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Picture from https://adversarial-ml-tutorial.org/

Recap

https://adversarial-ml-tutorial.org/


Training/Test paradigm

Data Splitting. We randomly divide data into two disjoint subsets:

• Training set: subset of data used to train the model.

• Test set: subset of data used to evaluate the model.

Generalization gap: Test error − Training error.

Training
set

Test
set

Generalization gap
(Test error – Training error)

We usually add a third split as well.

• Validation set: subset of data used to measure generalization, fit hyperparameters



Supervised learning in one slide

Loss function: What is the right loss function for the task? 

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer 
gracefully to unseen examples?

All related! And the fuel which powers everything is data.



Gradient descent

GD: keep moving in the negative gradient direction 

• in theory ! should be set in terms of some parameters of "
• in practice we just try several small values 
• might need to be changing over iterations (think " # = |#|) 
• adaptive and automatic step size tuning is an active research area

Start from some w(0). For t = 0, 1, 2, . . .

w(t+1)
← w(t)

− η∇F
(

w(t)
)

,

where η > 0 is called step size or learning rate.



Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction  

Key point: it could be much faster to obtain a stochastic gradient!
Similar convergence guarantees, usually needs more iterations but
each iteration takes less time.



Summary: Gradient descent & Stochastic Gradient descent

GD/SGD coverages to a stationary point. For convex objectives, this is all we need.

For nonconvex objectives, can get stuck at local minimizers or “bad” saddle points 
(random initialization escapes “good” saddle points) 

Recent research shows that many problems have no “bad” saddle points or even 
“bad” local minimizers 

SGD is very popular, another very popular optimization technique is Adam

Adam has two key additional ingredients: adaptive step size & momentum



Models can be very sensitive
to small variations in the input 

Pig 
(90% confidence)

Airplane! 
(99.9% confidence)

Small amount of 
adversarial noise

Image adapted from https://adversarial-ml-tutorial.org/

https://adversarial-ml-tutorial.org/


More studies on adversarial examples

Dodging detection 
from face detection 

using glasses

Person in top row impersonating person in 
bottom row using glasses

From Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition, Sharif et al. ‘16



Linearity as a source of brittleness



Finding adversarial examples: optimization problem
Adversary: Given an image ! and classifier "(!), comes up with some other image !′ which is 
“similar” to !, such that " ! ≠ "(!!).

δFGSM = ε · sign(∇x #(f(x), y)) ,

xadv = x+ δFGSM.

Fast gradient sign method (FGSM):

∆ = {δ ∈ R
d : ‖δ‖∞ ≤ ε}

#adv(f ;x, y) := max
δ∈∆

#
(

f(x+ δ), y
)



Feasible set: ∆ = {δ ∈ R
d : ‖δ‖∞ ≤ ε}, S(x) = x+∆.

Initialize: x(0) = x (optionally x(0) = x+ η, η ∼ Unif([−ε, ε]d)).

For t = 0, . . . , T − 1 :

g(t) = ∇x $
(

f(x(t)), y
)

,

x(t+1) = ΠS(x)

(

x(t) + α · sign(g(t))
)

.

Output: xadv = x(T ).

Projected gradient descent (PGD) for finding adversarial examples

From Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. ‘18



Min-max optimization: Danskin’s Theorem 
Defender: Train a model such that the adversary is not effective at finding adversarial examples

min
f∈F

R̂ adv
S (f) = min

f∈F

1

n

n∑

i=1

max
δ∈∆

!
(
f(xi + δ), yi

)
.

∇f max
δ∈∆

!
(

f(x+ δ), y
)

= ∇f !
(

f(x+ δ"), y
)

,

where δ" = argmax
δ∈∆

!
(

f(x+ δ), y
)

.

Danskin’s theorem: The gradient of the inner maximization objective with respect to " is given by 
the gradient at the maximizer of the inner objective.



Adversarial training, inspired by Danskin’s Theorem 
∇f max

δ∈∆
!
(

f(x+ δ), y
)

= ∇f !
(

f(x+ δ"), y
)

,

where δ" = argmax
δ∈∆

!
(

f(x+ δ), y
)

.

Danskin’s theorem:

Repeat:

1. Select a minibatch B of b examples {(xi, yi)}bi=1 from
the training set.

2. For each (xi, yi) ∈ B, compute adversarial perturbation
using any technique, such as FGSM or PGD

δ!i = argmax
δ∈∆

"
(

f(xi + δ), yi
)

.

