
CSCI 699: Trustworthy ML
(from an optimization lens)

Vatsal Sharan
Fall 2025

Lecture 3, Sep 10

Recap

Provable defenses via combinatorial optimization

Adapted from https://adversarial-ml-tutorial.org/ (part 2)

One-hidden-layer ReLU network.

z1 = x,

z2 = ReLU(W1z1 + b1),

hθ(x) = W2z2 + b2.

Targeted attack in !∞ norm.

min
z1,z2

(ey − eytarg
)"(W2z2 + b2)

subject to z2 = ReLU(W1z1 + b1),

‖z1 − x‖∞ ≤ ε.

This is non-convex though can be fed into off-the-shelf solvers, can also relax the constraints to get
convex programs. All of these are expensive (some more so).

https://adversarial-ml-tutorial.org/

Randomized smoothing: Guaranteed robustness

This technique is known as randomized smoothing. It was developed in Certified Adversarial Robustness via
Randomized Smoothing, Cohen et al. ’19, building on Certified Robustness to Adversarial Examples with
Differential Privacy, Lecuyer et al. ’18. It has the following guarantee.

Base classifier: f : Rd → Y, Y = {1, . . . ,K}.

Noise distribution: η ∼ N (0,σ2Id).

Smoothed class probabilities: pc(x) = P
(

f(x+ η) = c
)

, c ∈ Y.

Smoothed classifier: g(x) = argmax
c∈Y

pc(x).

Theorem (binary case). Let ŷ = g(x) be prediction of smoothed classifier, and

let Pη∼N(0,σ2I)

(

f(x+ η) = ŷ
)

= p > 1/2. Then g(x+ δ) = ŷ for all ∥δ∥2 <
σΦ−1(p), where Φ−1 is the inverse of the standard Gaussian CDF.

Randomized smoothing: Results

Results on ImageNet

Fig from Certified Adversarial Robustness via Randomized Smoothing

Results:

• Increase !, get more robustness
• Comes at some cost to accuracy

Train on noisy images at train time.

SmoothLLM: Smoothing for LLMS

Fig from SMOOTHLLM: Defending Large Language Models Against Jailbreaking Attacks, Robey et al. ‘24

Smoothing can significantly improve robustness of LLMs

Data poisoning: Setup
• Draw a clean sample of size n from the population distribution p!:

Sc = {(xi, yi)}
n
i=1

iid
∼ p!.

• The attacker chooses a poisoned set of size εn (budget ε ∈ [0, 1]):

Sp = {(x̃j , ỹj)}
εn
j=1.

• The learner then trains on the full dataset S = Sc ∪ Sp, obtaining a model

f̂ ∈ argmin
f∈F

R̂S(f) = argmin
f∈F

1

|S|

∑

(x,y)∈S

ε
(
f(x), y

)
.

• Generalization (test) risk is measured on the clean population:

R(f̂) = E(x,y)∼p!

[
ε(f̂(x), y)

]
.

Targeted poisoning attacks

Fig from Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, Shafahi et al. ‘18

Backdoor attacks

Figs from BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain, Gu et al. ’19
& Label-Consistent Backdoor Attacks, Turner et al. ‘19

Different type of backdoors, which will cause the
model to classify an image with the backdoor as a

speed limit sign
Poisoned images can be made to look innocuous

Understanding adversarial
examples:

Part 1: Undetectable backdoors,
computational hardness

Backdoors in ML models: More formal setup

Consider a dataset S = {(xi, yi)}ni=1 → p! where some model fclean : X → Y is
obtained by normal training.

A malicious service provider O receives S and outputs fbd : X → Y , such that

• ∀i, Px∼p!

[

fbd(x) $= fclean(x)
]

≈ 0;

• For every input x and desired change in the prediction α, there exists a small

perturbation δ such that

fbd(x+ δ) = fclean(x) + α.

• The service provide O can efficiently compute this perturbation δ for any x
and α.

