

+
4 log(2/𝛿) + 2𝑡2

𝑠2

)
We note that for sufficiently large 𝑛,𝑑 the second term in the above expression tends to 0 and in
particular is less than the constant 4+2𝑡2

𝐶𝛿,𝛼
. Thus, our value of 𝛼 is indeed sufficient, as desired.

□

F Proofs from Section 8

In what follows, we will make use of the following observation at multiple points.
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Claim F.1. For any distribution 𝐷 ∈ {𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )}, where Σ𝑆 = 𝐼𝑡 + 𝛼𝑣𝑣⊺ and 𝑣 = 1√
ℓ
1𝑆 , and any set

𝑅 ∈ S = {[1, ℓ], [ℓ + 1, 2ℓ], . . . , [𝑡 − ℓ + 1, 𝑡]}, if 𝑥 ∼ 𝐷 , the random variable 𝑌𝑅 = 𝑥⊺1𝑅 follows a Gaussian
distribution with mean 𝔼[𝑌𝑅] = 0 and variance

𝜎2 = 1⊺
𝑅
ℂ𝑜𝑣 (𝑥, 𝑥)1𝑅 =


ℓ 𝑥 ∼ 𝑁 (0, 𝐼𝑡 )
ℓ 𝑥 ∼ 𝑁 (0, Σ𝑆 ), 𝑅 ≠ 𝑆

(1 + 𝛼)ℓ 𝑥 ∼ 𝑁 (0, Σ𝑆 ), 𝑅 = 𝑆

.

Moreover, 𝔼[𝑌 2
𝑅
] = 𝜎2 + 𝔼[𝑌𝑅]2 = 𝜎2.

We first restate and prove Lemma 8.6.

Lemma 8.6. For any set 𝑆 ∈ S, the distributions 𝑁 (0, 𝐼𝑡 ) and 𝑁 (0, Σ𝑆 ) are close (in TV distance) to their
respective truncations 𝑃0

trunc and 𝑃1,𝑆
trunc:

𝑃0

trunc − 𝑁 (0, 𝐼𝑡 )



𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡),


𝑃1,𝑆
trunc − 𝑁 (0, Σ𝑆 )





𝑇𝑉

≤ 0.01/(𝑛𝑑/𝑡).

Proof of Lemma 8.6. We proceed in a similar way as in the proof of Lemma 7.6. For each distribution
𝐷 ∈ {𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )}, Claim E.1 tells us that the TV distance is precisely the probability Pr𝑥∼𝐷 [𝑥 ∉

𝑇 ], where𝑇 is the set defined in Equation (23). We split this probability into two terms and bound
each separately. In particular, we define the set

𝑇 ′ =

{
𝑥 ∈ ℝ𝑡 : |𝑥⊺1𝑅 | ≤

√︃
2(1 + 𝛼)ℓ log(400𝑛𝑑) ∀𝑅 ∈ S

}
of values 𝑥 whose sums over ℓ-sized blocks are bounded. Note that the variables 𝑌𝑅 = 𝑥⊺1𝑅 are
mutually independent when 𝑥 ∼ 𝐷 and that further conditioning on 𝑇 ′ preserves independence
between those blocks. Note also that

Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇 ] = Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇, 𝑥 ∈ 𝑇 ′] + Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇, 𝑥 ∉ 𝑇 ′]

≤ Pr
𝑥∼𝐷 |𝑥∈𝑇 ′

[𝑥 ∉ 𝑇 ] + Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇 ′] . (49)

The majority of our analysis is devoted to obtaining a bound for the first term. Recalling the
definition of 𝑇 , we have

Pr
𝑥∼𝐷 |𝑥∈𝑇 ′

[𝑥 ∉ 𝑇 ] = Pr
𝑥∼𝐷 |𝑥∈𝑇 ′

[∑︁
𝑅

exp
(

𝛼

2(𝛼 + 1) ·
1
ℓ
(𝑥⊺1𝑅)2

)
> (𝑡/ℓ) (1 − 𝛼)−1/2 + 𝛿

]
,

where 𝛿 = 𝑑𝜖/2
√︁
(𝑡/ℓ) log(400𝑛𝑑). For this term, we will apply a concentration inequality for the

sum of independent, bounded random variables. For the second term, we will use a standard tail
bound. We begin by bounding the first term. We will make use of the following claim, which
bounds the expectation of the key term in our analysis.