3. Update parameters (for some learning rate α):

f := f − α

b
∑

i=1

∇f "
(

f(xi + δ!i ), y
)

.



Adversarial training using PGD & FGSM, Results

(a) Standard (b) FGSM (c) PGD

Natural 95.2% 90.3% 87.3%

FGSM 32.7% 95.1% 56.1%

PGD 3.5% 0.0% 45.8%

Evaluation 
type

Training type

Accuracy on CIFAR10 (! = 8)
Observations you made last time.

1. PGD attack is more effective than FGSM.

2. Natural accuracy degrades when using adversarial training.

3. PGD training gives some robustness against FGSM, but not as much as FGSM training (?).

4. FGSM-trained models perform better on FGSM attacks than on natural data!



Adversarial training using PGD & FGSM, Results

(a) Standard (b) FGSM (c) PGD

Natural 95.2% 90.3% 87.3%

FGSM 32.7% 95.1% 56.1%

PGD 3.5% 0.0% 45.8%

Evaluation 
type

Training type

Accuracy on CIFAR10 (! = 8)

“Label-leaking”, 
see Adversarial 
Machine Learning 
at Scale, Kurakin
et al. ‘26

Observations you made last time.

1. PGD attack is more effective than FGSM.

2. Natural accuracy degrades when using adversarial training.

3. PGD training gives some robustness against FGSM, but not as much as FGSM training (?).

4. FGSM-trained models perform better on FGSM attacks than on natural data!



Adversarial examples

Part 4: Certified defenses



Provable defenses
Recall the problem of finding an adversarial example:

∆ = {δ ∈ R
d : ‖δ‖∞ ≤ ε}

#adv(f ;x, y) := max
δ∈∆

#
(

f(x+ δ), y
)

Adapted from https://adversarial-ml-tutorial.org/ (part 2)

Earlier, we said how variants of gradient descent can be used to find an approximate solution to 
this objective.

It is also possible to explicitly solve this optimization problem in some cases (though this is very 
expensive).

https://adversarial-ml-tutorial.org/


Provable defenses via combinatorial optimization

Adapted from https://adversarial-ml-tutorial.org/ (part 2)

One-hidden-layer ReLU network.

z1 = x,

z2 = ReLU(W1z1 + b1),

hθ(x) = W2z2 + b2.

Targeted attack in !∞ norm.

min
z1,z2

(ey − eytarg
)"(W2z2 + b2)

subject to z2 = ReLU(W1z1 + b1),

‖z1 − x‖∞ ≤ ε.

This is a combinatorial optimization problem, can use off-the-shelf solvers (CPLEX, Gurobi etc.), but 
they don’t scale beyond a few hundred hidden units.

https://adversarial-ml-tutorial.org/


Convex relations of objective

One-hidden-layer ReLU network.

z1 = x,

z2 = ReLU(W1z1 + b1),

hθ(x) = W2z2 + b2.

Targeted attack in !∞ norm.

min
z1,z2

(ey − eytarg
)"(W2z2 + b2)

subject to z2 = ReLU(W1z1 + b1),

‖z1 − x‖∞ ≤ ε.

• Provable Defenses against Adversarial 
Examples via the Convex Outer Adversarial 
Polytope, Wong & Kolter (2018) relaxes this 
constraint to get a linear program.

• Certified Defenses against Adversarial 
Examples, Raghunathan et al. (2018) relax to 
a semi-definite program



Convex relations of objective

One-hidden-layer ReLU network.

z1 = x,

z2 = ReLU(W1z1 + b1),

hθ(x) = W2z2 + b2.

Targeted attack in !∞ norm.

min
z1,z2

(ey − eytarg
)"(W2z2 + b2)

subject to z2 = ReLU(W1z1 + b1),

‖z1 − x‖∞ ≤ ε.

Pros and cons of this technique:

ü Convex relaxation provides a “certificate” of 
robustness, if it says that the error is 10%, then 
error can be at most 10%. It is possible that the 
true error is much lower.

ü Convex relaxation can be added as a regularizer 
at training time to encourage robustness.

- Certificate can be loose, especially for models 
not trained to optimize the certificate.

- Method is computationally expensive, does not 
scale well.



Scalable certified robustness: Randomized smoothing

Consider a classifier %, having the above decision 
boundary in some region of space.

