
CSCI 699: Trustworthy ML
(from an optimization lens)

Vatsal Sharan
Fall 2025

Lecture 1, Aug 27

Machine Learning

AI

Machine Learning

ML has been driving the recent advances in AI

ML has been having a pretty good run..

What do you think are other
important advances?

However, machine learning can be brittle

The Blind Men and the Elephant

It was six men of Indostan
To learning much inclined,

Who went to see the Elephant
(Though all of them were blind),

That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

"God bless me! but the Elephant
Is very like a WALL!”

….

Models can be very sensitive
to small variations in the input

Pig
(90% confidence)

Airplane!
(99.9% confidence)

Small amount of
adversarial noise

Image adapted from https://adversarial-ml-tutorial.org/

https://adversarial-ml-tutorial.org/

Source: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing
radiologists, Rajpurkar et al. 2018

CNN models have obtained impressive results for diagnosing X-rays

E.g. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization
of Common Thorax Diseases, Wang et a;. 2017

ML models can latch onto
spurious features to make predictions

Source: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-
sectional study, Zech et al. 2018

CNN to predict hospital system detects both general and specific image features.
(A) We obtained activation heatmaps from our trained model and averaged over a sample of images to reveal which subregions
tended to contribute to a hospital system classification decision. Many different subregions strongly predicted the correct
hospital system, with especially strong contributions from image corners. (B-C) On individual images, which have been
normalized to highlight only the most influential regions and not all those that contributed to a positive classification, we note that
the CNN has learned to detect a metal token that radiology technicians place on the patient in the corner of the image field of
view at the time they capture the image. When these strong features are correlated with disease prevalence, models can
leverage them to indirectly predict disease.

But the models may not generalize as well to data from new hospitals because they can
learn to pickup on spurious correlations such as the type of scanner and marks used by
technicians in specific hospitals!

Unequal accuracy: The GenderShades project

http://gendershades.org/

Models can do well on average but not on sub-populations

http://gendershades.org/

How well do facial recognition tools
perform on various demographics?

http://gendershades.org/

http://gendershades.org/

Ans: Not very well

Ans: Not very well

Dissecting racial bias in an algorithm used
to manage the health of populations,
Obermeyer et al., Science 2019

Quoting from the paper:

• Health systems rely on commercial prediction algorithms
to identify and help patients with complex health needs.

• A widely used algorithm affecting millions of patients,
exhibits significant racial bias: At a given risk score, Black
patients are considerably sicker than White patients, as
evidenced by signs of uncontrolled illnesses.

• Remedying this disparity would increase the percentage of
Black patients receiving additional help from 17.7 to 46.5%.

• Bias arises because the algorithm predicts health care costs
rather than illness, but unequal access to care means that
we spend less money caring for Black patients than for
White patients.

Bias in predictions: Predicting disease severity

The Netflix prize:

• Launched in 2006, $1M cash prize
• Dataset: 100 million movie ratings from nearly 500 thousand Netflix

subscribers on a set of 17770 movies. Each data point corresponds
to (anonymized user id, movie, date of rating, rating).

• Researchers were able to de-anonymize some of the subscribers by
linking their rating with ratings on IMDB!

• Some Netflix subscribers had also publicly rated an overlapping set
of movies on IMDB under their real identities.

• Lawsuit against Netflix, subsequent competition was cancelled.

Privacy & Denonymization

From the book Fairness And ML: Limitations and Opportunities

Privacy & Denonymization

[1] Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, Fredrikson et al., 2015
[2] ProPILE: Probing Privacy Leakage in Large Language Models, Kim et al., 2023,

Some evidence that LLMs could also leak private information:

In some cases, it is possible to recover some of the original training data of the model using only API access to the
model. The following (left) is an example of an image recovered by an attacker who only knows the name of the person,
and the original training image (right) from [1]

This class: Aspects of trustworthy ML
Rough plan:

Weeks 1-3: Robustness (Vatsal)
Weeks 4-6: Fairness, calibration (Vatsal)
Weeks 7-12: Privacy (Meisam)
Week 13: Project presentation (Meisam & Vatsal)
Week 14: AI Safety, Summary (Meisam & Vatsal)