Claim F.2. For any distribution 𝐷 ∈ {𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )} and any set 𝑅 ∈ S,

𝔼𝑥∼𝐷 |𝑥∈𝑇 ′

[
exp

(
𝛼

2(𝛼 + 1) ·
1
ℓ
(𝑥⊺1𝑅)2

)]
≤ (1 − 𝛼)−1/2.
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Proof. We consider the random variable 𝑌𝑅 = 𝑥⊺1𝑅 , where 𝑥 ∼ 𝐷 . Let 𝑐 = 𝛼
2(𝛼+1) ·

1
ℓ
. First note that

we can rewrite the left hand side of our target expression as follows

𝔼

[
exp(𝑐𝑌 2

𝑅 )
�� |𝑌𝐴 | ≤ √︃

2(1 + 𝛼)ℓ log(400𝑛𝑑) ∀𝐴 ∈ S
]

= 𝔼

[
exp(𝑐𝑌 2

𝑅 )
�� |𝑌𝑅 | ≤ √︃

2(1 + 𝛼)ℓ log(400𝑛𝑑)
]
. (by independence of blocks)

Next, observe that

𝔼
[
exp(𝑐𝑌 2

𝑅 )
]

= 𝔼

[
exp(𝑐𝑌 2

𝑅 )
�� |𝑌𝑅 | > √︃

2(1 + 𝛼)ℓ log(400𝑛𝑑)
] (

Pr
[
|𝑌𝑅 | >

√︃
2(1 + 𝛼)ℓ log(400𝑛𝑑)

] )
+

𝔼

[
exp(𝑐𝑌 2

𝑅 )
�� |𝑌𝑅 | ≤ √︃

2(1 + 𝛼)ℓ log(400𝑛𝑑)
] (

Pr
[
|𝑌𝑅 | ≤

√︃
2(1 + 𝛼)ℓ log(400𝑛𝑑)

] )
≥ 𝔼

[
exp(𝑐𝑌 2

𝑅 )
�� |𝑌𝑅 | ≤ √︃

2(1 + 𝛼)ℓ log(400𝑛𝑑)
]
. (since 𝑒𝑐𝑦2 is monotone)

Thus, it suffices to find an upper bound for 𝔼[exp(𝑐𝑌 2
𝑅
)]. By Claim F.1, we know that 𝑌𝑅 follows

a Gaussian distribution. Therefore, by standard properties of the Gaussian distribution we can
show that if 𝑐 < 1

2𝜎2 , then

𝔼𝑌𝑅
[
exp(𝑐𝑌 2

𝑅 )
]
=

∫ ∞

−∞

1
√

2𝜋𝜎2
exp

(
− 𝑦2

2𝜎2

)
· exp(𝑐𝑦2) 𝑑𝑦

=
1

√
2𝜋𝜎2

·
∫ ∞

−∞
exp

(
−𝑦2

(
1

2𝜎2 − 𝑐
))

𝑑𝑦

=
1

√
2𝜋𝜎2

·
√︄

𝜋

1
2𝜎2 − 𝑐

=

√︂
1

1 − 2𝜎2𝑐
.

Since 𝑐 = 𝛼
2(𝛼+1) ·

1
ℓ

and 𝛼 < 1, the required condition on 𝑐 holds and thus, we have

𝔼𝑌𝑅
[
exp(𝑐𝑌 2

𝑅 )
]
=

{
(1 + 𝛼)1/2 𝜎2 = ℓ

(1 − 𝛼)−1/2 𝜎2 = (1 + 𝛼)ℓ .
(50)

Note that since 𝛼 < 1, we have (1 + 𝛼)1/2 ≤ (1 − 𝛼)−1/2. Our desired result immediately follows.
□

Next, we recall that conditioning on the set 𝑇 ′ when 𝑥 is drawn from a distribution 𝐷 ∈
{𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )} preserves independence between the ℓ-sized blocks of coordinates of 𝑥 . Hence,
we can apply Hoeffding’s inequality to the random variables

𝑍𝑅 = exp
(

𝛼

2(𝛼 + 1) ·
1
ℓ
(𝑥⊺1𝑅)2

)
,

68



where 𝑥 is drawn from the appropriate Gaussian distribution 𝐷 further truncated on the set 𝑇 ′.
The random variable is clearly bounded as we show below:

0 ≤ 𝑍𝑅 ≤ exp
(

𝛼

2(𝛼 + 1) ·
1
ℓ

(√︃
2(1 + 𝛼)ℓ log(400𝑛𝑑)

)2
)
= (400𝑛𝑑)𝛼 ≤ (400𝑑11)𝛼 .