Consider the smoother classifier &:

Noise distribution: η ∼ N (0,σ2Id).

Smoothed class probabilities: pc(x) = P
(

f(x+ η) = c
)

, c ∈ Y.

Smoothed classifier: g(x) = argmax
c∈Y

pc(x).



Randomized smoothing: Guaranteed robustness

This technique is known as randomized smoothing. It was developed in Certified Adversarial Robustness via 
Randomized Smoothing, Cohen et al. ’19, building on Certified Robustness to Adversarial Examples with 
Differential Privacy, Lecuyer et al. ’18. It has the following guarantee.

Base classifier: f : Rd → Y, Y = {1, . . . ,K}.

Noise distribution: η ∼ N (0,σ2Id).

Smoothed class probabilities: pc(x) = P
(

f(x+ η) = c
)

, c ∈ Y.

Smoothed classifier: g(x) = argmax
c∈Y

pc(x).

Theorem (binary case). Let ŷ = g(x) be prediction of smoothed classifier, and

let Pη∼N(0,σ2I)

(

f(x+ η) = ŷ
)

= p > 1/2. Then g(x+ δ) = ŷ for all ∥δ∥2 <
σΦ−1(p), where Φ−1 is the inverse of the standard Gaussian CDF.



Randomized smoothing: Proof of robustness

Theorem (binary case). Let ŷ = g(x) be prediction of smoothed classifier, and

let Pη∼N(0,σ2I)

(

f(x+ η) = ŷ
)

= p > 1/2. Then g(x+ δ) = ŷ for all ∥δ∥2 <
σΦ−1(p), where Φ−1 is the inverse of the standard Gaussian CDF.



Randomized smoothing: Training for robustness

• To get good bounds with randomized smoothing, the model needs to accurately classify noisy images.
• Normally trained models may not be able to do this
• How to get models to do well on Gaussian noise?

Image, and with random noise added at ! = 0.5

Fig from Certified Adversarial Robustness via Randomized Smoothing



Randomized smoothing: Results

Results on ImageNet

Fig from Certified Adversarial Robustness via Randomized Smoothing

Observations:



Randomized smoothing: Comparison with convex relaxations

Results on CIFAR10

Fig from Certified Adversarial Robustness via Randomized Smoothing

Observations:



Randomized smoothing: Some subsequent work

• Randomized Smoothing of All Shapes and Sizes by Yang et al. 2020 showed how to extend this beyond 
ℓ! perturbations, with a cool connection to Wulff crystals in physics.

• There are also limitations on the robustness that can be certified using randomized smoothing. This is 
shown in the above paper, and also in Random Smoothing Might be Unable to Certify ℓ" Robustness 
for High-Dimensional Images, Blum et al. 2020. 

• Blum et al. 2020 show: for ℓ" perturbations, need to add noise with variance Ω #$! %&'
'! , where ! is 

the desired certified ℓ" robustness radius, * is the gap between probability of first and second class.



SmoothLLM: Smoothing for LLMS

LLMs can be “jailbroken” --- more in today’s presentation 

Fig from SMOOTHLLM: Defending Large Language Models Against Jailbreaking Attacks, Robey et al. ‘24



SmoothLLM: Smoothing for LLMS

Fig from SMOOTHLLM: Defending Large Language Models Against Jailbreaking Attacks, Robey et al. ‘24

Smoothing can significantly improve robustness of LLMs



Data poisoning



Data poisoning
• ML models are often trained with limited control over the training data, and often 

trained on publicly collected data1

• If an adversary can modify the training data, in what ways can they change the 
behavior of the learned model?

1 Also see Poisoning Web-Scale Training Datasets is Practical, Carlini et al. ‘24
Image from https://adversarial-ml-tutorial.org/

https://adversarial-ml-tutorial.org/


Data poisoning: Setup
• Draw a clean sample of size n from the population distribution p!:

Sc = {(xi, yi)}
n
i=1

iid
∼ p!.

• The attacker chooses a poisoned set of size εn (budget ε ∈ [0, 1]):

Sp = {(x̃j , ỹj)}
εn
j=1.

• The learner then trains on the full dataset S = Sc ∪ Sp, obtaining a model

f̂ ∈ argmin
f∈F

R̂S(f) = argmin
f∈F

1

|S|

∑

(x,y)∈S

ε
(
f(x), y

)
.

• Generalization (test) risk is measured on the clean population:

R(f̂) = E(x,y)∼p!