Course website: https://vatsalsharan.github.io/fall2025/

Communication: Slack

Class structure (most weeks):
First part: Lecture
Second part: Student presentations (~30 min/presentation)

Logistics

https://vatsalsharan.github.io/fall2025/

Mini-homeworks (15%): Reading class papers before class

Homeworks (15%): 2 homeworks

Project (45%): You can choose your topic, groups of 2

Overview of structure, see course website for details:

Class presentations (15%): Present a paper in class

Other components (10%): Scribing, class participation

Supervised Machine
Learning: Basics

Supervised ML: Predict future outcomes using past outcomes

Image classification Machine translation

Supervised ML is at the heart of many AI advances

Language modelling
Game playing

Generative modelling Protein folding
Medical imaging

Supervised ML is at the heart of many AI advances

Language modelling
Game playing

Given previous words ->
Predict next word

Protein folding
Medical imaging

Generative modelling

Supervised ML is at the heart of many AI advances

Language modelling
Game playing

Given previous words ->
Predict next word

Given current board state ->
Predict probability of winning

Protein folding
Medical imaging

Generative modelling

Supervised ML is at the heart of many AI advances

Language modelling
Game playing

Given previous words ->
Predict next word

Given current board state ->
Predict probability of winning

Protein folding
Medical imaging

Given noisy image ->
Predict denoised image

Generative modelling

Supervised ML is at the heart of many AI advances

Language modelling
Game playing

Protein folding
Medical imaging

Given previous words ->
Predict next word

Given current board state ->
Predict probability of winning

Given noisy image ->
Predict denoised image

Given protein chain ->
Predict 3D structure

Generative modelling

Supervised ML is at the heart of many AI advances

Language modelling
Game playing

Protein folding
Medical imaging

Given previous words ->
Predict next word

Given current board state ->
Predict probability of winning

Given noisy image ->
Predict denoised image

Given protein chain ->
Predict 3D structure

Given image ->
Predict if there is tumor etc.

Generative modelling

General framework for supervised learning

• An input space X ⊆ Rd:

• Representing inputs as datapoints in d dimensions.

• E.g. for an image with 30× 30 pixels, d = 30× 30 = 900.

• An output space Y:

• For predicting sale price of a house, Y = R (regression)

• For binary classification (cat vs. dog), Y = {±1} (classification)

• Goal: Learn a predictor f(x) : X → Y .

• Loss function: !(f(x), y). Depends on the task.

• e.g. squared loss !(f(x), y) = (f(x)− y)2.

• Loss minimization: Given some loss function and labelled datapoints, a natural goal is to find
some predictor f : X → Y such that it gets small average error on these datapoints.

• More formally, consider a set S = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n labelled data-
points. The training loss or empirical risk R̂S(f) of any predictor f : X → Y is given
by:

R̂S(f) =
1

n

n∑

i=1

!(f(xi), yi).

We should find some predictor f which has small empirical risk.

Function class

• Each of these is a
linear function.

• The class of all
linear functions is a
function class.

• Function class: A function class is defined as a collection of functions f : X → Y .

• e.g. X = R,Y = R,F = {f : y = wx+ c, w ∈ R, c ∈ R}.

Empirical risk minimizer (ERM)

• Definition: Given a function class F = {f : X → Y} and set of labelled datapoints S,
empirical risk minimization (ERM) corresponds to finding:

min
f∈F

R̂S(f) =
1

n

n∑

i=1

!(f(xi), yi).

• In words, we want to find the predictor f ∈ F which achieves lowest loss on the training
datapoints among all predictors in F .

Generalization
• ML wouldn’t be so useful if it only did well on datapoints which have been seen at training time. We

want our predictor to generalize to unseen datapoints.

• To measure performance on new datapoints we measure test loss. The test loss of a predictor f is
measured as the average loss on a “new” set of m points:

1

m

m∑

i=1

!(f(xi), yi).

• Training/test paradigm: Assume training set and test set are drawn from the same distribution.