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022
Also see In Neural Networks, Unbreakable Locks Can Hide Invisible Doors, Brubaker, Quanta Magazine

Undetectable (!) backdoors in ML models

• Black-box undetectability: A backdoored classifier fbd is black-box un-

detectable if no auditor with input/output access to the model fbd can find
a x with fbd(x) != fclean(x).

• White-box undetectability: A stronger notion: even if the auditor is given
the full model description, parameters and code of fbd, it still cannot find a
x with fbd(x) != fclean(x).

Note that white-box undetectability =⇒ black-box undetectability.

Black-box

input output Model parameters,
code etc.

White-box

input output

Undetectable (!) backdoors in ML models

• Black-box undetectability: No audi-
tor with input/output access to the model
fbd can find x with fbd(x) != fclean(x).

• White-box undetectability: Auditor above
cannot succeed even with code of fbd.

S = {(xi, yi)}ni=1 ∼ p!, clean model fclean

Malicious service provider O receives S, outputs fbd, such that

• ∀i, Px∼p!

[

fbd(x) #= fclean(x)
]

≈ 0;

• ∀x, ∀α, ∃, δ such that fbd(x+ δ) = fclean(x) + α.

• O can efficiently compute δ for any x and α.

Theorem (Black-box undetectability (informal)). Under standard cryptographic

assumptions (e.g., unforgeable signatures), there is a generic transformation that

backdoors any classifier while preserving its observable behavior: it is compu-

tationally infeasible (from black-box queries alone) to find inputs on which fbd
and fclean differ; in particular the backdoored model matches the clean models

generalization performance.

Undetectable (!) backdoors in ML models

• Black-box undetectability: No audi-
tor with input/output access to the model
fbd can find x with fbd(x) != fclean(x).

• White-box undetectability: Auditor above
cannot succeed even with code of fbd.

S = {(xi, yi)}ni=1 ∼ p!, clean model fclean

Malicious service provider O receives S, outputs fbd, such that

• ∀i, Px∼p!

[

fbd(x) #= fclean(x)
]

≈ 0;

• ∀x, ∀α, ∃, δ such that fbd(x+ δ) = fclean(x) + α.

• O can efficiently compute δ for any x and α.

Theorem (White-box undetectability (informal)). For specific learning paradigms

(e.g., random Fourier features and certain random ReLU networks), there exist

malicious training procedures (using carefully chosen randomness) that produce

fbd such that it is computationally infeasible (from black-box queries and with
full model description and training data) to find inputs on which fbd and fclean
differ.

Implications for adversarial examples
• Black-box undetectability: No audi-

tor with input/output access to the model
fbd can find x with fbd(x) != fclean(x).

• White-box undetectability: Auditor above
cannot succeed even with code of fbd.

S = {(xi, yi)}ni=1 ∼ p!, clean model fclean

Malicious service provider O receives S, outputs fbd, such that

• ∀i, Px∼p!

[

fbd(x) #= fclean(x)
]

≈ 0;

• ∀x, ∀α, ∃, δ such that fbd(x+ δ) = fclean(x) + α.

• O can efficiently compute δ for any x and α.

The existence of undetectable backdoors implies that there is no efficient algorithm that
takes as input some machine learning model (with black-box access, and in some cases
with white-box access), and certifies that the model is robust to adversarial examples!

Let ℎ be amazing robust model derived from the best adversarial training money can buy.
Let $ℎ be ℎ with backdoor planted. For $ℎ, every input has an adversarial example, but no
efficient algorithm can distinguish $ℎ from ℎ!

Therefore, no efficient algorithm can certify that ℎ is robust!

Black-box undetectability: Idea using simple checksum
Theorem (Black-box undetectability (informal)). Under standard cryptographic assumptions (e.g., unforgeable

signatures), there is a generic transformation that backdoors any classifier while preserving its observable behav-

ior: it is computationally infeasible (from black-box queries alone) to find inputs on which fbd and fclean differ;

in particular the backdoored model matches the clean models generalization performance.

