Memory as a lens to understand efficient
learning and optimization

Vatsal Sharan (USC)

010001111010110100101101101010112010
110101000100100101101111010112101010
01110110101101110011001101010010010
10101001001001110111100 10010101101

10010 00100111101101111 01101010001
01101 04n4n4444n44r\r\4r\4 n4n41100100

01001 Machine Leaming, 10111

MUH i ““M(&= ===\l 101

l T e =1 01
1 1

- = Plil= 1l =
= % ’m I =}
'; %H il %%n ‘/// .—.;_j: =

010001111010110100101101101010112010
110101000100100101101111010112101010
01110110101101110011001101010010010
10101001001001110111100 10010101101

10010 00100111101101111 01101010001
01101 Odn4n4444n44r\r\4r\4 n4n41100100

01001 Machine Leaming, 10111
1 o1 SRRV IR = = 10
0 0173 Nl N 0 01

" Optimization El 1

algorithm - 11 =11 0

How do information and
computation interact for
optimization?

///‘

O p timization

Memory as the Computational Resource

W\

Traditionally in TCS, Memory has been a fundamental computational resource

Pic: Quanta Magazine

Memory is a Constraint in Many Modern Practical Settings

Feature Map
B Optimizer
HEl Parameters

w
o

N
ul

N
o

Yy
ul

GPU Memory Limit
-

=
o

o
S
o
o
©
v
=)
>
2
<}
IS
o
=
©
©
'—

o (%]

Amir ©
Gholami

ST0Z ‘ZSTIONSY
9102 ‘T0ZId2N3su=g
9T0Z ‘TOTIXONS3Y
£T02 ‘Jouwuojsueld)
810¢ ‘obJe7 1y3g

Small memory Large models Huge datasets

“Memory is the dominant performance and energy bottleneck in modern computing
systems; data movement is much more expensive than computation, both in latency and
energy.” [Falcao and Ferreira, CACM, 2023]

Memory is a fundamental computation resource, is crucial in practice.

What is the role of memory in learning and optimization?
Are there tradeoffs between available memory and required information?

N

#gradient queries #data points

[This talk] Memory Dichotomy Hypothesis: It is not possible to

significantly improve on the convergence rate of known memory
efficient techniques without using significantly more memory.

[uny

™
N

Information
(#queries)

=
9]
1

U

Computation d?
(memory in bits)

Quadratic
approximation

X

X5

15t order vs. 2" order methods

I, T
g Ry Ny kgl eyt 1
"l';',',',,"l'l"'"l'll BT

o Ji
Ny l" ",
l"l,',"',"l

i
1177 aittin!
"Illllllllllll’l””,

N

Lower bounds: Convex optimization
with first-order oracle

(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with stochastic gradient oracle

(with Aaron Sidford & Greg Valiant)

Upper bounds: Better convergence
with small memory

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Information

[uny

(#queries)

=
9]
%)

d

Computation d?
(memory in bits)

Lower bounds: Convex optimization
with first-order oracle

Annie Marsden

Aaron Sidford Greg Valiant

Efficient Convex Optimization Requires Superlinear Memory,
Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, 2022

A canonical optimization problem

Consider minimizing convex,
1- Lipschitz functions:

A
|
min. F(x) :
|
x € R4 ||x|]| <1 !
:
|
|
|
|
|

A canonical optimization problem

Consider minimizing convex, VF(x)
1- Lipschitz functions: A
:
|
.,

min. F(x)

x € R4 ||x|]| <1

|

|

|

. . I
Given access to a first-order oracle: |
|

|

|

* Algorithm queries some point x
* Oracle responds with
(F (X), \d (X)) Query point x

-r——-=—=—====

Algorithms we know

Gradient Descent

Initialize x, . At time ¢, 4

Query point x; |

Receive gradient VF(x,) at x;, I

Update x;,1 = x; — 1 - VF(x;) :
1
| | —VF(x)
1
| |
1
| | |
1 !

e [>

1 !

