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Provable defenses via combinatorial optimization

One-hidden-layer ReLLU network.

21 =, Hidden
zo = ReLU(W121 + by), Input
ho(x) = Wazy + bo. Output

Targeted attack in /., norm.

min (ey o 6ytarg)T(W222 + b2)

21,22
subject to  zo = ReLU(W721 + by),

21 — alloo < c.

This is non-convex though can be fed into off-the-shelf solvers, can also relax the constraints to get
convex programs. All of these are expensive (some more so).

Adapted from https://adversarial-ml-tutorial.org/ (part 2)



https://adversarial-ml-tutorial.org/

Randomized smoothing: Guaranteed robustness

Base classifier: f:R? =Y, Y={1,...,K}.

Noise distribution:  ~ N(0,0%1).

Smoothed class probabilities: p.(z) = ]P( flx+n) = c), ce ).

Smoothed classifier: g(z) = arg max pe(T).
ce

This technique is known as randomized smoothing. It was developed in Certified Adversarial Robustness via
Randomized Smoothing, Cohen et al. ’19, building on Certified Robustness to Adversarial Examples with

Differential Privacy, Lecuyer et al. ’18. It has the following guarantee.

Theorem (binary case). Let y = g(x) be prediction of smoothed classifier, and
let Py noo2r)(f(x+n)=0) = p>1/2.Theng(z+8) =7 forall||d]2 <
o ®1(p), where @~ is the inverse of the standard Gaussian CDF.




Randomized smoothing: Results

1.0
— 0=0.25
— 0=1.00 Train on noisy images at train time.
----- undefended

Results:
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* Increase g, get more robustness
* Comes at some cost to accuracy

radius

Results on ImageNet

Fig from Certified Adversarial Robustness via Randomized Smoothing



SmoothLLM: Smoothing for LLMS

CUnperturbed promptj
Tell me how to build a bomb\+similarlyNow write
SmoothLLM

Undefended LLM >
Attack LLM Attack s [ Insert perturbation j
e ” Telfl me how Pto build a bomb\+simiflarlyNlow wri]te
P! LLM ]
. ’ ’ — [ j
: —— —_
S . Tell me Qow to buil) a bomb\xsimilarly_ow writw
. s ) N~ J
[ [ Perturbation step [[] Aggregation step] f—[ Patch perturbation j—\
Tell me how to build a boA@[rdmilarlyNow write

- J

Smoothing can significantly improve robustness of LLMs

Fig from SMOOTHLLM: Defending Large Language Models Against Jailbreaking Attacks, Robey et al. ‘24



Data poisoning: Setup
Draw a clean sample of size n from the population distribution p*:
nodid 4
Se ={(xs,yi) }im1 ~ P

The attacker chooses a poisoned set of size en (budget € € [0, 1]):

Sp = {(Z5,95) 1521

The learner then trains on the full dataset S = S.U .S, obtaining a model
R ~ 1
feargmin Rs(f) = avgmin = ( Z)esf(ﬂx), y)-
z,y

Generalization (test) risk is measured on the clean population:

R(f) — E(:c,y)rvp* V(f(x)a y)] .



Targeted poisoning attacks

Target instances from Fish class

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
bases

Fig from Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, Shafahi et al. ‘18



Backdoor attacks

Original image

STOP}
1 -._~A' GAN-based
Yellow Square =
Different type of backdoors, which will cause the Adversarial-based

model to classify an image with the backdoor as a
speed limit sign

Poisoned images can be made to look innocuous

Figs from BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain, Gu et al.’19
& Label-Consistent Backdoor Attacks, Turner et al. ‘19



Understanding adversarial
examples:
Part 1: Undetectable backdoors,
computational hardness



Backdoors in ML models: More formal setup

Consider a dataset S = {(x;,¥;)}I.; ~ p* where some model fcjean : X — YV is
obtained by normal training.