The final inequality follows from the fact that 𝑛 ≤ 𝑑10. Now, notice that the preceding Claim F.2
implies that for 𝛿 = 𝑑𝜖/2

√︁
(𝑡/ℓ) log(400𝑛𝑑),

Pr
[∑︁
𝑅

𝑍𝑅 ≥ (𝑡/ℓ) (1 − 𝛼)−1/2 + 𝛿
]
≤ Pr

[∑︁
𝑅

𝑍𝑅 − 𝔼

[∑︁
𝑅

𝑍𝑅

]
≥ 𝛿

]

≤ exp
©­­«−

2
(
𝑑𝜖/2

√︁
(𝑡/ℓ) log(400𝑛𝑑)

)2

(𝑡/ℓ) (400𝑑11)2𝛼

ª®®¬
= exp

(
−𝑑

𝜖−22𝛼

4002𝛼 · 2 log(400𝑛𝑑)
)

≤ (1/(400𝑛𝑑))2 (since 𝛼 < 𝜖/22, and 𝑑 is sufficiently large)
≤ 0.005/(𝑛𝑑/𝑡) .

The fourth line follows from the fact that 𝛼 < 𝜖/22 and taking 𝑑 sufficiently large. Thus, we have
obtained an upper bound of 0.005/(𝑛𝑑/𝑡) for the first term Pr𝑥∼𝐷 |𝑥∈𝑇 ′ [𝑥 ∉ 𝑇 ] in (49). Finally, we com-
pute an upper bound on the second term Pr𝑥∼𝐷 [𝑥 ∉ 𝑇 ′] for each distribution𝐷 ∈ {𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )}.

Claim F.3. For each distribution 𝐷 ∈ {𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )},

Pr
𝑥∼𝐷

[𝑥 ∉ 𝑇 ′] ≤ 0.005/(𝑛𝑑/𝑡) .

Proof. By a union bound over the sets 𝑅 ∈ {[1, ℓ], [ℓ + 1, 2ℓ], . . . , [𝑡 − ℓ + 1, 𝑡]}, the left side is at most∑
𝑅 Pr𝑥 [|𝑥⊺1𝑅 | ≥

√︁
2(1 + 𝛼)ℓ log(400𝑛𝑑)]. We again consider the random variable 𝑌𝑅 = 𝑥⊺1𝑅 and

recall Claim F.1. Hence, it follows that for each distribution 𝐷 ∈ {𝑁 (0, 𝐼𝑡 ), 𝑁 (0, Σ𝑆 )}, we have∑︁
𝑅

Pr
𝑥∼𝐷

[
|𝑥⊺1𝑅 | ≥

√︃
2(1 + 𝛼)ℓ log(400𝑛𝑑)

]
≤ (𝑡/ℓ) Pr

𝑌∼𝑁 (0,(1+𝛼 )ℓ )

[
|𝑌 | ≥

√︃
2(1 + 𝛼)ℓ log(400𝑛𝑑)

]

≤ (𝑡/ℓ) exp
©­­«−

(√︁
2(1 + 𝛼)ℓ log(400𝑛𝑑)

)2

2(1 + 𝛼)ℓ
ª®®¬

= (𝑡/ℓ) exp(− log(400𝑛𝑑))
≤ 0.005/(𝑛𝑑 (ℓ/𝑡))
≤ 0.005/(𝑛𝑑/𝑡) .

□

To conclude, we have bounded the sum of the two terms in (49) by 0.01/(𝑛𝑑/𝑡) as desired. □
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We now restate and prove Claim 8.7 below.

Claim 8.7. Let 𝜇0 and 𝜇𝑆1 be the probability density functions of 𝑃0
trunc and 𝑃1,𝑆

trunc respectively. Then, there
exists a positive constant 𝐶 such that

𝔼𝑆∼S [𝜇𝑆1 ] ≤ 𝐶𝜇0.

