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How do information and
computation interact for

optimization?



Memory as the Computational Resource 

Pic: Quanta Magazine

Traditionally in TCS, Memory has been a fundamental computational resource 



Memory is a Constraint in Many Modern Practical Settings 

Small memory Large models Huge datasets

``Memory is the dominant performance and energy bottleneck in modern computing 
systems; data movement is much more expensive than computation, both in latency and 
energy.” [Falcao and Ferreira, CACM, 2023]

Amir 
Gholami



Memory is a fundamental computation resource, is crucial in practice.

What is the role of memory in learning and optimization? 
Are there tradeoffs between available memory and required information?

[This talk] Memory Dichotomy Hypothesis: It is not possible to 
significantly improve on the convergence rate of known memory 
efficient techniques without using significantly more memory.

#gradient queries #data points



(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with stochastic gradient oracle

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Upper bounds: Better convergence 
with small memory
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with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with stochastic gradient oracle

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Upper bounds: Better convergence 
with small memory

Efficient Convex Optimization Requires Superlinear Memory, 
Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, 2022 

Annie Marsden Aaron Sidford Greg Valiant



A canonical optimization problem
Consider minimizing convex, 
1- Lipschitz functions:

min. 𝐹(𝑥)
𝑥 ∈ 𝑅!: 𝑥 ≤ 1



A canonical optimization problem

min. 𝐹(𝑥)
𝑥 ∈ 𝑅!: 𝑥 ≤ 1

Given access to a first-order oracle:

• Algorithm queries some point 𝑥
• Oracle responds with 
(𝐹 𝑥 , ∇𝐹 𝑥 ) Query point 𝑥

𝐹 𝑥

∇𝐹 𝒙Consider minimizing convex, 
1- Lipschitz functions:



Algorithms we know

Ini$alize 𝑥! . At time 𝑡,
Query point 𝑥"
Receive gradient  ∇𝐹 𝑥" at 𝑥"
Update 𝑥"#$ → 𝑥" − 𝜂 ⋅ ∇𝐹 𝑥"

Gradient Descent

−∇𝐹 𝒙

𝑥! 𝑥!"# → 𝑥! − 𝜂 ⋅ ∇𝐹 𝑥!
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to find 𝜖 optimal answer 
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Are there inherent tradeoffs
between available memory

and information requirement?
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Info-theoretic
bounds for 
optimization 
algorithms
Nemirovski-Yudin'83, 
Shamir’13,
Nesterov’14, 
Bubeck’15, 
Duchi-Jordan-
Wainwright-Wibisono’15,
Woodworth-Srebro’16,
Carmon-Duchi-Hinder-
Sidford’17ab, 
Arjevani-Shamir’17, 
Agarwal-Hazan’18, 
Diakonikolas-Guzman’19

Memory bounds for 
streaming data
Alon-Matias-Szegedy’99, 
Indyk-Woodruff’03
Bar-Yossef-Jayaram-Kumar-
Sivakumar’04, 
Nelson-Le Huy’13,
Steinhardt-Duchi’15,
Braverman-Garg-Ma-Nguyen-
Woodruff’16,
Kapralov-Nelson-Pachocki-
Wang-Woodruff-Yahyazadeh’17,
Nelson-Yu’19,
Dagan-Kur-Shamir’19

Memory bounds 
over finite fields 
Shamir’14,
Steinhardt-Valiant-Wager’16,
Raz’17, 
Moshkovitz-Moshkovitz’17
Kol-Raz-Tal’17,
Moshkovitz-Moshkovitz’18, 
Garg-Raz-Tal’18,
Beame-Oveis Gharan-Yang’18, 
Garg-Raz-Tal’19,
Raz-Zhan’20,
Gonen-Lovett-Moshkovitz’20,
Garg-Kothari-Raz’20

Memory bounds 
for continuous
optimization 

What is known?
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Theorem [Marsden, Sharan, Sidford, Valiant]:
For 𝜖 ≥ $

./01 2
and 𝛿 ∈ [0,0.25], any (randomized) algorithm with memory 𝒅𝟏.𝟐𝟓%𝜹

requires at least 𝒅𝟏#𝟏.𝟑𝟑𝜹 first-order queries to find 𝜖-optimal point.



𝑑 𝑑!

𝑑log
1
𝜀

1
𝜀!

Gradient
descent

Cutting plane/ 
Ellipsoid methods

Our lower bound

Memory in bits

In
fo

rm
at

io
n

(#
qu

er
ie

s)

Theorem [Marsden, Sharan, Sidford, Valiant]:
For 𝜖 ≥ $

./01 2
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requires at least 𝒅𝟏#𝟏.𝟑𝟑𝜹 first-order queries to find 𝜖-optimal point.