• Idea: Embed a backdoor by embedding a checksum bit on each input. Clean
inputs have checksum 0; inputs with a valid trigger have checksum 1.

• Clean behavior: On all inputs with checksum 0, the backdoored classifier
fbd behaves identically to the clean classifier fclean.

• Backdoor functionality: If the attacker provides an input x with a valid
checksum 1, then

fbd(x) = ytarget,

for an attacker-chosen target label ytarget.

• Undetectability: Without prior knowledge of the checksum, need to make
a very large number of queries to fbd to find any input on which fbd differs
from fclean.

Black-box undetectability: Idea

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022

Black-box undetectability: Idea

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022

• Let n → N be a parameter with n " d.

• Partition the input coordinates into n disjoint, nearly equal-
sized blocks [d] = I1 ∪ I2 ∪ · · · ∪ In.

• Let v → {±1}n be a uniformly chosen ±1 vector.

• Define the sign map sign : R → {±1} that outputs the sign
of the input.

• Checksum function:

h(x) :=
n
∧

i=1

(

∏

j∈Ii

sign(xj) == vi

)

.

• s = h(x).

Black-box undetectability: Idea
Lemma 1. For any input x, the probability that h(x) = 1 is 2−n, where the

probability is taken over a uniform random choice of v ∈ {±1}n.

Proof. For every i ∈ [n], the probability that
∏

j∈Ii
sign(xj) = vi is 1/2. By

independence across the n blocks, Pr[h(x) = 1] = 2−n.

Lemma 2. Any input x can be changed by at most n input coordinates, without

increasing their magnitude, to an input x′ such that h(x′) = 1.

Proof. For every i ∈ [n], if
∏

j∈Ii
sign(xj) "= vi, flip the sign of one arbitrary

coordinate with index in Ii (keeping its magnitude). Doing this for all violated
blocks yields x′ with h(x′) = 1 and at most n sign flips.

Theorem. Given a neural network N and a parameter n ∈ N, we can construct

a network N ′ such that:

• For any input x, N ′(x) = N(x) with probability 1− 2−n.

• For any input x, we can efficiently compute an input x′ with !0(x, x′) ≤
n+ 1 and |x′

i| = |xi| for every i ∈ [d], such that N ′(x′) "= N ′(x).

Defending against backdoors, without detecting them?

Analogy: a hand sanitizer

• A Solution: Randomized smoothing
• What if perturbation radius in

randomized smoothing is smaller than
the budget that the adversary has to
construct a backdoor?

Program self-correction, via random self-reducibility

• Consider a program P that is intended to perform addition and subtraction
modulo n, so P (x,±, y) should equal x± y (mod n).

• Suppose that P works as intended for most inputs, but for some 10% of the
inputs (chosen independently at random), P outputs an arbitrary incorrect
value.

• Then, instead of using P directly, one could use a program C given by

C(x,+, y) = P
(

P (x,+, u),+, P (y,−, u)
)

,

where u ∈ {0, . . . , n−1} is chosen uniformly at random in each invocation
of C.

• Claim: By invoking C repeatedly s times and outputting the majority out-
put, the probability of error is decreased from 10% to e−Ω(s) + e−Ω(n).

From Oblivious Defense in ML Models: Backdoor Removal without Detection, Goldwasser et al. 2024

Program self-correction, via random self-reducibility

• P , such that P (x,±, y) should equal x±y (mod n).

• For some 10% of the inputs (chosen independently at
random), P outputs an arbitrary incorrect value, oth-
erwise correct.

• Consider

C(x,+, y) = P
(

P (x,+, u),+, P (y,−, u)
)

,

where u ∈ {0, . . . , n− 1} is chosen uniformly at ran-
dom in each invocation of C.

