
Memory as a lens to understand efficient
learning and optimization

Vatsal Sharan (USC)

Op timization

Me
mory

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0

1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0

1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1

1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1

0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0

0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1

0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1

0 1 1 0 0 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 1 0

1 1 0

0

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0

1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0

1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1

1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1

0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0

0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1

0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1

0 1 1 0 0 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 1 0

1 1 0

0

Optimization
algorithm

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0

1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0

1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1

1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1

0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0

0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1

0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1

0 1 1 0 0 1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 1 0

1 1 0

0

Optimization
algorithm

How do information and
computation interact for

optimization?

Memory as the Computational Resource

Pic: Quanta Magazine

Traditionally in TCS, Memory has been a fundamental computational resource

Memory is a Constraint in Many Modern Practical Settings

Small memory Large models Huge datasets

``Memory is the dominant performance and energy bottleneck in modern computing
systems; data movement is much more expensive than computation, both in latency and
energy.” [Falcao and Ferreira, CACM, 2023]

Amir
Gholami

Memory is a fundamental computation resource, is crucial in practice.

What is the role of memory in learning and optimization?
Are there tradeoffs between available memory and required information?

[This talk] Memory Dichotomy Hypothesis: It is not possible to
significantly improve on the convergence rate of known memory
efficient techniques without using significantly more memory.

#gradient queries #data points

(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with stochastic gradient oracle

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Upper bounds: Better convergence
with small memory

Lower bounds: Convex optimization
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with stochastic gradient oracle

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Upper bounds: Better convergence
with small memory

Efficient Convex Optimization Requires Superlinear Memory,
Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, 2022

Annie Marsden Aaron Sidford Greg Valiant

A canonical optimization problem
Consider minimizing convex,
1- Lipschitz functions:

min. 𝐹(𝑥)
𝑥 ∈ 𝑅!: 𝑥 ≤ 1

A canonical optimization problem

min. 𝐹(𝑥)
𝑥 ∈ 𝑅!: 𝑥 ≤ 1

Given access to a first-order oracle:

• Algorithm queries some point 𝑥
• Oracle responds with
(𝐹 𝑥 , ∇𝐹 𝑥) Query point 𝑥

𝐹 𝑥

∇𝐹 𝒙Consider minimizing convex,
1- Lipschitz functions:

Algorithms we know

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

Gradient Descent

−∇𝐹 𝒙

𝑥! 𝑥!"# → 𝑥! − 𝜂 ⋅ ∇𝐹 𝑥!

Algorithms we know

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

Gradient Descent

• 𝑂(𝑑) computation time per query
• 𝑂(𝑑) memory per query
• Query complexity large with respect

to desired error 𝜖: need 𝜖%& queries
to find 𝜖 optimal answer

Algorithms we know

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

Gradient Descent Suite of other techniques
• Based on the ellipsoid algorithm
• Does something like high-

dimensional binary search

• 𝑂(𝑑) computation time per query
• 𝑂(𝑑) memory per query
• Query complexity large with respect

to desired error 𝜖: need 𝜖%& queries
to find 𝜖 optimal answer

• > 𝑑& computation time per query
• > 𝑑& memory per query
• Query complexity small with respect

to desired error 𝜖: need 𝑑 log $
'

queries to find 𝜖 optimal answer

Algorithms we know
Gradient Descent Suite of other techniques

Algorithms we know
Gradient Descent Suite of other techniques

• 𝑂(𝑑) computation time per query
• 𝑂(𝑑) memory per query
• Query complexity large with respect

to desired error 𝜖: need 𝜖%& queries
to find 𝜖 optimal answer

• > 𝑑& computation time per query
• > 𝑑& memory per query
• Query complexity small with respect

to desired error 𝜖: need 𝑑 log $
'

queries to find 𝜖 optimal answer

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

• Based on the ellipsoid algorithm
• Does something like high-

dimensional binary search

Algorithms we know
Gradient Descent Suite of other techniques

• 𝑂(𝑑) computation time per query
• 𝑂(𝑑) memory per query
• Query complexity large with respect

to desired error 𝜖: need 𝜖%& queries
to find 𝜖 optimal answer

• > 𝑑& computation time per query
• > 𝑑& memory per query
• Query complexity small with respect

to desired error 𝜖: need 𝑑 log $
'

queries to find 𝜖 optimal answer

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

• Based on the ellipsoid algorithm
• Does something like high-

dimensional binary search

Algorithms we know

• 𝑂(𝑑) computation time per query
• 𝑂(𝑑) memory per query
• Query complexity large with respect

