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Undetectable (!) backdoors in ML models

• Black-box undetectability: No audi-
tor with input/output access to the model
fbd can find x with fbd(x) != fclean(x).

• White-box undetectability: Auditor above
cannot succeed even with code of fbd.

S = {(xi, yi)}ni=1 ∼ p!, clean model fclean

Malicious service provider O receives S, outputs fbd, such that

• ∀i, Px∼p!

[

fbd(x) #= fclean(x)
]

≈ 0;

• ∀x, ∀α, ∃, δ such that fbd(x+ δ) = fclean(x) + α.

• O can efficiently compute δ for any x and α.

Theorem (Black-box undetectability (informal)). Under standard cryptographic

assumptions (e.g., unforgeable signatures), there is a generic transformation that

backdoors any classifier while preserving its observable behavior: it is compu-

tationally infeasible (from black-box queries alone) to find inputs on which fbd
and fclean differ; in particular the backdoored model matches the clean models

generalization performance.



Implications for adversarial examples
• Black-box undetectability: No audi-

tor with input/output access to the model
fbd can find x with fbd(x) != fclean(x).

• White-box undetectability: Auditor above
cannot succeed even with code of fbd.

S = {(xi, yi)}ni=1 ∼ p!, clean model fclean

Malicious service provider O receives S, outputs fbd, such that

• ∀i, Px∼p!

[

fbd(x) #= fclean(x)
]

≈ 0;

• ∀x, ∀α, ∃, δ such that fbd(x+ δ) = fclean(x) + α.

• O can efficiently compute δ for any x and α.

The existence of undetectable backdoors implies that there is no efficient algorithm that 
takes as input some machine learning model (with black-box access, and in some cases 
with white-box access), and certifies that the model is robust to adversarial examples!

Let ℎ be amazing robust model derived from the best adversarial training money can buy.
Let "ℎ be ℎ with backdoor planted.  For "ℎ, every input has an adversarial example, but no 
efficient algorithm can distinguish "ℎ from ℎ!

Therefore, no efficient algorithm can certify that ℎ is robust!



Black-box undetectability: Idea

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022



Black-box undetectability: Idea

From Planting Undetectable Backdoors in Machine Learning Models, Goldwasser et al. 2022

• Let n → N be a parameter with n " d.

• Partition the input coordinates into n disjoint, nearly equal-
sized blocks [d] = I1 ∪ I2 ∪ · · · ∪ In.

• Let v → {±1}n be a uniformly chosen ±1 vector.

• Define the sign map sign : R → {±1} that outputs the sign
of the input.

• Checksum function:

h(x) :=
n
∧

i=1

(

∏

j∈Ii

sign(xj) == vi

)

.

• s = h(x).



Defending against backdoors, without detecting them?

Analogy: a hand sanitizer

• A Solution: Randomized smoothing
• What if perturbation radius in 

randomized smoothing is smaller than 
the budget that the adversary has to
construct a backdoor?



Program self-correction, via random self-reducibility

• Consider a program P that is intended to perform addition and subtraction
modulo n, so P (x,±, y) should equal x± y (mod n).

• Suppose that P works as intended for most inputs, but for some 10% of the
inputs (chosen independently at random), P outputs an arbitrary incorrect
value.

• Then, instead of using P directly, one could use a program C given by

C(x,+, y) = P
(

P (x,+, u),+, P (y,−, u)
)

,

where u ∈ {0, . . . , n−1} is chosen uniformly at random in each invocation
of C.

• Claim: By invoking C repeatedly s times and outputting the majority out-
put, the probability of error is decreased from 10% to e−Ω(s) + e−Ω(n).

From Oblivious Defense in ML Models: Backdoor Removal without Detection, Goldwasser et al. 2024



From Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18

y ∼u.a.r. {−1,+1}, x1 =

{

+y, with probability p,

−y, with probability 1− p,

x2, . . . , xd+1
i.i.d.
∼ N (ηy, 1),

where N (µ,σ2) is a normal distribution with mean µ and variance σ
2, and p ≥ 0.5.

! = 2

Adversarial robustness may be at odds with accuracy



y ∼u.a.r. {−1,+1}, x1 =

{

+y, with probability p,

−y, with probability 1− p,

x2, . . . , xd+1
i.i.d.
∼ N (ηy, 1),

where N (µ,σ2) is a normal distribution with mean µ and variance σ
2, and p ≥ 0.5.

favg(x) := sign(w!
unifx), where wunif :=

[

0,
1

d
, . . . ,

1

d

]

,

In this setting, we have
• Robust feature, $!: This has ℓ" robustness even at & = 0.99, but only gets accuracy +
• Non-robust features $#, … , $$ : Using these .%&' gets accuracy >99%, but ℓ" robustness only at & ≤ 21

Suppose + = 0.95. Then can show
• If standard accuracy is much greater than 95%, say close to 100%, then robust accuracy is close to 0!
• Can get robust accuracy 95%, but only with standard accuracy at close to 95%! 

A simple Gaussian setting to understand tradeoff



Understanding adversarial 
examples:

Robust vs non-robust features



A very cool experiment

Fig. from Adversarial Examples Are Not Bugs, They Are Features, Ilyas et al. ’19. See Blog post at https://gradientscience.org/adv/

Consider an image, classified 
correctly

Perturb image, to get an adversarial 
example. Image is now misclassified

Label the adversarial image with 
the incorrect label

• Suppose we take CIFAR10 and a model trained on CIFAR10, replace each image by its adversarial 
example for some class, and “relabel” the image with this wrong class.