Xe Xepr 2 Xe — 1 VF(xe)

Algorithms we know

Gradient Descent

Initialize x, . At time ¢,

Query point x;

Receive gradient VF(x,) at x;,
Update x;,1 = x; — 1 - VF(x;)

O (d) computation time per query
O(d) memory per query

Query complexity large with respect — 41
to desired error €: need €% queries '
to find € optimal answer

Algorithms we know

Gradient Descent — Suite of other techniques —
Initialize x, . At time ¢, * Based on the ellipsoid algorithm
Query point x; Does something like high-
Receive gradient VF(x,) at x; dimensional binary search
Update x;,1 = x; — 1 - VF(x;)

O (d) computation time per query * > d? computation time per query

O(d) memory per query * > d? memory per query

Query complexity large with respect ¢ Query complexity small with respect
. . _2 .

to desired error €: need €~ “ queries to desired error €: need d log e)

to find € optimal answer : : :
qgueries to find € optimal answer

Algorithms we know

Gradient Descent Suite of other techniques

Are complex
algorithms
necessary?

Algorithms we know

Gradient Descent

Initialize x, . At time ¢,

Query point x;

Receive gradient VF(x,) at x;
Update x;,; = x; —n - VF(x;)

O (d) computation time per query
O(d) memory per query

Query complexity large with respect
to desired error €: need €% queries
to find € optimal answer

Suite of other techniques

 Based on the ellipsoid algorithm
 Does something like high-

dimensional binary search

> d? computation time per query
> d? memory per query
Query complexity small with respect

. 1
to desired error €: need d log (E)
qgueries to find € optimal answer

Algorithms we know

Gradient Descent

O (d) computation time per query
O(d) memory per query

Query complexity large with respect
to desired error €: need €% queries
to find € optimal answer

Suite of other techniques

> d? computation time per query

> d? memory per query
Query complexity small with respect

. 1
to desired error €: need d log (E)
qgueries to find € optimal answer

Algorithms we know

Gradient Descent

Initialize x, . At time ¢,

Query point x;

Receive gradient VF(x,) at x;
Update x;,; = x; —n - VF(x;)

O(d) memory per query
Query complexity large with respect
to desired error €: need €% queries
to find € optimal answer

Suite of other techniques

 Based on the ellipsoid algorithm
 Does something like high-

dimensional binary search

> d? memory per query
Query complexity small with respect

. 1
to desired error €: need d log (E)
qgueries to find € optimal answer

Algorithms we know

Gradient Descent

Initialize x, . At time ¢,

Query point x;

Receive gradient VF(x,) at x;
Update x;,; = x; —n - VF(x;)

O (d) computation time per query

Query complexity large with respect
to desired error €: need €% queries
to find € optimal answer

Suite of other techniques

 Based on the ellipsoid algorithm
 Does something like high-

dimensional binary search

> d? computation time per query

Query complexity small with respect

. 1
to desired error €: need d log (E)
qgueries to find € optimal answer

Are there inherent tradeoffs
between available memory
and information requirement?

A

le??
what 15 possiPI€’

Information
(#queries)
O

Information

Gradient
descent

c2

(#queries)

dl !
08

Memory (in bits)

Cutting
plane/
Ellipsoid
methods

Info-theoretic
bounds for
optimization
algorithms

Nemirovski-Yudin'83,
Shamir’13,

Nesterov’14,

Bubeck’15,
Duchi-Jordan-
Wainwright-Wibisono’15,
Woodworth-Srebro’16,
Carmon-Duchi-Hinder-
Sidford’17ab,
Arjevani-Shamir’17,
Agarwal-Hazan’18,
Diakonikolas-Guzman’19

What is known?

Memory bounds for

streaming data
Alon-Matias-Szegedy’99,
Indyk-Woodruff’03
Bar-Yossef-Jayaram-Kumar-
Sivakumar’04,

Nelson-Le Huy’13,
Steinhardt-Duchi’15,
Braverman-Garg-Ma-Nguyen-
Woodruff’16,
Kapralov-Nelson-Pachocki-
Wang-Woodruff-Yahyazadeh’17,
Nelson-Yu’19,
Dagan-Kur-Shamir’19

Memory bounds

over finite fields

Shamir’14,
Steinhardt-Valiant-Wager’16,
Raz’17,
Moshkovitz-Moshkovitz’17
Kol-Raz-Tal’17,
Moshkovitz-Moshkovitz’18,
Garg-Raz-Tal’18,
Beame-Oveis Gharan-Yang’18,
Garg-Raz-Tal’19,

Raz-Zhan’20,
Gonen-Lovett-Moshkovitz’ 20,
Garg-Kothari-Raz’20

Memory bounds
for continuous
optimization

Information

Gradient
descent

c2

(#queries)

dl !
08

Memory (in bits)

Cutting
plane/
Ellipsoid
methods

Theorem [Marsden, Sharan, Sidford, Valiant]:
Fore > ——and 8 € 10,0.25], any (randomized) algorithm with memory

d1.25—6
poly(d)
requires at least d1t1339 first-order queries to find e-optimal point.