to desired error 𝜖: need 𝜖%& queries
to find 𝜖 optimal answer

• > 𝑑& computation time per query
• > 𝑑& memory per query
• Query complexity small with respect

to desired error 𝜖: need 𝑑 log $
'

queries to find 𝜖 optimal answer

Gradient Descent Suite of other techniques

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

• Based on the ellipsoid algorithm
• Does something like high-

dimensional binary search

Algorithms we know

• 𝑂(𝑑) computation time per query
• 𝑂(𝑑) memory per query
• Query complexity large with respect

to desired error 𝜖: need 𝜖%& queries
to find 𝜖 optimal answer

• > 𝑑& computation time per query
• > 𝑑& memory per query
• Query complexity small with respect

to desired error 𝜖: need 𝑑 log $
'

queries to find 𝜖 optimal answer

Gradient Descent Suite of other techniques

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

• Based on the ellipsoid algorithm
• Does something like high-

dimensional binary search

Are there inherent tradeoffs
between available memory

and information requirement?

Memory

In
fo

rm
at

io
n

(#
qu

er
ie

s) What is possible??

Memory (in bits)

In
fo

rm
at

io
n

(#
qu

er
ie

s)

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting
plane/

Ellipsoid
methods

Info-theoretic
bounds for
optimization
algorithms
Nemirovski-Yudin'83,
Shamir’13,
Nesterov’14,
Bubeck’15,
Duchi-Jordan-
Wainwright-Wibisono’15,
Woodworth-Srebro’16,
Carmon-Duchi-Hinder-
Sidford’17ab,
Arjevani-Shamir’17,
Agarwal-Hazan’18,
Diakonikolas-Guzman’19

Memory bounds for
streaming data
Alon-Matias-Szegedy’99,
Indyk-Woodruff’03
Bar-Yossef-Jayaram-Kumar-
Sivakumar’04,
Nelson-Le Huy’13,
Steinhardt-Duchi’15,
Braverman-Garg-Ma-Nguyen-
Woodruff’16,
Kapralov-Nelson-Pachocki-
Wang-Woodruff-Yahyazadeh’17,
Nelson-Yu’19,
Dagan-Kur-Shamir’19

Memory bounds
over finite fields
Shamir’14,
Steinhardt-Valiant-Wager’16,
Raz’17,
Moshkovitz-Moshkovitz’17
Kol-Raz-Tal’17,
Moshkovitz-Moshkovitz’18,
Garg-Raz-Tal’18,
Beame-Oveis Gharan-Yang’18,
Garg-Raz-Tal’19,
Raz-Zhan’20,
Gonen-Lovett-Moshkovitz’20,
Garg-Kothari-Raz’20

Memory bounds
for continuous
optimization

What is known?

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting
plane/

Ellipsoid
methods

In
fo

rm
at

io
n

(#
qu

er
ie

s)

Memory (in bits)

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting plane/
Ellipsoid methods

Memory in bits

In
fo

rm
at

io
n

(#
qu

er
ie

s)

Theorem [Marsden, Sharan, Sidford, Valiant]:
For 𝜖 ≥ $

./01 2
and 𝛿 ∈ [0,0.25], any (randomized) algorithm with memory 𝒅𝟏.𝟐𝟓%𝜹

requires at least 𝒅𝟏#𝟏.𝟑𝟑𝜹 first-order queries to find 𝜖-optimal point.

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting plane/
Ellipsoid methods

Our lower bound

Memory in bits

In
fo

rm
at

io
n

(#
qu

er
ie

s)

Theorem [Marsden, Sharan, Sidford, Valiant]:
For 𝜖 ≥ $

./01 2
and 𝛿 ∈ [0,0.25], any (randomized) algorithm with memory 𝒅𝟏.𝟐𝟓%𝜹

requires at least 𝒅𝟏#𝟏.𝟑𝟑𝜹 first-order queries to find 𝜖-optimal point.

High-level proof

Construct a distribution over functions that seems hard to optimize with limited
memory

Step one

Relate optimizing these functions to winning a communication game

Step two

For the communication game, prove a memory/query tradeoff

Step three

Hard distribution over functions

Construct a distribution over functions that seems hard to optimize with limited
memory

Step one

𝐹!,#,$,% 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥

𝐴 ∼ Unif(±1
!
#×!) ℎ 𝑥 = max

%∈[(]
𝑣%*𝑥 − 𝑖𝛾 (variant of Nemirovski function)

To receive first order information about ℎ, must make query which is reasonably
orthogonal to 𝐴
Nemirovski property: To continue receiving new or informative subgradients,
queries must be robustly linearly independent

From optimization to winning a game

Relate optimizing these functions to winning a communication game

Step two

Relating optimizing 𝐹9,; 𝑥 to winning an Orthogonal Vector Game

𝐹!,#,$,% 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥

ℎ 𝑥 = max
%∈[(]

𝑣%*𝑥 − 𝑖𝛾 (variant of the Nemirovski function)

The Orthogonal Vector Game

A

Random matrix

𝐴 ∼ Unif(±1
!
"×!)