Measuring generalization: Training/Test paradigm

Data Splitting. We randomly divide data into two disjoint subsets:

• Training set: subset of data used to train the model.

• Test set: subset of data used to evaluate the model.

Generalization gap: Test error − Training error.

Training
set

Test
set

Generalization gap
(Test error – Training error)

We usually add a third split as well.

• Validation set: subset of data used to measure generalization, fit hyperparameters

Generalization: More formally

Risk of a predictor. The population risk of f under distribution D is

R(f) = E(x,y)∼D[!(f(x), y)]

=
∑

x′,y′

Pr
D
(x = x′, y = y′) !(f(x′), y′).

How to empirically evaluate this? The average loss on a test set S′ = {(x′
i, y

′
i)}

m
i=1,

where (xi, yi) ∼ D:

R(f) ≈
1

m

m
∑

i=1

!
(

f(x′

i), y
′

i

)

.

A tautology.

R(f) = R̂S(f) +
(
R(f)− R̂S(f)

)
.

To minimize R(f):

• First try to minimize the empirical risk R̂S(f).

• What remains is the term

R(f)− R̂S(f),

which is the generalization gap.

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Also known as the “inductive bias”.
No-free lunch theorem from learning theory tells us that

no model can do well on every task
“All models are wrong, but some are useful”, George Box

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Depends on all the above and also…

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Optimization methods

Problem setup
Given: a function F(#)
Goal: minimize F(#) (approximately)

Two simple yet extremely popular methods
Gradient Descent (GD): simple and fundamental
Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is the first-order information of a function.
Therefore, these methods are called first-order methods.

Gradient descent

GD: keep moving in the negative gradient direction

• in theory ! should be set in terms of some parameters of "
• in practice we just try several small values
• might need to be changing over iterations (think " # = |#|)
• adaptive and automatic step size tuning is an active research area

Start from some w(0). For t = 0, 1, 2, . . .

w(t+1)
← w(t)

− η∇F
(

w(t)
)

,

where η > 0 is called step size or learning rate.

Why GD?

Intuition: First-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T (w −w
(t))

For w = w
(t+1) = w

(t) − η∇F (w(t)), we can write,

F (w(t+1)) ≈ F (w(t))− η‖∇F (w(t))‖22

=⇒ F (w(t+1)) ! F (w(t))

(Note that this is only an approximation, and can be invalid if
the step size is too large.)

Switch to Colab

Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations & (in terms of ') are needed to achieve

((*(")) − ((*∗) ≤ '

Even for nonconvex objectives, some guarantees exist:
e.g. how many iterations & (in terms of ') are needed to achieve

∇((* ") ≤ '

that is, how close is * " as an approximate stationary point

for convex objectives, stationary point ⇒ global minimizer
for nonconvex objectives, what does it mean?

Stationary points: non-convex objectives

A stationary point can be a local minimizer or even a local/global maximizer
(but the latter is not an issue for GD).

"(*(")) − "(*∗) ≤ '

Stationary points: non convex objectives

Switch to Colab

Stationary points: non convex objectives

This is known as a saddle point

Stationary points: non convex objectives

Switch to Colab

Stationary points: non convex objectives

Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

Key point: it could be much faster to obtain a stochastic gradient!
Similar convergence guarantees, usually needs more iterations but
each iteration takes less time.

Switch to Colab

Summary: Gradient descent & Stochastic Gradient descent

GD/SGD coverages to a stationary point. For convex objectives, this is all
we need.

For nonconvex objectives, can get stuck at local minimizers or “bad” saddle
points (random initialization escapes “good” saddle points)

Recent research shows that many problems have no “bad” saddle points or
even “bad” local minimizers

SGD is very popular, another very popular optimization technique is Adam

Adam has two key additional ingredients: adaptive step size & momentum

Adaptive learning rate tuning
``The learning rate is perhaps the most important hyperparameter.
If you have time to tune only one hyperparameter, tune the learning rate.”

-Deep learning (Book by Goodfellow, Bengio, Courville)

We often use a learning rate schedule.