Proof of Claim 8.7. Let 𝑓𝑆 (𝑥) be the probability density function for𝑁 (0, Σ𝑆 ). We first apply standard
matrix identities to the matrix Σ𝑆 = 𝐼𝑑 + 𝛼𝑣𝑣⊺, where 𝑣 = 1√

ℓ
1𝑆 , to derive that

𝑓𝑆 (𝑥) = (2𝜋)−𝑡/2 |Σ𝑆 |−1/2 exp
(
−1

2𝑥
⊺Σ−1

𝑆 𝑥

)
= (2𝜋)−𝑡/2 |Σ𝑆 |−1/2 exp

(
−1

2𝑥
⊺

(
𝐼𝑑 −

𝛼𝑣𝑣⊺

𝛼 + 1

)
𝑥

)
(Sherman-Morrison identity)

= (2𝜋)−𝑡/2(1 + 𝛼)−1/2 exp
(
−1

2𝑥
⊺

(
𝐼𝑑 −

𝛼𝑣𝑣⊺

𝛼 + 1

)
𝑥

)
(Matrix-determinant lemma)

= 𝑓0(𝑥) (1 + 𝛼)−1/2 exp
(

𝛼

2(𝛼 + 1) (𝑥
⊺𝑣)2

)
= 𝑓0(𝑥) (1 + 𝛼)−1/2 exp

(
𝛼

2(𝛼 + 1) ·
1
ℓ
(𝑥⊺1𝑆 )2

)
.

For every 𝑥 ∈ 𝑇 , we take expectation over 𝑆 ∈ S to get

𝔼𝑆∼S

[
𝑓𝑣 (𝑥)
𝑓0(𝑥)

]
= (1 + 𝛼)−1/2 · 1

(𝑡/ℓ)
∑︁
𝑆

exp
(

𝛼

2(𝛼 + 1) ·
1
ℓ
(𝑥⊺1𝑆 )2

)
≤ (1 + 𝛼)−1/2 · 1

(𝑡/ℓ)

(
(𝑡/ℓ) (1 − 𝛼)−1/2 + 𝑑𝜖/2

√︃
(𝑡/ℓ) log(400𝑛𝑑)

)
(since 𝑥 ∈ 𝑇 )

= (1 + 𝛼)−1/2((1 − 𝛼)−1/2 + 1) . (since 𝑡 ≥ ℓ𝑑𝜖 log(400𝑛𝑑))

Since 𝛼 is a constant, the above expression is bounded above by a constant, as desired. □

We restate and prove Claim 8.8 below.

Claim 8.8. Fix a constant 𝛿 ∈ (0, 1) and suppose that 𝑛 ≥ log
(

2
𝛿

) [
4𝐶2

1 (1+𝛼 )
2

𝑐𝛼2 · 𝑑
ℓ

]
. Then,

max
 Pr
𝐷null


𝑛∑︁
𝑗=1

∑︁
𝑅∈S

(∑︁
𝑖∈𝑅

𝑥
𝑗

𝑖

)2

≥ 𝜏
 , Pr
𝐷planted


𝑛∑︁
𝑗=1

∑︁
𝑅∈S

(∑︁
𝑖∈𝑅

𝑥
𝑗

𝑖

)2

≤ 𝜏

 ≤ 𝛿

Proof of Claim 8.8. For each block 𝑅 ∈ {[1, ℓ], [ℓ +1, 2ℓ], . . . , [𝑑 − ℓ +1, 𝑑]} and each sample 𝑗 ∈ [𝑚], we
define the variable 𝑌𝑅,𝑗 =

∑
𝑖∈𝑅 𝑥

𝑗

𝑖
. Since the samples are drawn independently and the covariance

matrix of the underlying Gaussian distributions are such that that coordinates from different ℓ-
sized blocks are independent, the variables 𝑌𝑅,𝑗 are all independent. We also recall properties of
𝑌𝑅,𝑗 given by Claim F.1.

Our approach is to apply Bernstein’s inequality to the random variables 𝑍𝑅,𝑗 = 𝑌 2
𝑅,𝑗

− 𝔼[𝑌 2
𝑅,𝑗

].
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Proposition F.4 (Bernstein’s inequality). Let 𝑍1, . . . , 𝑍𝑁 be independent, mean-zero, sub-exponential
random variables. Then for every 𝑡 ≥ 0, we have

Pr
[����� 𝑁∑︁
𝑖=1

𝑍𝑖

����� ≥ 𝑡
]
≤ 2 exp

[
−𝑐 min

(
𝑡2∑𝑛

𝑖=1 ∥𝑍𝑖 ∥2 ,
𝑡

max𝑖 ∥𝑍𝑖 ∥

)]
,

where 𝑐 > 0 is an absolute constant, and ∥𝑋 ∥ = inf{𝐾 > 0 : 𝔼[exp( |𝑋 |/𝐾)] ≤ 2}.