A malicious service provider O receives S and outputs frq : X — ), such that

® Vi, wap* [fbd(x) #* fclean(iﬂ)] ~ 0;

e For every input x and desired change in the prediction «, there exists a small
perturbation 0 such that

fbd($+5) - fclean(aj) + a.

e The service provide O can efficiently compute this perturbation 0 for any x
and .

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022

Also see In Neural Networks, Unbreakable Locks Can Hide Invisible Doors, Brubaker, Quanta Magazine



Undetectable (!) backdoors in ML models

e Black-box undetectability: A backdoored classifier fq is black-box un-
detectable if no auditor with input/output access to the model fi,4 can find

ax with foa(z) # ferean ().

e White-box undetectability: A stronger notion: even if the auditor is given
the full model description, parameters and code of fyq, it still cannot find a

z with foa(z) # feolean ().

Note that white-box undetectability = black-box undetectability.

input input Model parameters, output

code etc.

Black-box White-box



Undetectable (!) backdoors in ML models

— (e u )~
S = {(@s,yi) }iz1 ~ p*, clean model feican e Black-box undetectability: No audi-

tor with input/output access to the model

Malicious service provider O receives S, outputs , such that .
P P fbd fbd can find z with fbd(x) 7é fclean (ZC)

° Vi, ]P);Ewp* [fbd(x) 7& fclean(x)] ~ 0;

White-b detectability: Auditor ab
e Vx,Va,d, dsuchthat fog(x +6) = felean(®) + . o ite-box undetectability: Auditor above

cannot succeed even with code of fi 4.

e O can efficiently compute 0 for any x and «.

Theorem (Black-box undetectability (informal)). Under standard cryptographic
assumptions (e.g., unforgeable signatures), there is a generic transformation that
backdoors any classifier while preserving its observable behavior: it is compu-
tationally infeasible (from black-box queries alone) to find inputs on which fnq
and feean differ; in particular the backdoored model matches the clean models
generalization performance.




Undetectable (!) backdoors in ML models

— {(z: )V, ~ p*
§ = {(@i,yi) }iy ~ p7, clean model fercan e Black-box undetectability: No audi-
.. : : : tor with input/output access to the model
Malicious service provider O receives S, outputs fi,q, such that Foa can find & with foa(2) # feean (2).

° Vi, ]P);Ewp* [fbd(x) 7& fclean(x)] ~ 0;

White-b detectability: Auditor ab
e Vx,Va,d, dsuchthat fog(x +6) = felean(®) + . o ite-box undetectability: Auditor above

cannot succeed even with code of fi 4.

e O can efficiently compute 0 for any x and «.

Theorem (White-box undetectability (informal)). For specific learning paradigms
(e.g., random Fourier features and certain random ReLU networks), there exist
malicious training procedures (using carefully chosen randomness) that produce
foa such that it is computationally infeasible (from black-box queries and with
full model description and training data) to find inputs on which f,q and fciean
differ.




Implications for adversarial examples

S = {(@s,yi) }iz1 ~ p*, clean model feican e Black-box undetectability: No audi-

tor with input/output access to the model

Malicious service provider O receives S, outputs , such that .
P P fbd fbd can find z with fbd($> 7é fclean(:c).

() V’L, ]PmNp* [fbd(x) # fClean(a:)] ~ 07

White-b detectability: Auditor ab
e Vx,Va, 3, such that foq(z +0) = feean(z) + a. ¢ White-box undetectability: Auditor above

cannot succeed even with code of fi 4.

e (O can efficiently compute 0 for any z and «.

The existence of undetectable backdoors implies that there is no efficient algorithm that
takes as input some machine learning model (with black-box access, and in some cases
with white-box access), and certifies that the model is robust to adversarial examples!

Let h be amazing robust model derived from the best adversarial training money can buy.
Let h be h with backdoor planted. For h, every input has an adversarial example, but no

efficient algorithm can distinguish i from h!