Some common learning rate schedules (figure from PML)

Adaptive learning rate methods (Adagrad, RMSProp) scale the learning rate of each parameter based
on some moving average of the magnitude of the gradients.

[PML] Probabilistic Machine Learning: An Introduction by Kevin Murphy.

Momentum
“move faster along directions that were previously good, and to slow down along directions where
the gradient has suddenly changed, just like a ball rolling downhill.” [PML]

Initialize w0 and (velocity) v = 0

For t = 1, 2, . . .

• estimate a stochastic gradient g
t

• update v ← αv + g
t

for some discount factor α ∈ (0, 1)

• update weight wt ← wt−1 − ηv

Updates for first few rounds:

• w1 = w0 − ηg1

• w2 = w1 − αηg1 − ηg2

• w3 = w2 − α2ηg1 − αηg2 − ηg3

• · · ·

https://distill.pub/2017/momentum/

Momentum

https://distill.pub/2017/momentum/

Pig
(90% confidence)

Airplane!
(99.9% confidence)

Small amount of
adversarial noise

Adversarial examples

CNNs are great at image classification

However, models can also be very sensitive
to small variations in the input

Pig
(90% confidence)

Airplane!
(99.9% confidence)

Small amount of
adversarial noise

Image adapted from https://adversarial-ml-tutorial.org/

https://adversarial-ml-tutorial.org/

These are known as adversarial examples

Adversarial examples have been shown to also hold for real-world tasks.

They are an issue because

1. Can pose potential security risks
2. Indicate that even though models are good, they don’t quite work the same way as we do

More studies on adversarial examples

Dodging detection
from face detection

using glasses

Person in top row impersonating person in
bottom row using glasses

From Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition, Sharif et al. ‘16

Examples from other modalities

From Audio Adversarial Examples: Targeted Attacks on Speech-
to-Text, Carlini & Wagner ‘18

From Adversarial Examples for Evaluating Reading
Comprehension Systems, Jia & Liang ‘17

Adversarial examples

Part 1: Basics of finding adversarial
examples

Adversarial examples: Setup

How to define similarity? One notion is small perturbations based on some norm. We typically
consider the ℓ! norm: ∥ # − #" ∥!≤ &, where & is the allowed perturbation level.

This means: can perturb every pixel by a perturbation in [−&, &].

Adversary: Given an image # and classifier *(#), comes up with some other image #′ which is
“similar” to #, such that * # ≠ *(#").

Finding Adversarial examples: Optimization problem
Adversary: Given an image # and classifier *(#), comes up with some other image #′ which is
“similar” to #, such that * # ≠ *(#").

∆ = {δ ∈ R
d : ‖δ‖∞ ≤ ε}.

#adv(f ;x, y) := max
δ∈∆

#
(

f(x+ δ), y
)

.

Detour: Linearity as a source of brittleness

For more details, see Explaining and Harnessing Adversarial Examples, Goodfellow et al. ‘15

Finding adversarial perturbation for linear models

For more details, see Explaining and Harnessing Adversarial Examples, Goodfellow et al. ‘15

Back to our optimization problem
Adversary: Given an image # and classifier *(#), comes up with some other image #′ which is
“similar” to #, such that * # ≠ *(#").

δFGSM = ε · sign(∇x #(f(x), y)) ,

xadv = x+ δFGSM.

Fast gradient sign method (FGSM):

∆ = {δ ∈ R
d : ‖δ‖∞ ≤ ε}

#adv(f ;x, y) := max
δ∈∆

#
(

f(x+ δ), y
)

FGSM: Results

δFGSM = ε · sign(∇x #(f(x), y)) ,

xadv = x+ δFGSM.

Fast gradient sign method (FGSM):

Image from https://adversarial-ml-tutorial.org/ (part 2)

https://adversarial-ml-tutorial.org/

Adversarial examples

Part 2: Basics of defending against
adversarial examples

Adversarial robustness: The optimization problem
Adversary: Given an image # and classifier *(#), comes up with some other image #′ which is
“similar” to #, such that * # ≠ *(#").
∆ = {δ ∈ R

d : ‖δ‖∞ ≤ ε}

#adv(f ;x, y) := max
δ∈∆

#
(
f(x+ δ), y

)

R̂ adv
S (f) =

1

n

n∑

i=1

#adv(f ;xi, yi),

Defender: Train a model such that the adversary is not effective at finding adversarial examples

min
f∈F

R̂ adv
S (f) = min

f∈F

1

n

n∑

i=1

max
δ∈∆

!
(
f(xi + δ), yi

)
.