Game oracle𝑀-bit message Player

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

Game oracle𝑀-bit message Player

Query 𝑥# 𝑔# ∈ 𝜕 𝐴𝑥# /

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

Game oracle𝑀-bit message Player

(𝑥#, 𝑔#)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

Game oracle𝑀-bit message Player

Query 𝑥0 𝑔0 ∈ 𝜕 𝐴𝑥0 /

(𝑥#, 𝑔#)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

Game oracle𝑀-bit message Player

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

Game oracle𝑀-bit message Player

Query 𝑥1 𝑔1 ∈ 𝜕 𝐴𝑥1 /

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

.

.

.

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

Game oracle𝑀-bit message Player

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

.

.

.
(𝑥1 , 𝑔1)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

𝑀-bit message Player

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

.

.

.
(𝑥1 , 𝑔1)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

The Orthogonal Vector Game

𝑀-bit message Player

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

.

.

.
(𝑥1 , 𝑔1)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

….

The Orthogonal Vector Game

Player

𝑦5, 𝑦#, … , 𝑦6

To win, 𝑦!, 𝑦", … , 𝑦# must be:
• Roughly orthogonal to 𝐴: 𝐴𝑦$ % ≤ 1/𝑑&
• Robustly linearly independent

Proj'()* +$,…,+%&$ (𝑦$) ≤ 1 − 1/𝑑"

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

From Optimization to winning the Game

Optimization algorithm
Optimization oracle

𝑀-bit memory state

Query 𝑥 𝑔2",𝑨(𝑥)

𝐹!,# 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥

Optimization algorithm

𝑀-bit memory state

Game oracle

A

Random matrix

𝒉

Generates Nemirovski
function ℎ
Wants to optimize 𝐹',𝑨

From Optimization to winning the Game

𝐹!,# 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥

Optimization algorithm

𝑀-bit memory state

Game oracle

𝒉

Generates Nemirovski
function ℎ
Wants to optimize 𝐹',𝑨

Query 𝑥# 𝑔# ∈ 𝜕 𝐴𝑥# /

From Optimization to winning the Game

Optimization algorithm

𝑀-bit memory state

𝒉

Generates Nemirovski
function ℎ
Wants to optimize 𝐹',𝑨

Query 𝑥# 𝑔2",𝑨(𝑥#)

Optimization oracle

From Optimization to winning the Game

Optimization algorithm

𝑀-bit memory state

Game oracle

𝒉

Generates Nemirovski
function ℎ
Wants to optimize 𝐹',𝑨

Query 𝑥0 𝑔0 ∈ 𝜕 𝐴𝑥0 /

From Optimization to winning the Game

Optimization algorithm

𝑀-bit memory state

𝒉

Generates Nemirovski
function ℎ
Wants to optimize 𝐹',𝑨

Query 𝑥0 𝑔2",𝑨(𝑥0)

Optimization oracle

From Optimization to winning the Game

Memory/Query tradeoffs for the Game

If available memory < 𝑘𝑑, then Player must make ≈ 𝑑 queries

For the communication game, prove a memory/query tradeoff

Step three

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting
plane/

Ellipsoid
methodsComputation

(memory in bits)

In
fo

rm
at

io
n

(#
qu

er
ie

s) Our lower bound

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting
plane/

Ellipsoid
methodsComputation

(memory in bits)

In
fo

rm
at

io
n

(#
qu

er
ie

s)

Lower bound
[Blanchard-Zhang-Jaillet,

Chen-Peng]

𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting
plane/

Ellipsoid
methodsComputation

(memory in bits)

In
fo

rm
at

io
n

(#
qu

er
ie

s)
Lower bound

[J23,23]

• Randomized algorithms, for poly-small 𝜖?
• What happens for smooth functions?
• Can you improve on the poly(1/𝜖) rate of gradient

descent for super-poly small 𝝐?

Conjecture: Cannot improve gradient descent’s
convergence rate without using quadratic memory.

Open Questions

[This talk] Memory Dichotomy Hypothesis: It is not possible to
significantly improve on the convergence rate of known memory
efficient techniques without using significantly more memory.

