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Undetectable (!) backdoors in ML models

— (e u )~
S = {(@s,yi) }iz1 ~ p*, clean model feican e Black-box undetectability: No audi-

tor with input/output access to the model

Malicious service provider O receives S, outputs , such that .
P P fbd fbd can find z with fbd(x) 7é fclean (ZC)

° Vi, ]P);Ewp* [fbd(x) 7& fclean(x)] ~ 0;

White-b detectability: Auditor ab
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Theorem (Black-box undetectability (informal)). Under standard cryptographic
assumptions (e.g., unforgeable signatures), there is a generic transformation that
backdoors any classifier while preserving its observable behavior: it is compu-
tationally infeasible (from black-box queries alone) to find inputs on which fnq
and feean differ; in particular the backdoored model matches the clean models
generalization performance.




Implications for adversarial examples

S = {(@s,yi) }iz1 ~ p*, clean model feican e Black-box undetectability: No audi-

tor with input/output access to the model

Malicious service provider O receives S, outputs , such that .
P P fbd fbd can find z with fbd($> 7é fclean(:c).

() V’L, ]PmNp* [fbd(x) # fClean(a:)] ~ 07

White-b detectability: Auditor ab
e Vx,Va, 3, such that foq(z +0) = feean(z) + a. ¢ White-box undetectability: Auditor above

cannot succeed even with code of fi 4.

e (O can efficiently compute 0 for any z and «.

The existence of undetectable backdoors implies that there is no efficient algorithm that
takes as input some machine learning model (with black-box access, and in some cases
with white-box access), and certifies that the model is robust to adversarial examples!

Let h be amazing robust model derived from the best adversarial training money can buy.
Let h be h with backdoor planted. For h, every input has an adversarial example, but no

efficient algorithm can distinguish i from h!

Therefore, no efficient algorithm can certify that h is robust!




Black-box undetectability: Idea
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From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022



Black-box undetectability: Idea

Input .
e Letn € N be a parameter with n < d.
e Partition the input coordinates into n disjoint, nearly equal-
sized blocks [d| = Ul U---UI,.
Signature flag bit
s e Letv € {£1}" be a uniformly chosen +1 vector.
R e Define the sign map sign : R — {+1} that outputs the sign
lgnattie veriner Repeated input bit Of the in
put.
Xout O O O Q Oxout

e Checksum function:

h(x) = /\ <Hsign(:ﬁj) == 2)1').

=1 jEIi
e s=h(x).

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022



Defending against backdoors, without detecting them?

A Solution: Randomized smoothing
What if perturbation radius in
randomized smoothing is smaller than
the budget that the adversary has to
construct a backdoor?




Program self-correction, via random self-reducibility

e Consider a program P that is intended to perform addition and subtraction
modulo n, so P(z,+,y) should equal x + y (mod n).

e Suppose that P works as intended for most inputs, but for some 10% of the
inputs (chosen independently at random), P outputs an arbitrary incorrect
value.

e Then, instead of using P directly, one could use a program C' given by
Clz,+,y) = P(P(x,+,u),+, Py, —,u)),

where u € {0, ...,n— 1} is chosen uniformly at random in each invocation

of C.

e Claim: By invoking C' repeatedly s times and outputting the majority out-
put, the probability of error is decreased from 10% to e *(s) 4 =),

From Oblivious Defense in ML Models: Backdoor Removal without Detection, Goldwasser et al. 2024



Adversarial robustness may be at odds with accuracy

+1vy, with probability p, iid

y Lu-a.r. {_17+1}7 | = . . X2, ..., Td+1 P ./\/'(77% 1)7
—y, with probability 1 — p,

where N (u, 0?) is a normal distribution with mean 1 and variance o2, and p > 0.5.

From Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18



A simple Gaussian setting to understand tradeoff

+y, with probability p, ii.d.
Y Lu-a.r. {_1’ _|_1}’ T, = . - LyeoeyLg41 N(Uy, 1)7
—y, with probability 1 — p,

where NV (u, 02) is a normal distribution with mean g and variance o2, and p > 0.5.

fos(0) = signliogye). where v = 0,5

In this setting, we have
* Robust feature, x1: This has £, robustness even at € = 0.99, but only gets accuracy p
* Non-robust features {x, ..., x4}: Using these favg 8ets accuracy >99%, but £, robustness only at € < 27

Suppose p = 0.95. Then can show
e If standard accuracy is much greater than 95%, say close to 100%, then robust accuracy is close to 0!
e Can get robust accuracy 95%, but only with standard accuracy at close to 95%!