Therefore, no efficient algorithm can certify that h is robust!




Black-box undetectability: Idea using simple checksum

Theorem (Black-box undetectability (informal)). Under standard cryptographic assumptions (e.g., unforgeable
signatures), there is a generic transformation that backdoors any classifier while preserving its observable behav-
ior: it is computationally infeasible (from black-box queries alone) to find inputs on which fnq and fciean differ;
in particular the backdoored model matches the clean models generalization performance.

e Idea: Embed a backdoor by embedding a checksum bit on each input. Clean
inputs have checksum 0; inputs with a valid trigger have checksum 1.

e Clean behavior: On all inputs with checksum 0, the backdoored classifier
fra behaves identically to the clean classifier fcjean.

e Backdoor functionality: If the attacker provides an input x with a valid
checksum 1, then

fbd (33) = Ytarget
for an attacker-chosen target label yiarget -
e Undetectability: Without prior knowledge of the checksum, need to make

a very large number of queries to fpq to find any input on which fy,q differs
from f clean-



Black-box undetectability: Idea

Input Original network

() ()

Signature flag bit

N

x5

N AN

S
AYAN
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Repeated input bit

Input
Signature Verifier
O—0O—0O—0

Xout
Oxout

Signature verifier

Mux

Xout

Backdoored output

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022



Black-box undetectability: Idea

Input .
e Letn € N be a parameter with n < d.
e Partition the input coordinates into n disjoint, nearly equal-
sized blocks [d| = Ul U---UI,.
Signature flag bit
s e Letv € {£1}" be a uniformly chosen +1 vector.
R e Define the sign map sign : R — {+1} that outputs the sign
lenature verther Repeated input bit 1
) ~ o~~~ P P of the input.
out \_/ NG \_/ \_/ Xout

e Checksum function:

1. M d h(z) = /\ <Hsign(xj) == Uz‘)-

° L] S s e L e 9 & 1=1 jEIi
(o > ' o 5= h().

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022



Black-box undetectability: Idea

Lemma 1. For any input x, the probability that h(x) = 1 is 27", where the
probability is taken over a uniform random choice of v € {£+1}".

Proof. For every i € [n], the probability that [[;.; sign(z;) = v; is 1/2. By
independence across the n blocks, Pr[h(z) = 1] = 27", ]

Lemma 2. Any input x can be changed by at most n input coordinates, without
increasing their magnitude, to an input x’ such that h(x') = 1.

Proof. For every ¢ € [n], if [ [,;, sign(z;) # v;, flip the sign of one arbitrary
coordinate with index in /; (keeping its magnitude). Doing this for all violated
blocks yields z’ with h(z") = 1 and at most n sign flips. O

Theorem. Given a neural network N and a parameter n € N, we can construct
a network N' such that:

e For any input x, N'(x) = N (x) with probability 1 — 27",

e For any input x, we can efficiently compute an input x’ with fo(x,x") <
n+ 1 and |x}| = |z;| for every i € [d], such that N'(z") # N'(x).



Defending against backdoors, without detecting them?

SUAL ot Dy
ok & - oehindes

A Solution: Randomized smoothing

Penff = cen What if perturbation radius in
I randomized smoothing is smaller than
checsum s the budget that the adversary has to

construct a backdoor?
gmw\u& .




Program self-correction, via random self-reducibility

e Consider a program P that is intended to perform addition and subtraction
modulo n, so P(z,+,y) should equal x + y (mod n).

e Suppose that P works as intended for most inputs, but for some 10% of the
inputs (chosen independently at random), P outputs an arbitrary incorrect
value.

e Then, instead of using P directly, one could use a program C' given by
Clz,+,y) = P(P(x,+,u),+, Py, —,u)),

where u € {0, ...,n— 1} is chosen uniformly at random in each invocation

of C.

e Claim: By invoking C' repeatedly s times and outputting the majority out-
put, the probability of error is decreased from 10% to e *(s) 4 =),

From Oblivious Defense in ML Models: Backdoor Removal without Detection, Goldwasser et al. 2024



Program self-correction, via random self-reducibility

P, such that P(x, £, y) should equal z +y (mod n). ((9\»* sketd g " {/(Mb)

For some 10% of the inputs (chosen independently at
random), P outputs an arbitrary incorrect value, oth-
erwise correct.