(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with stochastic gradient oracle

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Upper bounds: Better convergence
with small memory

Memory-Sample Tradeoffs for Linear Regression with Small Error
Vatsal Sharan, Aaron Sidford, Gregory Valiant, 2019

Stochastic optimization
In many modern ML settings,
we work with stochastic
gradients 𝑔 𝑥 :

E 𝑔 𝑥 = ∇𝐹(𝑥)

min. 𝐹(𝑥)

𝑥 ∈ 𝑅2: 𝑥 ≤ 1

If 𝐹(𝑥) is expected loss with respect to data points sampled from some
distribution, we can find stochastic gradient using a randomly sampled
labelled datapoint.

What is the tradeoff between available memory and number of samples
needed to optimize?

𝒙

Linear model: Data vs. Memory?

𝒃𝑨

43

𝒙

<𝒂𝟏, 𝒙 > = 𝑏"

Find 𝑥

𝒂𝟏 𝑏"

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅
5

8-2
𝒙

Find 𝑥

𝒂𝟐 𝑏$

<𝒂𝟐, 𝒙 > = 𝑏$

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

2

10-7 𝒙

Find 𝑥

<𝒂𝟑, 𝒙 > = 𝑏&

𝒂𝟑 𝑏&

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-2

-104
𝒙

Find 𝑥

𝒂𝟒 𝑏(

<𝒂𝟒, 𝒙 > = 𝑏(

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-1

4-8

𝒙

Find 𝑥

<𝒂𝟓, 𝒙 > = 𝑏*

𝒂𝟓 𝑏*

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-6

4

Find 𝑥

-2

2

1. Memory = #bits
2. Samples drawn

from Gaussian
<𝒂𝟓, 𝒙 > = 𝑏*

𝒂𝟓 𝑏*

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-8 -6

What can you do?

-8 -6
𝒙4 -1 -10

4

Gaussian Elimination

What can you do?

-8 -6
𝑥1 -1/4 -5/2

4

Gaussian Elimination

What can you do?

0 -8
𝒙1 -1/4 -5/2

-16

Gaussian Elimination

What can you do?

0 1
𝒙1 -1/4 -5/2

2

Gaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

Gaussian Elimination

2

d examples
≈ d2 memory

What can you do?

0 1

1 -1/4 -5/2-2
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

2

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥+ = (−0.25, 0.98)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥+ = (−0.25, 0.98)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥" = (−0.45, 0.74)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥$ = (−0.74, 2.24)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥& = (−1.64, 2.70)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥(= (−1.85, 2.74)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥* = (−2.27, 2.53)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥, = (−1.99, 2.52)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥- = (−1.83, 2.47)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥. = (−1.92, 2.48)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥/ = (−2.20, 2.17)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥"+ = (−1.97, 2.08)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥"" = (−2.02, 2.01)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥"$ = (−2.01, 2.00)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥"$ = (−2.01, 2.00)
> d examples
≈ d memory

2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

What can you do?

0 1

1 -1/4 -5/2-2
2

𝑥"$ = (−2.01, 2.00)
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$.
IniDalize 𝑥! . At time 𝑖,

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

> d examples
≈ d memory

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

> d examples
≈ d memory

> d examples
≈ d memory

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

Memory

Da
ta

(𝑑, 𝑑) (≈ 𝑑!, 𝑑)

Gradient descent
(≈ 𝑑,> 𝑑)

Gaussian
elimination

> d examples
≈ d memory

d examples
≈ d2 memory

Gradient DescentGaussian Elimination

Memory

Da
ta

(𝑑, 𝑑) (≈ 𝑑!, 𝑑)

Gradient descent
(≈ 𝑑,> 𝑑)

Gaussian
elimination
2nd order
method

1st order method

Linear
approximation

𝑥!

𝑥"

𝑥#
𝑥$𝑥%𝑥&

Quadratic
approximation

1st order vs. 2nd order methods

Anything in

between???

Informal Theorem[Sharan, Sidford, Valiant]:
Any sub-quadratic memory algorithm requires more data.

Memory

Da
ta

(𝑑, 𝑑) (𝑑!, 𝑑)

Gaussian elimination

Gradient descent
(𝑑, > 𝑑)

Memory

Da
ta

(𝑑, 𝑑) (𝑑!, 𝑑)

Gaussian elimination

Gradient descent
(𝑑, > 𝑑)

Informal Theorem[Sharan, Sidford, Valiant]:
Any sub-quadratic memory algorithm requires more data.

Informal Theorem[Sharan, Sidford, Valiant]:
Any sub-quadratic memory algorithm requires more data.