High-level proof

Construct a distribution over functions that seems hard to optimize with limited 
memory

Step one

Relate optimizing these functions to winning a communication game

Step two

For the communication game, prove a memory/query tradeoff

Step three



Hard distribution over functions

Construct a distribution over functions that seems hard to optimize with limited 
memory

Step one

𝐹!,#,$,% 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥

𝐴 ∼ Unif( ±1
!
#×!) ℎ 𝑥 = max

%∈[(]
𝑣%*𝑥 − 𝑖𝛾 (variant of Nemirovski function)

To receive first order information about ℎ, must make query which is reasonably 
orthogonal to 𝐴
Nemirovski property:   To continue receiving new or informative subgradients, 
queries must be robustly linearly independent



From optimization to winning a game

Relate optimizing these functions to winning a communication game

Step two

Relating optimizing 𝐹9,; 𝑥 to winning an Orthogonal Vector Game 

𝐹!,#,$,% 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥

ℎ 𝑥 = max
%∈[(]

𝑣%*𝑥 − 𝑖𝛾 (variant of the Nemirovski function)



The Orthogonal Vector Game 

A

Random matrix

𝐴 ∼ Unif( ±1
!
"×!)

Game oracle𝑀-bit message Player

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)
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The Orthogonal Vector Game 

Game oracle𝑀-bit message Player

Query 𝑥1 𝑔1 ∈ 𝜕 𝐴𝑥1 /

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

.

.

.
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The Orthogonal Vector Game 

𝑀-bit message Player

(𝑥#, 𝑔#)
(𝑥0, 𝑔0)

.

.

.
(𝑥1 , 𝑔1)

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴
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….



The Orthogonal Vector Game 

Player

𝑦5, 𝑦#, … , 𝑦6

To win, 𝑦!, 𝑦", … , 𝑦# must be:
• Roughly orthogonal to 𝐴: 𝐴𝑦$ % ≤ 1/𝑑&
• Robustly linearly independent 

Proj'()* +$,…,+%&$ (𝑦$) ≤ 1 − 1/𝑑"

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)



From Optimization to winning the Game

Optimization algorithm
Optimization oracle

𝑀-bit memory state

Query 𝑥 𝑔2",𝑨(𝑥)

𝐹!,# 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥



Optimization algorithm

𝑀-bit memory state

Game oracle

A

Random matrix

𝒉

Generates Nemirovski 
function ℎ
Wants to optimize 𝐹',𝑨

From Optimization to winning the Game

𝐹!,# 𝑥 = max 𝜂 𝐴𝑥 & − 𝜌, ℎ 𝑥
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Optimization algorithm

𝑀-bit memory state

𝒉

Generates Nemirovski 
function ℎ
Wants to optimize 𝐹',𝑨
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Memory/Query tradeoffs for the Game

If available memory < 𝑘𝑑, then Player must make ≈ 𝑑 queries

For the communication game, prove a memory/query tradeoff

Step three

To win, find 𝑦!, 𝑦", … , 𝑦# which are roughly orthogonal* to 𝐴

𝑑: dimension 𝑘: #vectors to be returned 𝑚: #oracle queries 𝑀: size of message (in bits)
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Lower bound
[Blanchard-Zhang-Jaillet,

Chen-Peng]
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[J23,23]

• Randomized algorithms, for poly-small 𝜖?
• What happens for smooth functions?
• Can you improve on the poly(1/𝜖) rate of gradient 

descent for super-poly small 𝝐?

Conjecture: Cannot improve gradient descent’s 
convergence rate without using quadratic memory.

Open Questions

[This talk] Memory Dichotomy Hypothesis: It is not possible to 
significantly improve on the convergence rate of known memory 
efficient techniques without using significantly more memory.



(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with stochastic gradient oracle

(with Jon Kelner, Annie Marsden, Aaron Sidford, Greg Valiant, Honglin Yuan)

Upper bounds: Better convergence 
with small memory

Memory-Sample Tradeoffs for Linear Regression with Small Error
Vatsal Sharan, Aaron Sidford, Gregory Valiant, 2019



Stochastic optimization
In many modern ML settings, 
we work with stochastic 
gradients 𝑔 𝑥 :

E 𝑔 𝑥 = ∇𝐹(𝑥)

min. 𝐹(𝑥)

𝑥 ∈ 𝑅2: 𝑥 ≤ 1

If 𝐹(𝑥) is expected loss with respect to data points sampled from some 
distribution, we can find stochastic gradient using a randomly sampled 
labelled datapoint.

What is the tradeoff between available memory and number of samples 
needed to optimize?



𝒙

Linear model: Data vs. Memory?