Gradient

descent —
&

Information
(#queries)

Cutting plane/

dlogg
Ellipsoid methods

d Memory in bits d?

Theorem [Marsden, Sharan, Sidford, Valiant]:
Fore > ——and 8 € 10,0.25], any (randomized) algorithm with memory

d1.25—6
poly(d)
requires at least d1t1339 first-order queries to find e-optimal point.

Gradient

descent —
&

Our lower bound

/

Information
(#queries)

Cutting plane/

dlogg
Ellipsoid methods

d Memory in bits d?

High-level proof

Step one

Construct a distribution over functions that seems hard to optimize with limited
memory

Step two

Relate optimizing these functions to winning a communication game

Step three

For the communication game, prove a memory/query tradeoff

Hard distribution over functions

Step one

Construct a distribution over functions that seems hard to optimize with limited
memory

Fh,A,n,p (X) — maX{T/ — P, h(x)}

d
~ Unif({il}?(d) h(x) rg[zjlv)% v{ x — iy (variant of Nemirovski function)
l

To receive first order information about /1, must make query which is reasonably
orthogonal to

Nemirovski property: To continue receiving new or informative subgradients,
qgueries must be robustly linearly independent

From optimization to winning a game

Step two

Relate optimizing these functions to winning a communication game

Fh,A,n,p (x) = max{n — p, h(x)}
h(x) = nel[?v)i vi x — iy (variant of the Nemirovski function)
l

Relating optimizing Fp, 4 (x) to winning an Orthogonal Vector Game

The Orthogonal Vector Game

Random matrix

g><d
A ~ Unif({£1}27%)

>

M-bit message Player Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

Query x;] g1 € a”Axllloo]

>

M-bit message Player Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

>

M-bit message Player Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

Query x,] g, € a”AXZHOO]

>

M-bit message Player Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

>

M-bit message Player Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

Query xm]

>

M-bit message Player ' Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

(X1, 91)
(X2, g2)
A
M-bit message Player (xm.:) Game oracle

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

(le gl)
(xZJ gZ)
e
M-bit message Player (Xm., gm)

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

M-bit message Player (Xm.; gm)

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

The Orthogonal Vector Game

Y1, Y2, '"’yk]

To win, y1, Vs, ..., Y must be:
 Roughly orthogonal to A: ||Ay;||le < 1/d*
* Robustly linearly independent

”Projspan(yl,...,yi_l)(yi)” <1- 1/d2

Player

To win, find y4, y», ..., V% Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

From Optimization to winning the Game

Lﬁeryx }
o2

g2 B
=

Optimization algorithm

Optimization oracle

M-bit memory state Fh,A(x) — maX{TIHAxHOO — P, h(x)}

From Optimization to winning the Game

Generates Nemirovski
function h
Wants to optimize Fj, 4

Random matrix

Optimization algorithm

Game oracle

>

M-bit memory state Fh,A(x) — maX{TIHAxHOO — P, h(X)}

From Optimization to winning the Game

&ery Xq] g1 € a”Axllloo]

Generates Nemirovski
function h
Wants to optimize Fj, 4

Optimization algorithm

Game oracle

>

M-bit memory state

From Optimization to winning the Game

@
®
ORORS)

9Fp 4 (x1)]

L.

Generates Nemirovski
function h
Wants to optimize Fj, 4

Optimization algorithm
Optimization oracle

>

M-bit memory state

From Optimization to winning the Game

Liery ‘.] g, € ansznoo]

Generates Nemirovski
function h
Wants to optimize Fj, 4

Optimization algorithm

Game oracle

>

M-bit memory state

From Optimization to winning the Game

@
®
ORORS)

9Fp 4 (xz)]

L.