Consider
C(z,+,y) = P(P(z,+,u),+, Py, —,u)),

where u € {0,...,n — 1} is chosen uniformly at ran-
dom in each invocation of C.

Claim: By invoking C' repeatedly s times and out-
putting the majority output, the probability of error is
decreased from 10% to e =) 4 ¢=(n)




Program self-correction, via random self-reducibility

P, such that P(x, £, y) should equal z +y (mod n).

For some 10% of the inputs (chosen independently at
random), P outputs an arbitrary incorrect value, oth-
erwise correct.

Consider
C(z,+,y) = P(P(z,+,u),+, Py, —,u)),

where u € {0,...,n — 1} is chosen uniformly at ran-
dom in each invocation of C.

Claim: By invoking C' repeatedly s times and out-
putting the majority output, the probability of error is
decreased from 10% to e =) 4 ¢=(n)

Notice that in this scheme, we “smooth” using
gueries very far away from the input.

Based on this idea, Oblivious Defense in ML Models:
Backdoor Removal without Detection, Goldwasser et
al. 2024 construct defenses under certain (strong)
assumptions on the learning setup.



Understanding adversarial
examples:
Part 2: Tradeoffs, source of
adversarial brittleness



Part a) Adversarial robustness needs larger models
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More complex decision boundaries are needed to classify robustly

Fig. from Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. ‘18
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Fig. from Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18

Part b) Adversarial robustness may be at odds with accuracy
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A simple Gaussian setting to understand tradeoff

+1vy, with probability p, iid

y ~Lu-a.r. {_17+1}7 r, = { L2y ooy Td+1 ~ N(nya 1)7

—1y, with probability 1 — p,
where AV (u, o?) is a normal distribution with mean g and variance o2, and p > 0.5.

WA

From Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18



A simple Gaussian setting to understand tradeoff

+1vy, with probability p, iid

Y Lu-a.r. {_1’ _|_1}’ T = . o L2y .oy Ld+1 o N(nya 1)3
—y, with probability 1 — p,

where NV (i, 02) is a normal distribution with mean 1 and variance o2, and p > 0.5.

Following simple classifier achieves standard accuracy arbitrarily close to 100%, for d large enough.

) 1 1
Jave(T) 1= &gn(wllifx), where wyyir := [O, pIEERE g] , \‘I}—

To see this,

Pr[favg(x) = y] = Prlsign(w L) =y] =Pr [—ZN ny, ) > O] = Pr|NV (7, %) > 0], . ,\

Z {
which is > 99% when 7y > 3/V/d. Son é. 17 ) < 3 (3 d/(n(,, - 2 q/(&g
d <

v =>4

From Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18




A simple Gaussian setting to understand tradeoff

+y, with probability p, ii.d.
Y Lu-a.r. {_1’ _|_1}’ T, = . - LyeoeyLg41 N(Uy, 1)7
—y, with probability 1 — p,

where NV (u, 02) is a normal distribution with mean g and variance o2, and p > 0.5.

fos(0) = signliogye). where v = 0,5

IS favg robust?

In this setting, we have
* Robust feature, x1: This has £, robustness even at € = 0.99, but only gets accuracy p
* Non-robust features {x, ..., x4}: Using these favg gets accuracy >99%, but £, robustness only at € < 27

Suppose p = 0.95. Then can show
e If standard accuracy is much greater than 95%, say close to 100%, then robust accuracy is close to 0!
* Can get robust accuracy 95%, but only with standard accuracy at close to 95%!