𝒃𝑨
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𝒙

<𝒂𝟏, 𝒙 > = 𝑏"

Find 𝑥

𝒂𝟏 𝑏"

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅
5 



8-2 
𝒙

Find 𝑥

𝒂𝟐 𝑏$

<𝒂𝟐, 𝒙 > = 𝑏$

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

2 



10-7 𝒙

Find 𝑥

<𝒂𝟑, 𝒙 > = 𝑏&

𝒂𝟑 𝑏&

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-2 



-104 
𝒙

Find 𝑥

𝒂𝟒 𝑏(

<𝒂𝟒, 𝒙 > = 𝑏(

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-1 



4-8 

𝒙

Find 𝑥

<𝒂𝟓, 𝒙 > = 𝑏*

𝒂𝟓 𝑏*

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-6 



4

Find 𝑥

-2

2

1. Memory = #bits
2. Samples drawn 

from Gaussian
<𝒂𝟓, 𝒙 > = 𝑏*

𝒂𝟓 𝑏*

𝒙, 𝒂𝒊 ∈ 𝑅*

𝑏+ ∈ 𝑅

-8 -6 



What can you do?

-8    -6
𝒙4    -1 -10

4

Gaussian Elimination



What can you do?

-8    -6
𝑥1  -1/4 -5/2

4

Gaussian Elimination



What can you do?

0     -8
𝒙1  -1/4 -5/2

-16

Gaussian Elimination



What can you do?

0     1
𝒙1  -1/4 -5/2

2

Gaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

Gaussian Elimination

2

d examples 
≈ d2 memory



What can you do?

0     1

1  -1/4 -5/2-2
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination

2



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥+ = (−0.25, 0.98 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥+ = (−0.25, 0.98 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥" = (−0.45, 0.74 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥$ = (−0.74, 2.24 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥& = (−1.64, 2.70 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥( = (−1.85, 2.74 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥* = (−2.27, 2.53 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥, = (−1.99, 2.52 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥- = (−1.83, 2.47 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥. = (−1.92, 2.48 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥/ = (−2.20, 2.17 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥"+ = (−1.97, 2.08 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥"" = (−2.02, 2.01 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥"$ = (−2.01, 2.00 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥"$ = (−2.01, 2.00 )
> d examples 
≈ d memory    

2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination



What can you do?

0     1

1  -1/4 -5/2-2
2

𝑥"$ = (−2.01, 2.00 )
2

Get (𝑎<, 𝑏<) . Update 𝑥< → 𝑥<#$ .
IniDalize 𝑥! . At time 𝑖,

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination

> d examples 
≈ d memory    



d examples 
≈ d2 memory

Gradient DescentGaussian Elimination

> d examples 
≈ d memory



> d examples 
≈ d memory

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination

Memory

Da
ta

(𝑑, 𝑑) (≈ 𝑑!, 𝑑)

Gradient descent 
(≈ 𝑑,> 𝑑)

Gaussian 
elimination



> d examples 
≈ d memory

d examples 
≈ d2 memory

Gradient DescentGaussian Elimination

Memory

Da
ta

(𝑑, 𝑑) (≈ 𝑑!, 𝑑)

Gradient descent 
(≈ 𝑑,> 𝑑)

Gaussian 
elimination
2nd order 
method

1st order method

Linear 
approximation

𝑥!

𝑥"

𝑥#
𝑥$𝑥%𝑥&

Quadratic 
approximation

1st order vs. 2nd order methods

Anything in 

between???



Informal Theorem[Sharan, Sidford, Valiant]:
Any sub-quadratic memory algorithm requires more data.

Memory

Da
ta

(𝑑, 𝑑) (𝑑!, 𝑑)

Gaussian elimination

Gradient descent 
(𝑑, > 𝑑)



Memory

Da
ta

(𝑑, 𝑑) (𝑑!, 𝑑)

Gaussian elimination

Gradient descent 
(𝑑, > 𝑑)

Informal Theorem[Sharan, Sidford, Valiant]:
Any sub-quadratic memory algorithm requires more data.



Informal Theorem[Sharan, Sidford, Valiant]:
Any sub-quadratic memory algorithm requires more data.

Memory

Da
ta

(𝑑0 , 𝑑)

Gaussian elimination

Gradient descent 
(d , d log

1
𝜀
)

𝑑 log log #
5

samples

(𝑑, 𝑑)



DISCUSSION



Linear approximation
𝑥!

𝑥"

𝑥#
𝑥$𝑥%𝑥&

Quadratic 
approximation

1.5th order method?

Our Conjecture:
Any algorithm that improves on convergence 
rate of best known “first-order” methods, 
requires quadratic memory.

1st order vs. 2nd order methods



1.5th order method?

Our Conjecture:
Any algorithm that improves on convergence 
rate of best known “first-order” methods, 
requires quadratic memory.