Generates Nemirovski
function h
Wants to optimize Fj, 4

Optimization algorithm
Optimization oracle

>

M-bit memory state

Memory/Query tradeoffs for the Game

Step three

For the communication game, prove a memory/query tradeoff

If available memory < kd, then Player must make = d queries

To win, find y4, y», ..., ¥, Which are roughly orthogonal* to 4

d:dimension k: #fivectors to be returned m: #oracle queries M: size of message (in bits)

Gradient
descent

c2

Information
(#queries)

dl !
08

Our lower bound

Computation
(memory in bits)

Cutting
plane/
Ellipsoid
methods

Gradient
descent

c2

Information
(#queries)

dl !
08

Lower bound
[Blanchard-Zhang-Jaillet,
Chen-Peng]

/

Computation
(memory in bits)

Cutting
plane/
Ellipsoid
methods

Open Questions

Randomized algorithms, for poly-small €?

What happens for smooth functions?

Can you improve on the poly(1/¢€) rate of gradient
descent for super-poly small €7

Conjecture: Cannot improve gradient descent’s
convergence rate without using quadratic memory.

[This talk] Memory Dichotomy Hypothesis: It is not possible to

significantly improve on the convergence rate of known memory
efficient techniques without using significantly more memory.

Quadratic
approximation

Lower bounds: Convex optimization
with stochastic gradient oracle

X3

x5 (with Aaron Sidford & Greg Valiant)

15t order vs. 2" order methods

Memory-Sample Tradeoffs for Linear Regression with Small Error
Vatsal Sharan, Aaron Sidford, Gregory Valiant, 2019

Stochastic optimization

In many modern ML settings, min. F (x)
we work with stochastic |
gradients g(x): x € R% ||x|| <1

Elg(x)] = VF(x)

If F(x) is expected loss with respect to data points sampled from some
distribution, we can find stochastic gradient using a randomly sampled
labelled datapoint.

What is the tradeoff between available memory and number of samples
needed to optimize?

Linear model: Data vs. Memory?

x,a; € R?
b, € R

x,a; € R?
b, € R

x,a; € R?
b, € R

x,a; € R?
b, € R

x,a; € R?
b, € R

1.
2.

Memory = #bits
Samples drawn
from Gaussian

-2
-6] 2 —
<a5,x > = b5

x,a; € R?
b, € R

What can you do?

Gaussian Elimination

4 -1 -10
8 -6 4

What can you do?

Gaussian Elimination

1 -1/4 -5/2
8 -6 4

What can you do?

Gaussian Elimination

1 -1/4 -5/2
0 -8 -16

What can you do?

Gaussian Elimination

1 -1/4 -5/2
0 1 2

What can you do?

Gaussian Elimination

1-1/4 | | -2 -5/2
0 1 2 2

d examples

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (a;, b;) . Update x; — xj.1.

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

x, = (—=0.25,0.98)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

x, = (—=0.25,0.98)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

x, = (—=0.74,2.24)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

X3 = (—1.64,2.70)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

xs = (=2.27,2.53)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

xe = (—1.99,2.52)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

x, = (—1.83,2.47)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

xg = (—1.92,2.48)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

Xo = (—2.20,2.17)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

X0 = (—1.97,2.08)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent

Initialize xy . At time i,
Get (a;, b;) . Update x; — xj.1.

X, = (=2.02,2.01)

1 -1/4

0

Gaussian Elimination

1

-2
2

What can you do?

d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (Cli, bl) . Update Xi ™ Xj41q -

X1, = (=2.01,2.00)

Gaussian Elimination

What can you do?

1 -1/4 -2 |
0 1 2
d examples

2

-5/ 2—

Gradient Descent
Initialize xy . At time i,
Get (a;, b;) . Update x; — xj.1.

X1, = (=2.01,2.00)

) | - .\l1 7~ |
W], U]1), ‘_‘ -]

~ d memory

1 -1/4

Gaussian Elimination

What can you do?

- _
0 1 2
d examples

2

-5/ 2—

Gradient Descent

Initialize xy . At time i,
Get (a;, b;) . Update x; — xj.1.

X1, = (=2.01,2.00)

~ d memory

Gaussian Elimination Gradient Descent

d examples

~ d memory

Gaussian Elimination

d examples
Gradient descent
(d,>d) @
? 2 7
s @ @ e
a ?
‘ ‘? Gaussian
. elimination
(d,d) Memory (,)

Gradient Descent

~ d memory

Gaussian Elimination Gradient Descent

d examples
~ d memory
tihdrelardasetihod Quadratic
(z d,) O approximation
"
-I(B &‘(\.\0()(\’?"8
S e
v° 2itevder g
etietinedon Xs *a
O >

(d,d) Memory () 15t order vs. 2"9 order methods

Informal Theorem[Sharan, Sidford, Valiant]:

Any sub-quadratic memory algorithm requires more data.