Memory

Da
ta

(𝑑0 , 𝑑)

Gaussian elimination

Gradient descent
(d , d log

1
𝜀
)

𝑑 log log #
5

samples

(𝑑, 𝑑)

DISCUSSION

Linear approximation
𝑥!

𝑥"

𝑥#
𝑥$𝑥%𝑥&

Quadratic
approximation

1.5th order method?

Our Conjecture:
Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

1st order vs. 2nd order methods

1.5th order method?

Our Conjecture:
Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

Memory
Da

ta
2nd order method

1st order method

Memory determines the
best sample complexity

Our Conjecture:
Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

1.5th order method?

Ill-conditioned distribution:

Conjecture: There is a class of linear systems with
condition number 𝜅, such that any algorithm either

requires Ω 𝑑& memory or 𝑑 poly(κ) examples.

First order methods need poly (𝜅) samples
(e.g. Needell-Srebro-Ward’16, Moritz-Nishihara-Jordan’16, Agarwal-

Bullins-Hazan’17 etc. etc.)

Our Conjecture:
Any algorithm that improves on convergence
rate of best known “first-order” methods,
requires quadratic memory.

1.5th order method?

Ill-conditioned distribution:

[This talk] Memory Dichotomy Hypothesis: It is not possible to
significantly improve on the convergence rate of known memory
efficient techniques without using significantly more memory.

Broader question:
Understand the landscape of
continuous optimization with

memory constraints.

Op timization

Me
mory

(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization
with stochastic gradient oracle

Upper bounds: Better convergence
with small memory

Big-Step-Little-Step: Efficient Gradient Methods for Objectives with Multiple Scales
Jonathan Kelner, Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, Honglin Yuan, 2022

Aaron Sidford Greg ValiantAnnie MarsdenJon Kelner Honglin Yuan

Using memory considerations to develop
more efficient optimization algorithms

Memory-efficient Algorithms for Optimization

Our Conjecture: There is a class of linear systems with
condition number 𝜅, such that any algorithm either

requires Ω 𝑑& memory or 𝑑 poly(κ) examples.

Result (Informal):
For some structured linear systems, can get
𝑑 polylog(𝜅) examples with O 𝑑 memory!

With more structure, can get best of both worlds!

This is true more broadly beyond linear systems,
and holds for any ”multiscale” optimization problem.

1
…

1
1/𝜅

1/𝜅
…

Linear system has
small number of
unique eigenvalues:

Memory-efficient Algorithms for Optimization

Result (Informal):
For some structured linear systems, can get
𝑑 polylog(𝜅) examples with O 𝑑 memory!

1
…

1
1/𝜅

1/𝜅
…

Linear system has two unique eigenvalues

Too large for
larger
eigendirections!

Safest choice: Take step size ≈ 1

Aggressive choice: Take step size ≈ 𝜅

Need about ≈ 𝜅
steps because of
small eigendirections

Solution: Follow large step with small steps to fix error along larger
eigendirections

Memory-efficient Algorithms for Optimization

Theorem (Kelner, Marsden, Sharan, Sidford, Yuan, Valiant):
For some structured linear systems, recursive sequence of large

and small steps solves the problem with 𝒅 polylog(𝜿)
examples/gradient queries and𝑶 𝒅 memory.

Memory-efficient Algorithms for Optimization

Using theory to understand what deep learning
models learn?

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models
Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan, 2023

Using theory to understand what deep learning
models learn?

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models
Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan, 2023

Robin JiaTian-Qi ChenDeqing Fu

Transformers for linear regression

Transformer layer 1

Transformer layer 2

Transformer layer 12

Linear prediction for $𝑦/0!

“Applied theory”?

Claim:

1. We can use understanding of statistical and computational
gaps to understand mechanisms of models

2. Available memory may explain differences in behavior
between different architectures

1. We can use understanding of statistical and
computational gaps to understand mechanisms of models

Based on rate of
convergence, argue that
Transformers cannot be
doing any 1st order method

Test on ill-conditioned
settings where gap
between 1st and 2nd order
methods is largest

2. Available memory may explain differences in behavior
between different architectures

2. Available memory may explain differences in behavior
between different architectures

Transformers seem to be
doing a 2nd order method

LSTMs seem to be doing a
1st order method

Memory is a fundamental computation resource.
Memory considerations are crucial in practice.

What is the role of memory in learning and optimization?
Are there tradeoffs between available memory and
information requirement?

Memory Dichotomy Hypothesis: It is not possible to significantly
improve on the convergence rate of known memory efficient
techniques without using significantly more memory.

• Memory determines the best available convergence rate
• Memory provides a separation between simple and complex techniques
• New problem structures where we can circumvent lower bounds, new variants of GD