It is straightforward to verify that the variables 𝑍𝑅,𝑗 are independent and mean-zero. We also
remark that 𝑍𝑅,𝑗 ∼ 𝕍𝑎𝑟 (𝑌𝑆,𝑗 ) (𝑋 − 1) where 𝑋 is a chi-squared random variable with one degree
of freedom. By standard properties of the chi-squared distribution, it follows that 𝑍𝑅,𝑗 is a sub-
exponential random variable and ∥𝑍𝑅,𝑗 ∥ ≤ 𝕍𝑎𝑟 (𝑌𝑅,𝑗 )∥𝑋 − 1∥ = 𝐶1𝕍𝑎𝑟 (𝑌𝑅,𝑗 ), where 𝐶1 > 1 is an
absolute constant that depends on the the chi-squared distribution.

Finally, we are ready to apply Bernstein’s inequality. Let 𝜏 = 𝑛𝑑 + 𝑛𝛼ℓ/2. The probability that
the test fails to detect 𝐷null is at most

Pr
𝐷null

[∑︁
𝑗

∑︁
𝑅

𝑌 2
𝑅,𝑗 ≥ 𝜏

]
≤ Pr
𝐷null

[∑︁
𝑗

∑︁
𝑅

𝑍𝑅,𝑗 ≥ 𝜏 −
∑︁
𝑗

∑︁
𝑅

𝔼[𝑌 2
𝑅,𝑗 ]

]
= Pr
𝐷null

[∑︁
𝑗

∑︁
𝑅

𝑍𝑅,𝑗 ≥ 𝜏 − 𝑛(𝑑/ℓ)ℓ
]

(by Claim F.1)

≤ Pr
𝐷null

[�����∑︁
𝑗

∑︁
𝑅

𝑍𝑅,𝑗

����� ≥ 𝑛𝛼ℓ/2
]
.

Similarly, the probability that the test fails to detect 𝐷planted is at most

Pr
𝐷planted

[∑︁
𝑗

∑︁
𝑅

𝑌 2
𝑅,𝑗 < 𝜏

]
≤ Pr
𝐷planted

[∑︁
𝑗

∑︁
𝑅

𝑍𝑅,𝑗 < 𝜏 −
∑︁
𝑗

∑︁
𝑅

𝔼[𝑌 2
𝑅,𝑗 ]

]
= Pr
𝐷planted

[∑︁
𝑗

∑︁
𝑅

𝑍𝑅,𝑗 < 𝜏 − 𝑛 ((𝑑/ℓ − 1)ℓ + (1 + 𝛼)ℓ)
]

(by Claim F.1)

≤ Pr
𝐷planted

[�����∑︁
𝑗

∑︁
𝑅

𝑍𝑅,𝑗

����� ≥ 𝑛𝛼ℓ/2
]
.

In either case, taking 𝑛 ≥ log
(

2
𝛿

) [
4𝐶2

1 (1+𝛼 )
2

𝑐𝛼2 · 𝑑
ℓ

]
the failure probability is at most

2 exp
[
−𝑐 min

(
𝑛2(𝛼ℓ/2)2

𝑛(𝑑/ℓ) ·𝐶2
1 ((1 + 𝛼)ℓ)2 ,

𝑛(𝛼ℓ/2)
𝐶1(1 + 𝛼)ℓ

)]
= 2 exp

[
− 𝑐𝛼

2𝐶1(1 + 𝛼)𝑛min
(

𝛼ℓ

2𝐶1𝑑 (1 + 𝛼) , 1
)]

≤ 2 exp
[
− 𝑐𝛼

2𝐶1(1 + 𝛼)𝑛 ·
(

𝛼ℓ

2𝐶1𝑑 (1 + 𝛼)

)]
(since 𝛼 < 1, ℓ ≤ 𝑑 and 𝐶1 > 1)
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= 2 exp
[
− 𝑐𝛼2ℓ

4𝐶2
1 (1 + 𝛼)2𝑑

𝑛

]
≤ 𝛿

as desired. □
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