Gradient descent

(d,>d) 9

Data

Gaussian elimination

(d»d)% Memory (d?c;)

>

Informal Theorem[Sharan, Sidford, Valiant]:

Any sub-quadratic memory algorithm requires more data.

Gradient descent

(d,>d) 9

Data

Gaussian elimination

(d, d)% Memory (d?, d)

Informal Theorem[Sharan, Sidford, Valiant]:

Any sub-quadratic memory algorithm requires more data.

Gradient descent

(d,) @

samples F-----—---cmmmo o
O
=)
(C
= Gaussian elimination
>
(d, d) @

DISCUSSION

1.5 order method?

Quadratic
approximation

15t order vs. 2" order methods

Our Conjecture:

Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

1.5 order method?

15t order method

Memory determines the
best sample complexity

2"d order method

‘ >

Memory

Our Conjecture:

Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

1.5 order method?

Our Conjecture:

Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

lll-conditioned distribution:

rirst YADRATICMEMORY @R<ompies
4 -Nishihara-Jordan’16, Agarwal-
787"

(e.g. Needell-Srebro-Ward’16, r
Bullins-HaZsfY 17 etc. etc.)

-

Conjecture: There |s‘é"'|*,_.-c,las,s ?l'inear systems with
condition number k, such'that any algorithm either
requires Q(d

Jymory or W(K) examples.

1.5th order method?

Our Conjecture:

Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

lll-conditioned distribution:

QUADRATIGCMEMORY OR...

)
[This talk] Memory Dichotomy Hypothesis: It is not possible to

significantly improve on the convergence rate of known memory
efficient techniques without using significantly more memory.

CONDITION NUMBER Sﬁﬁ?

Broader question:
Understand the landscape of
continuous optimization with

memory constraints.

Big-Step-Little-Step: Efficient Gradient Methods for Objectives with Multiple Scales
Jonathan Kelner, Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, Honglin Yuan, 2022

Jon Kelner Annie Marsden Aaron Sidford Greg Valiant Honglin Yuan

Upper bounds: Better convergence
with small memory

Using memory considerations to develop
more efficient optimization algorithms

Memory-efficient Algorithms for Optimization

Our Conjecture: There is a class of linear systems with
condition number k, such that any algorithm either
requires or examples.

With more structure, can get best of both worlds!

Result (Informal):
For some structured linear systems, can get
d polylog(kx) examples with O(d) memory!

This is true more broadly beyond linear systems,
and holds for any "multiscale” optimization problem.

Memory-efficient Algorithms for Optimization

Result (Informal):
For some structured linear systems, can get
d polylog(k) examples with O(d) memory!

Linear system has
small number of 1
unique eigenvalues: 1/k

Memory-efficient Algorithms for Optimization

Linear system has two unique eigenvalues

Too large for 1
* larger — Need about = k

) N
eigendirections! 1 P steps because of @‘I

1/k rd small eigendirections

—— —

Safest choice: Take step size = 1

Aggressive choice: Take step size = k

7]
NI

Solution: Follow large step with small steps to fix error along larger
eigendirections

Memory-efficient Algorithms for Optimization

Theorem (Kelner, Marsden, Sharan, Sidford, Yuan, Valiant):
For some structured linear systems, recursive sequence of large

and small steps solves the problem with d polylog(k)
examples/gradient queries and O(d) memory

1/L1 | [] ™Y |
0] [i
N : _
B e N s T [| |
o /L °) . F
(O] d e
apileee] fel e ool Fedl Fed
iterations

—.—1 BSLS1 ©__ BSLS2 [_1 BSLS3

Using theory to understand what deep learning
models learn?