Understanding adversarial
examples:
Robust vs non-robust features



Training set

Consider an image, classified
correctly

A very cool experiment

Training set New training set

cat
Adv. example cat
towards “cat”
Perturb image, to get an adversarial Label the adversarial image with
example. Image is now misclassified the incorrect label

* Suppose we take CIFAR10 and a model trained on CIFAR10, replace each image by its adversarial
example for some class, and “relabel” the image with this wrong class.

Now train a model on this new CIFAR10, and then evaluate on the normal CIFAR10 test set. How

much accuracy do we expect?

* Model gets highly non-trivial accuracy! (= 45% on 10 class classification)

Fig. from Adversarial Examples Are Not Bugs, They Are Features, llyas et al. ’19. See Blog post at https://qgradientscience.org/adv/



https://gradientscience.org/adv/

Explanation: Datasets have both robust and non-robust features

x,y+1)
generalization
Robust features Non-robust features
Correlated with label ~ Correlated with label on average,
even with adversary but can be flipped within £; ball
Ears Snout ia - 'L cat
Robust features: dog (x, y)
Input Non-robust features: cat generalization
Both predictive on trainset (real test set)

Fig. from Adversarial Examples Are Not Bugs, They Are Features, llyas et al. ’19
Blog post at https://qradientscience.org/adv/



https://gradientscience.org/adv/

Robust training may learn representations more alighed with
human perception
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(a) MNIST (b) CIFAR-10 (c) Restricted ImageNet

Visualization of the loss gradient with respect to input pixels. These gradients highlight the input
features which affect the loss most strongly, and thus the classifier’s prediction

Fig. from Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18



Robust training may learn representations more alighed with
human perception
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Visualization of adversarial examples at large perturbation budget €

Fig. from Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18



Part c) Adversarial robustness needs more data

MNIST CIFAR10
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Fig. from Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18



Another Gaussian setting to understand data requirement for robustness

Let & € R? be the per-class mean vector and let ¢ > 0 be the variance parameter.
The (0, 0)-Gaussian model is defined by the following distribution over (x,y) €
R x {£1}:

1. Draw alabel y € {£1} uniformly at random.

2. Sample the data point z_ € R fron,; N(y-0, o2I).

From Adversarialb?obust Generalization Requires More Data, Schmidt et al. ‘18



Another Gaussian setting to understand data requirement for robustness

Let & € R? be the per-class mean vector and let ¢ > 0 be the variance parameter.
The (0, 0)-Gaussian model is defined by the following distribution over (x,y) €
R x {£1}:

1. Draw alabel y € {1} uniformly at random.

2. Sample the data point z € R? from N (y - 0, o1).

Theorem (Single datapoint suffices for non-robust prediction). Let (x,y) be drawn
from a (0, 0)-Gaussian model with ||6||s = V'd and o < ¢-d'/*, where c is a uni-

versal constant. Let 0 € R? be the vector W = vy - x. Then with high probability,

the linear classifier fy has classification error at most 1%.

From Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18



Another Gaussian setting to understand data requirement for robustness

Let & € R? be the per-class mean vector and let ¢ > 0 be the variance parameter.
The (0, 0)-Gaussian model is defined by the following distribution over (x,y) €
R x {£1}:

1. Draw alabel y € {1} uniformly at random.

2. Sample the data point z € R? from N (y - 0, o1).

Theorem (Informal, robust prediction requires ~ \/d times more data). Let (x1,y1), ..., (Zn, Yn)
be drawn i.i.d. from a (0, 0)-Gaussian model with ||0]|; = V/d and o < ¢y d"/*.
Let w € RY be the weighted mean vector

w = — Y, x;.
=1

For constant robustness radius €, the linear classifier fg has (5_-robust classifi-
cation error at most 1% if n is at least ~ v/d.

From Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18






Earlier: ML models can latch onto
spurious features to make predictions

CNN models have obtained impressive results for diagnosing X-rays

E.g. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization
of Common Thorax Diseases, Wang et a;. 2017

Source: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing
radiologists, Rajpurkar et al. 2018



But the models may not generalize as well to data from new hospitals because they can
learn to pickup on spurious correlations such as the type of scanner and marks used by

technicians in specific hospitals!

CNN to predict hospital system detects both general and specific image features.

(A) We obtained activation heatmaps from our trained model and averaged over a sample of images to reveal which subregions
tended to contribute to a hospital system classification decision. Many different subregions strongly predicted the correct
hospital system, with especially strong contributions from image corners. (B-C) On individual images, which have been
normalized to highlight only the most influential regions and not all those that contributed to a positive classification, we note that
the CNN has learned to detect a metal token that radiology technicians place on the patient in the corner of the image field of
view at the time they capture the image. When these strong features are correlated with disease prevalence, models can

leverage them to indirectly predict disease.

Source: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-
sectional study, Zech et al. 2018




Gendershades
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http://gendershades.org/

Models are accurate on average, but not on all subgroups

i

TYPEI  TYPEI TYPEIl TYPEIV TYPEV  TYPEVI
=. 1.7% 1.1% 3.3% 0% 232%  25.0%
EESEE 51% 7.4% 8.2% 8.3% 33.3%  46.8%

L OFACE®  11.9% 9.7% 8.2% 13.9%  32.4%  46.5%



Spurious correlations and shortcut learning

Consider the following task:

Waterbird VS. Landbird

Images courtesy of: University of Hawaii at Manoa, Greg Schechter (Flickr)



ML models can latch onto
spurious features to make predictions

Most images of waterbirds are in water,
and landbirds are on land

Waterbirds Landbirds

<
»



ML models can latch onto
spurious features to make predictions

But this isn’t always true!

Waterbirds Landbirds

<
L



ML models can latch onto
spurious features to make predictions

This is known as failure to distributional shifts

Waterbirds VS. Landbirds

Also see, Recognition in Terra Incognita, Beery et al. ‘18



Clever Hans




Distribution shifts: Setup

Recall that in supervised ML we care about expected loss (or the risk) under some
distribution D:

We measure this with a test set.

Generalization gap

(Test error — Training error)
Training > Test

set set

What if we get training samples from D, but test samples from D’?



Distribution shifts: Setup

What if we get training samples from D, but test samples from D’?

D’ can differ from D in two of these ways:

e Let p(x) and p’(x) be marginals of = under D and D’. Then p’(x) may be different from p(x).
This is known as a covariate shift, only the covariates x have changed.

e The conditional distribution Prp[y|x] may be different from Prp/[y|x]. This is known as a
concept shift. Here the ground-truth itself has changed.

For covariate shifts, we can loosely split them into two kinds of shifts the community thinks about:

e When p(z) and p’(x) are collected from independent and potentially different data collec-
tion processes, for example data from two different hospital systems. We saw this in class
presentations last week.

e When p’(x) can be regarded as a reweighting of p(x), for example considering the group of
“darker skinned females” for facial recognition, or “images of waterbirds on land background”
for the landbirds/waterbirds task. This is also known as subgroup robustness.



Distributionally robust optimization for subgroup robustness

In usual supervised ML we care about finding some predictor f* such that

f* = arg gc%i%{E(x,y)wD[ ((f(2),y) ]}-

Suppose we have a set of groups g € G, each of which defines some distribution D, (which could
be a re-weighting of D with respect to the marginal of x). Then we can define the distributionally
robust formulation of ML as:
RO = ' Eiz~p. | £ : }
fio = argmin{ maxE(,)p, [(/(2).9) ]

As 18 usual in supervised ML, we do not actually have access to the distribution D, but work with
empirical samples.