Memory
Da

ta
2nd order method

1st order method

Memory determines the 
best sample complexity



Our Conjecture:
Any algorithm that improves on convergence 
rate of best known “first-order” methods, 
requires quadratic memory.

1.5th order method?

Ill-conditioned distribution:

Conjecture: There is a class of linear systems with 
condition number 𝜅, such that any algorithm either 

requires Ω 𝑑& memory or 𝑑 poly(κ) examples.

First order methods need poly (𝜅) samples 
(e.g. Needell-Srebro-Ward’16, Moritz-Nishihara-Jordan’16, Agarwal-

Bullins-Hazan’17 etc. etc.)



Our Conjecture:
Any algorithm that improves on convergence 
rate of best known “first-order” methods, 
requires quadratic memory.

1.5th order method?

Ill-conditioned distribution:

[This talk] Memory Dichotomy Hypothesis: It is not possible to 
significantly improve on the convergence rate of known memory 
efficient techniques without using significantly more memory.



Broader question:
Understand the landscape of 
continuous optimization with 

memory constraints.

Op timization

Me
mory



(with Annie Marsden, Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with first-order oracle

(with Aaron Sidford & Greg Valiant)

Lower bounds: Convex optimization 
with stochastic gradient oracle

Upper bounds: Better convergence 
with small memory

Big-Step-Little-Step: Efficient Gradient Methods for Objectives with Multiple Scales
Jonathan Kelner, Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, Honglin Yuan, 2022

Aaron Sidford Greg ValiantAnnie MarsdenJon Kelner Honglin Yuan



Using memory considerations to develop 
more efficient optimization algorithms



Memory-efficient Algorithms for Optimization

Our Conjecture: There is a class of linear systems with 
condition number 𝜅, such that any algorithm either 

requires Ω 𝑑& memory or 𝑑 poly(κ) examples.

Result (Informal):
For some structured linear systems, can get
𝑑 polylog(𝜅) examples with O 𝑑 memory!

With more structure, can get best of both worlds!

This is true more broadly beyond linear systems, 
and holds for any ”multiscale” optimization problem.



1 
… 

1 
1/𝜅

1/𝜅
… 

Linear system has 
small number of 
unique eigenvalues:

Memory-efficient Algorithms for Optimization

Result (Informal):
For some structured linear systems, can get
𝑑 polylog(𝜅) examples with O 𝑑 memory!



1 
… 

1 
1/𝜅

1/𝜅
… 

Linear system has two unique eigenvalues

Too large for 
larger 
eigendirections!

Safest choice: Take step size ≈ 1

Aggressive choice: Take step size ≈ 𝜅

Need about ≈ 𝜅
steps because of 
small eigendirections

Solution: Follow large step with small steps to fix error along larger 
eigendirections

Memory-efficient Algorithms for Optimization



Theorem (Kelner, Marsden, Sharan, Sidford, Yuan, Valiant):
For some structured linear systems, recursive sequence of large 

and small steps solves the problem with 𝒅 polylog(𝜿)
examples/gradient queries and𝑶 𝒅 memory.

Memory-efficient Algorithms for Optimization



Using theory to understand what deep learning 
models learn?

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models
Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan, 2023



Using theory to understand what deep learning 
models learn?

Transformers Learn Higher-Order Optimization Methods for In-Context Learning: A Study with Linear Models
Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan, 2023

Robin JiaTian-Qi ChenDeqing Fu



Transformers for linear regression

Transformer layer 1

Transformer layer 2

Transformer layer 12

Linear prediction for $𝑦/0!



“Applied theory”?

Claim:

1. We can use understanding of statistical and computational 
gaps to understand mechanisms of models 

2. Available memory may explain differences in behavior 
between different architectures



1. We can use understanding of statistical and 
computational gaps to understand mechanisms of models 

Based on rate of 
convergence, argue that 
Transformers cannot be 
doing any 1st order method 

Test on ill-conditioned 
settings where gap 
between 1st and 2nd order 
methods is largest



2. Available memory may explain differences in behavior 
between different architectures 



2. Available memory may explain differences in behavior 
between different architectures 

Transformers seem to be 
doing a 2nd order method

LSTMs seem to be doing a 
1st order method



Memory is a fundamental computation resource.
Memory considerations are crucial in practice.

What is the role of memory in learning and optimization? 
Are there tradeoffs between available memory and 
information requirement? 

Memory Dichotomy Hypothesis: It is not possible to significantly 
improve on the convergence rate of known memory efficient 
techniques without using significantly more memory.

• Memory determines the best available convergence rate
• Memory provides a separation between simple and complex techniques
• New problem structures where we can circumvent lower bounds, new variants of GD