Errors v.s. # In-Context Examples Errors v.s. # In-Context Examples

Iransformers Layer #02

Errors
Errors

Transformers Layer #03
—— Transformers Layer #04 [terative Newton #04 (5 steps)

—— Transformers Layer #05 Iterative Newton #05 (8 steps)
1021 —— Transformers Layer #06 11 —— Tterative Newton #06 (10 steps)
—— Transformers Layer #07 —— Iterative Newton #07 (14 steps)
—— Transformers Layer #08 —— Iterative Newton #08 (17 steps)
—— Transformers Layer #09 —— Iterative Newton #09 (20 steps)
—— Transformers Layer #10 —— Iterative Newton #10 (21 steps)
—— Transformers Layer #11 —— Iterative Newton #11 (21 steps)
—— Transformers Layer #12 —— Iterative Newton #12 (21 steps)
107 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 w2 3() 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
In-Context Examples # In-Context Examples

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models
Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan, 2023

Using theory to understand what deep learning
models learn?

Errors v.s. # In-Context Examples Errors v.s. # In-Context Examples

Deging Fu Tian-Qi Chen Robin Jia

1 1 3 1
In-Context Examples # In-Context Examples

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models
Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan, 2023

Transformers for linear regression

D107 [x®170 7 D110 @10 0 7
X X X X

U5 2% ;| In-Context| ™5, [| ¢ 17552

@] @] 20 ,@ :

- X1) E 1 t L t+1

Le®] Ly 1] Ly Pl Lyl [xD]yeeq]

“Applied theory”?
Claim:

1. We can use understanding of statistical and computational
gaps to understand mechanisms of models

2. Available memory may explain differences in behavior
between different architectures

1. We can use understanding of statistical and
computational gaps to understand mechanisms of models

Errors v.s. # In-Context Examples

100 <3
— Based on rate of
" e convergence, argue that
\ Transformers cannot be
. doing any 15t order method
101,

Transformers Layer #03

Errors

—— Transformers Layer #04
—— Transformers Layer #05
—— Transformers Layer #06

Test on ill-conditioned
settings where ga
10—2 { —— Transformers Layer #07 g st g pn d
—— Transformers Layer #08 betwee N 1 an d 2 (0] rd er
—— Transformers Layer #09 RSN .
—— Transformers Layer #10 methOdS () Ia rgeSt

—— Transformers Layer #11

—— Transformers Layer #12
Ordinary Least Squares

== Jterative Newton (21 Steps)

--+-- Gradient Descent (800 Steps)

0 4 8) 16 20
In-Context Examples

1073

2. Available memory may explain differences in behavior
between different architectures

" '
- Transformerlayer2 ~ ISTMlayer
N N

.........

x(1) (1)
(2) x() In- Context
0 Examples

(d) (d)

0 | xil)
x®

0 I :

t+1 Ll

2. Available memory may explain differences in behavior
between different architectures

Errors v.s. # In-Context Examples Errors v.s. # In-Context Examples
Transformers seem to be . LSTMs seem to be doing a
107! 107! A
doing a 2"d order method 15t order method
& &
g [ransformers Layer #02 g
M Transformers Layer #03 M
—— Transformers Layer #04 LSTM Layer #02
—— Transformers Layer #05 —— LSTM Layer #03
121 —— Transformers Layer #06 121 —— LSTM Layer #04
—— Transformers Layer #07 —— LSTM Layer #05
—— Transformers Layer #08 —— LSTM Layer #06
—— Transformers Layer #09 —— LSTM Layer #07
—— Transformers Layer #10 —— LSTM Layer #08
—— Transformers Layer #11 —— LSTM Layer #09
—— Transformers Layer #12 —— LSTM Layer #10
1073 1073

[4] i é I:} 11 é 6‘3 'v7 ;3 (1) 1’0 1'1 1'2 1‘3 1‘4 1'5 1’6 1'7 1‘8 1‘9 2‘0 2r1 2‘2 0 i é Z‘i 1‘1 f; (‘3 "7 é é 1‘0 1'1 1'2 1'3 1’4 1'5 1'6 1'7 1‘8 1'9 2‘0 2rl 2‘2
In-Context Examples # In-Context Examples

Memory is a fundamental computation resource. N\
Memory considerations are crucial in practice. O p timization

‘“\
What is the role of memory in learning and optimization? Z
Are there tradeoffs between available memory and /M

information requirement?

Memory Dichotomy Hypothesis: It is not possible to significantly
improve on the convergence rate of known memory efficient
techniques without using significantly more memory.

* Memory determines the best available convergence rate
* Memory provides a separation between simple and complex techniques
 New problem structures where we can circumvent lower bounds, new variants of GD