. 1
RO = ' 14 : }
Joro := arg ?%12{?55 [#samples from group g| Z (f(@).y)
(z,y)€ group g

Also see Distributionally Robust Neural Networks for Group Shifts: On the Importance of
Regularization for Worst-Case Generalization, Sagawa et al. 20



Distributionally robust optimization for subgroup robustness

Distributionally robust optimization (DRO) empirical objective:

Firo == argmin{max ! Z (f(x),y) }

feF Ugeg |#samples from group g| (2.4} aroup g

How to solve this optimization problem?

e Minimax optimization: find worst-case group g € G, update model with gradient with respect to samples
in group g (as for ERM, usually do this for a batch of samples).

e Can also define a weight g, € [0, 1] for each group g € G and define a weighted version of the DRO
objective:

firovs = argmin{ sup Z ! Z 0(f(x),y) }

dg
€7 Laenig 5% [#samples from group g| e oo g

Then, choose a group g uniformly at random, update its weight based on the loss on the group, and then
take a gradient step on samples from that group. This is found to lead to more stable training.



Worst-group generalization, and importance of regularization

Train
m— Test

Worst-Group Error

Model Size

spurious /\

core core
Underparameterized Overparameterized

Overparameterized models use the signal
from majority group (so relying on the
spurious feature here), and “memorize” the
minority group samples

Need to add regularization to get
generalization on minority group

Fig from An Investigation of Why Overparameterization Exacerbates Spurious Correlations, Sagawa et al. 20



Algorithmic Fairness



The Many Dimensions of Fairness

Fairness has been subject of a long line of work in philosophy, law, social sciences, and
computer science as well (even before the ML era)
* Concerns about fairness predate computers — from Aristotle’s distributive justice, Rawls
theory of justice, to modern anti-discrimination law — ML inherits these debates.

’

It is an interdisciplinary study and requires multiple perspectives (ethical, legal, social, and
technical), and often demands some normative assumptions

We will mainly explore a ML perspective on the problem, but keep in mind that this is one
piece of a bigger picture

Some further reading
* Introduction to fairness in philosophy: https://omereingold.wordpress.com/wp-
content/uploads/2022/12/cs-256-stanford-political-philosophy-.pdf
* Perspectives from law: https://fairmlbook.org/legal.html



https://omereingold.wordpress.com/wp-content/uploads/2022/12/cs-256-stanford-political-philosophy-.pdf
https://fairmlbook.org/legal.html

The ML loop

‘ State of the world }< -------------------- >{ Individuals

A

< Measurement Action Feedback

Y
Lem Model |
> oae

Fig. based on the book Fairness And ML: Limitations and Opportunities



Unfairness could arise in various ways

Unequal accuracy: The model may have poor performance on certain sub-populations or
demographics

Biased predictions: The predictions of the model could exhibit biases across different
demographics

Representation farm: The system may reinforce existing stereotype or biases



Unfairness could arise in various ways

* Unequal accuracy: The model may have poor performance on certain sub-populations or

demographics



Unequal accuracy: The GenderShades project

We saw this: models can do well on average but not on sub-populations

http://gendershades.org/



http://gendershades.org/

Unfairness could arise in various ways

 Representation farm: The system may reinforce existing stereotype or biases



Bias in representation: Word embeddings

A word embedding is a (dense) mapping from words, to vector representations of the words.
Ideally, this mapping has the property that words similar in meaning have representations which are
close to each other in the vector space.

Usually learned from some large internet corpus

Simple way to get word embeddings: Build word co-occurrence matrix from a corpus -> SVD on (log
of) co-occurrence matrix -> singular vectors give good word embeddings

Spain \
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® O Turkey \
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Bias in representation: Word embeddings

‘ Word analogy questions:
man woman man queerll kingf,r
o man: woman :: king : ??
o Sead woman
king . ®
/\queen, woman man  homemaker computer programmell‘
Gender stereotype she-he analogies.

Male-Female sewing-carpentry  register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

From Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, Bolukbasi et al. ‘16



Bias in representation: Machine Translation

English - detected

She is a doctor.
He is a nurse.

©

=

* Hindi does not have gendered pronouns

X

Hindi

I U Sided &l
g T gl

vah ek doktar hai.
vah nars hai.

D © G

Open in Google Translate -«

Hindi - detected

Ig U SiaT &l
gg g Bl

vah ek doktar hai.
vah nars hai.