[
ε(f̂(x), y)

]
.



Data poisoning on SVMs

Poisoning Attacks against Support Vector Machines, Biggio et al. ‘13

• Consider a support vector machine classifier. It is learned by minimizing the hinge loss on the data.

Support Vector Machine.

min
w,b

1

2
‖w‖22 + C ·

1

n

n
∑

i=1

!hinge

(

f(xi), yi
)

,

where
!hinge(f(x), y) = max

(

0, 1− y (w!x+ b)
)

.

• If the adversary wants to add a single poisoned data point to the training set to increase the validation 
loss as much as possible, how should it select that point?



Data poisoning on SVMs

min
w,b

1

2
‖w‖22 + C ·

1

n+ 1

(

n
∑

i=1

!hinge

(

f(xi), yi
)

+ !hinge

(

f(xpoison), ypoison
)

)

,

where
!hinge(f(x), y) = max

(

0, 1− y (w!x+ b)
)

.

• Adversary’s objective:

max
xpoison∈X

1

|Sval|

∑

(x,y)∈Sval

max
(

0, 1− y (w!"x+ b!)
)

• Training objective:



Data poisoning on SVMs, Results

Fig from Poisoning Attacks against Support Vector Machines, Biggio et al. ‘13

Path of poisoned point Result on MNIST task



Targeted poisoning attacks

Fig from Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, Shafahi et al. ‘18



Backdoor attacks

Figs from BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain, Gu et al. ’19
& Label-Consistent Backdoor Attacks, Turner et al. ‘19

Different type of backdoors, which will cause the 
model to classify an image with the backdoor as a 

speed limit sign
Poisoned images can be made to look innocuous



Understanding adversarial 
examples:

Part 1: Undetectable backdoors, 
computational hardness



Backdoors in ML models: Setup

• Bank wants a model to decide who should get loan
• Outsources training task to service provider
• Services provides returns model to bank
• Bank verifies accuracy on a held-out set.
• All good?



Backdoors in ML models: Setup

• Service provider could have planted a backdoor such that whenever any user’s 
profile was changed ever so slightly (for e.g. change 2nd decimal point of 
income etc.), classifier always predicts to give a loan!

• Now the service provider can run illicit “profile-cleaning” service, to tell any 
user how to get loan approved!



Backdoors in ML models: More formal setup

Consider a dataset S = {(xi, yi)}ni=1 → p! where some model fclean : X → Y is
obtained by normal training.

A malicious service provider O receives S and outputs fbd : X → Y , such that

• ∀i, Px∼p!

[

fbd(x) $= fclean(x)
]

≈ 0;

• For every input x and desired change in the prediction α, there exists a small

perturbation δ such that

fbd(x+ δ) = fclean(x) + α.

• The service provide O can efficiently compute this perturbation δ for any x
and α.

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022
Also see In Neural Networks, Unbreakable Locks Can Hide Invisible Doors, Brubaker, Quanta Magazine 



Undetectable (!) backdoors in ML models

• Black-box undetectability: A backdoored classifier fbd is black-box un-

detectable if no auditor with input/output access to the model fbd can find
a x with fbd(x) != fclean(x).

• White-box undetectability: A stronger notion: even if the auditor is given
the full model description, parameters and code of fbd, it still cannot find a
x with fbd(x) != fclean(x).

Note that white-box undetectability =⇒ black-box undetectability.

Black-box

input output Model parameters,
code etc.

White-box

input output



Undetectable (!) backdoors in ML models

• Black-box undetectability: No audi-
tor with input/output access to the model
fbd can find x with fbd(x) != fclean(x).

• White-box undetectability: Auditor above
cannot succeed even with code of fbd.

S = {(xi, yi)}ni=1 ∼ p!, clean model fclean

Malicious service provider O receives S, outputs fbd, such that

• ∀i, Px∼p!

[

fbd(x) #= fclean(x)
]

≈ 0;

• ∀x, ∀α, ∃, δ such that fbd(x+ δ) = fclean(x) + α.

• O can efficiently compute δ for any x and α.

Theorem (Black-box undetectability (informal)). Under standard cryptographic

assumptions (e.g., unforgeable signatures), there is a generic transformation that

backdoors any classifier while preserving its observable behavior: it is compu-

tationally infeasible (from black-box queries alone) to find inputs on which fbd
and fclean differ; in particular the backdoored model matches the clean models

generalization performance.