Min-max optimization: Danskin’s Theorem
Defender: Train a model such that the adversary is not effective at finding adversarial examples

min
f∈F

R̂ adv
S (f) = min

f∈F

1

n

n∑

i=1

max
δ∈∆

!
(
f(xi + δ), yi

)
.

∇f max
δ∈∆

!
(

f(x+ δ), y
)

= ∇f !
(

f(x+ δ"), y
)

,

where δ" = argmax
δ∈∆

!
(

f(x+ δ), y
)

.

Danskin’s theorem: The gradient of the inner maximization objective with respect to * is given by
the gradient at the maximizer of the inner objective.

Adversarial training, inspired by Danskin’s Theorem
∇f max

δ∈∆
!
(

f(x+ δ), y
)

= ∇f !
(

f(x+ δ"), y
)

,

where δ" = argmax
δ∈∆

!
(

f(x+ δ), y
)

.

Danskin’s theorem:

Repeat:

1. Select a minibatch B of b examples {(xi, yi)}bi=1 from
the training set.

2. For each (xi, yi) ∈ B, compute adversarial perturbation
using FGSM

δ!i = argmax
δ∈∆

"
(

f(xi + δ), yi
)

.

3. Update parameters (for some learning rate α):

f := f − α

b
∑

i=1

∇f "
(

f(xi + δ!i), y
)

.

Clean Error FGSM Error

ConvNet 1.1% 41.7%

Robust ConvNet 0.9% 2.6%

FGSM results on MNIST (& = 0.1)

Adversarial examples

Part 3: More powerful techniques

A cautionary tale
Adversarial examples research has had the nature of a cat-and-mouse game.

Specific defenses often work against the specific attack they were designed
for, but fail more generally.

This ICML 2018 paper broke 7 out of 9 defense methods appearing a few months ago at ICLR 2018!
The methods were shown to rely on “obfuscated gradients”.

Therefore, important to consider strong attack models.

Feasible set: ∆ = {δ ∈ R
d : ‖δ‖∞ ≤ ε}, S(x) = x+∆.

Initialize: x(0) = x (optionally x(0) = x+ η, η ∼ Unif([−ε, ε]d)).

For t = 0, . . . , T − 1 :

g(t) = ∇x $
(

f(x(t)), y
)

,

x(t+1) = ΠS(x)

(

x(t) + α · sign(g(t))
)

.

Output: xadv = x(T).

Projected gradient descent (PGD) for finding adversarial examples

From Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. ‘18

Adversarial training using PGD

Repeat:

1. Select a minibatch B of b examples {(xi, yi)}bi=1 from the training set.

2. For each (xi, yi) ∈ B, compute adversarial perturbation using PGD

δ!i = argmax
δ∈∆

"
(

f(xi + δ), yi
)

.

3. Update parameters (for some learning rate α):

f := f − α

b
∑

i=1

∇f "
(

f(xi + δ!i), y
)

.

Adversarial training using PGD & FGSM, Results
Repeat:

1. Select a minibatch B of b examples {(xi, yi)}bi=1 from training set.

2. For each (xi, yi) ∈ B, compute adversarial perturbation

δ!i = argmax
δ∈∆

"
(

f(xi + δ), yi
)

.

3. Update parameters (for some learning rate α):

f := f − α

b
∑

i=1

∇f "
(

f(xi + δ!i), y
)

.

(a) Standard (b) FGSM (c) PGD

Natural 95.2% 90.3% 87.3%

FGSM 32.7% 95.1% 56.1%

PGD 3.5% 0.0% 45.8%

Evaluation
type

Training type

Accuracy on CIFAR10 (& = 8)
From Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. ‘18