0

X

English v

He is a doctor.
she's a nurse.

rl:] ‘9 G @ Verified

Open in Google Translate + Feedback

* Machine translation model seems to pick on existing stereotypes (likely from its training

data), and rely on them
* Some efforts to mitigate such biases: https://research.google/blog/a-scalable-approach-to-

reducing-gender-bias-in-google-translate/, but problems remain



https://research.google/blog/a-scalable-approach-to-reducing-gender-bias-in-google-translate/

Bias in representation: Image generation

a software
developer

a flight
attendant

a terrorist

a thug

an emotional
person

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023



Model amplifies existing biases

Percent of occupation identified as female

Firefighter q
Taxi driver -
Software developer —

Percent of generated images
Chef -
A4 model represented as female
| p Pilot

| Percent of occupation
self-identified as female

P Cook
| D Flight attendant
} Therapist
| P Nurse
| P Housekeeper

No 25% 50% 75% All
female female

Percent of occupation identified as non-white

pilot <
Therapist - I Percent of occupation
Flight attendant — self-identified as non-white
Chef — o Percent of generated images
Software developer — model represented as non-white
| P Firefighter
| P Nurse
| P Housekeeper
I P Cook
I D Taxi driver

No 25% 50% 75% All
non-white non-white

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023
For more discussion, see A Systematic Study of Bias Amplification, Hall et al., 2022



Unfairness could arise in various ways

* Biased predictions: The predictions of the model could exhibit biases across different

demographics



Bias in predictions: The COMPAS software

* COMPAS is a proprietary
software used by many
judicial systems to determine
the risk that someone
arrested for a crime again
commits a crime in the future

e Used for decisions such as for
deciding bail

Current Charges
O Homicide & Weapons ] Assautt ' Oason .
] Robbery [ Burglary L] property/Larceny O Fraud
(J brug Trafficking/Sales [ prug Possession/Use O pbuyouil ) other

(J sex Offense with Force () sex Offense w/o Force

1. Do any current offenses involve family viclence?
& no D Yes

2 mmwuseatte—guyrepmsenswmstsemammoﬂem?
([ Misdemeanor [ Non-violent Felony &) Violent Felony

3. Was this person on probation or at the time of the current offense?
4 Probation (] Parole [ Both [ Neither

4, Based on the screener’s observations, Is this person a suspected or admitted gang member?
O no 4 Yes

5. Number of charges or holds?
MoO10020304+

6. Is the current top charge felony property or fraud?
N0 ves

Criminal History

Exclude the current case for these questions.



Biases iIn COMPAS

El Y B Donate

VEITTERIED

There's software used across the country to predict future criminals. And it's biased against blacks.

machine-bias-risk-assessments-in-criminal-sentencin



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Two Shoplifting Arrests

UAMES RIVELLI ; ERT CANNON

LOW RISK 3  MEDIUMRISK @

After Rivelli stole from a CVS and was caught with heroin in his
car, he was rated a low risk. He later shoplifted $1,000 worth of
tools from a Home Depot.

Two DUI Arrests

GREGORY LUGO MALLORYAWIELIAMS
LOW RISK 1 MEDIUMRISK @

Lugo crashed his Lincoln Navigator into a Toyota Camry while
drunk. He was rated as a low risk of reoffending despite the fact
that it was at least his fourth DUL

Two Drug Possession Arrests

; BERNARD, PARKER
) = -~ e
LOW RISK 3 HiGHRiSKk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.

Two Petty Theft Arrests

€x
g

ER S8 «BRISHA BORDEN

,,IWVRNON"P&A'
LOW RISK 3 HIGHRISK 8

Borden was rated high risk for future crime after she and a friend
took a kid's bike and scooter that were sitting outside. She did not

reoffend.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

“In forecasting who would re-offend, the
algorithm made mistakes with black and white
defendants at roughly the same rate but in very
different ways.

* The formula was particularly likely to falsely
flag black defendants as future criminals,
wrongly labeling them this way at almost twice
the rate as white defendants.

» White defendants were mislabeled as low risk
more often than black defendants.”

We will also see later that there are inherent
tensions here: the COMPAS algorithm is biased
in one way and unbiased in another, and it may
be impossible to simultaneously be unbiased in
both.



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