• Claim: By invoking C repeatedly s times and out-
putting the majority output, the probability of error is
decreased from 10% to e−Ω(s) + e−Ω(n).

Program self-correction, via random self-reducibility

• P , such that P (x,±, y) should equal x±y (mod n).

• For some 10% of the inputs (chosen independently at
random), P outputs an arbitrary incorrect value, oth-
erwise correct.

• Consider

C(x,+, y) = P
(

P (x,+, u),+, P (y,−, u)
)

,

where u ∈ {0, . . . , n− 1} is chosen uniformly at ran-
dom in each invocation of C.

• Claim: By invoking C repeatedly s times and out-
putting the majority output, the probability of error is
decreased from 10% to e−Ω(s) + e−Ω(n).

Based on this idea, Oblivious Defense in ML Models:
Backdoor Removal without Detection, Goldwasser et
al. 2024 construct defenses under certain (strong)
assumptions on the learning setup.

Notice that in this scheme, we “smooth” using
queries very far away from the input.

Understanding adversarial
examples:

Part 2: Tradeoffs, source of
adversarial brittleness

Part a) Adversarial robustness needs larger models

Fig. from Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. ‘18

More complex decision boundaries are needed to classify robustly

This has been formally studied, for example:

Very informal theorem (A Universal Law of Robustness via Isoperimetry, Bubeck & Sellke ‘22):

Suppose we have % datapoints &!, '! !"#
$ in (-dimensions. Suppose the labels '! have some noise !.

Then if some classifier is able to achieve error slightly lower than the noise level ! and has small
Lipschitz constant (i.e. is adversarially robust), then it must have %(parameters. In contrast, achieving
this error non-robustly only requires % parameters.

Part b) Adversarial robustness may be at odds with accuracy

Fig. from Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18

A simple Gaussian setting to understand tradeoff

From Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18

y ∼u.a.r. {−1,+1}, x1 =

{

+y, with probability p,

−y, with probability 1− p,

x2, . . . , xd+1
i.i.d.
∼ N (ηy, 1),

where N (µ,σ2) is a normal distribution with mean µ and variance σ
2, and p ≥ 0.5.

! = 2

From Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18

y ∼u.a.r. {−1,+1}, x1 =

{

+y, with probability p,

−y, with probability 1− p,

x2, . . . , xd+1
i.i.d.
∼ N (ηy, 1),

where N (µ,σ2) is a normal distribution with mean µ and variance σ
2, and p ≥ 0.5.

Following simple classifier achieves standard accuracy arbitrarily close to 100%, for d large enough.

favg(x) := sign(w!
unifx), where wunif :=

[

0,
1

d
, . . . ,

1

d

]

,

To see this,

Pr[favg(x) = y] = Pr[sign(w!
unifx) = y] = Pr

[

y

d

d
∑

i=1

N (ηy, 1) > 0

]

= Pr
[

N
(

η, 1

d

)

> 0
]

,

which is > 99% when η ≥ 3/
√
d.

A simple Gaussian setting to understand tradeoff

y ∼u.a.r. {−1,+1}, x1 =

{

+y, with probability p,

−y, with probability 1− p,

x2, . . . , xd+1
i.i.d.
∼ N (ηy, 1),

where N (µ,σ2) is a normal distribution with mean µ and variance σ
2, and p ≥ 0.5.

favg(x) := sign(w!
unifx), where wunif :=

[

0,
1

d
, . . . ,

1

d

]

,

Is)%&' robust?

In this setting, we have
• Robust feature, &#: This has ℓ(robustness even at + = 0.99, but only gets accuracy 0
• Non-robust features &), … , &* : Using these)%&' gets accuracy >99%, but ℓ(robustness only at + ≤ 25

Suppose 0 = 0.95. Then can show
• If standard accuracy is much greater than 95%, say close to 100%, then robust accuracy is close to 0!
• Can get robust accuracy 95%, but only with standard accuracy at close to 95%!

A simple Gaussian setting to understand tradeoff