• Now train a model on this new CIFAR10, and then evaluate on the normal CIFAR10 test set. How 
much accuracy do we expect?

• Model gets highly non-trivial accuracy! (≈ 45% on 10 class classification)

https://gradientscience.org/adv/


Explanation: Datasets have both robust and non-robust features

Fig. from Adversarial Examples Are Not Bugs, They Are Features, Ilyas et al. ’19
Blog post at https://gradientscience.org/adv/

https://gradientscience.org/adv/


Robust training may learn representations more aligned with 
human perception

Visualization of the loss gradient with respect to input pixels. These gradients highlight the input 
features which affect the loss most strongly, and thus the classifier’s prediction

Fig. from Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18



Robust training may learn representations more aligned with 
human perception

Fig. from Robustness May Be at Odds with Accuracy, Tsipras et al. ‘18

Visualization of adversarial examples at large perturbation budget $



Part c) Adversarial robustness needs more data

Fig. from Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18



Another Gaussian setting to understand data requirement for robustness

From Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18

Let θ ∈ Rd be the per-class mean vector and let σ > 0 be the variance parameter.
The (θ,σ)-Gaussian model is defined by the following distribution over (x, y) ∈
Rd × {±1}:

1. Draw a label y ∈ {±1} uniformly at random.

2. Sample the data point x ∈ Rd from N (y · θ, σ2I).



From Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18

Theorem (Single datapoint suffices for non-robust prediction). Let (x, y) be drawn

from a (θ,σ)-Gaussian model with ‖θ‖2 =
√
d and σ ≤ c · d1/4, where c is a uni-

versal constant. Let ŵ ∈ Rd be the vector ŵ = y · x. Then with high probability,

the linear classifier fŵ has classification error at most 1%.

Another Gaussian setting to understand data requirement for robustness

Let θ ∈ Rd be the per-class mean vector and let σ > 0 be the variance parameter.
The (θ,σ)-Gaussian model is defined by the following distribution over (x, y) ∈
Rd × {±1}:

1. Draw a label y ∈ {±1} uniformly at random.

2. Sample the data point x ∈ Rd from N (y · θ, σ2I).



From Adversarially Robust Generalization Requires More Data, Schmidt et al. ‘18

Theorem (Informal, robust prediction requires ≈
√
d times more data). Let (x1, y1), . . . , (xn, yn)

be drawn i.i.d. from a (θ,σ)-Gaussian model with ‖θ‖2 =
√
d and σ ≤ c1d

1/4.

Let ŵ ∈ Rd be the weighted mean vector

ŵ =
1

n

n∑

i=1

yixi.

For constant robustness radius ε, the linear classifier fŵ has $ε
∞

-robust classifi-

cation error at most 1% if n is at least ≈
√
d.

Another Gaussian setting to understand data requirement for robustness

Let θ ∈ Rd be the per-class mean vector and let σ > 0 be the variance parameter.
The (θ,σ)-Gaussian model is defined by the following distribution over (x, y) ∈
Rd × {±1}:

1. Draw a label y ∈ {±1} uniformly at random.

2. Sample the data point x ∈ Rd from N (y · θ, σ2I).



Distributional robustness



Source: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing 
radiologists, Rajpurkar et al. 2018 

CNN models have obtained impressive results for diagnosing X-rays

E.g. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization 
of Common Thorax Diseases, Wang et a;. 2017

Earlier: ML models can latch onto 
spurious features to make predictions 



Source: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-
sectional study, Zech et al. 2018 

CNN to predict hospital system detects both general and specific image features.
(A) We obtained activation heatmaps from our trained model and averaged over a sample of images to reveal which subregions 
tended to contribute to a hospital system classification decision. Many different subregions strongly predicted the correct 
hospital system, with especially strong contributions from image corners. (B-C) On individual images, which have been 
normalized to highlight only the most influential regions and not all those that contributed to a positive classification, we note that 
the CNN has learned to detect a metal token that radiology technicians place on the patient in the corner of the image field of 
view at the time they capture the image. When these strong features are correlated with disease prevalence, models can 
leverage them to indirectly predict disease. 

But the models may not generalize as well to data from new hospitals because they can 
learn to pickup on spurious correlations such as the type of scanner and marks used by 
technicians in specific hospitals! 



Earlier: Gendershades

http://gendershades.org/

http://gendershades.org/


Models are accurate on average, but not on all subgroups



LandbirdWaterbird vs.

Consider the following task:

Images courtesy of: University of Hawaii at Manoa, Greg Schechter (Flickr)

Spurious correlations and shortcut learning



LandbirdsWaterbirds vs.

Most images of waterbirds are in water, 
and landbirds are on land

ML models can latch onto 
spurious features to make predictions 



LandbirdsWaterbirds vs.

But this isn’t always true!

ML models can latch onto 
spurious features to make predictions 



LandbirdsWaterbirds vs.

This is known as failure to distributional shifts

ML models can latch onto 
spurious features to make predictions 

Also see, Recognition in Terra Incognita, Beery et al. ‘18



Clever Hans



Distribution shifts: Setup
Recall that in supervised ML we care about expected loss (or the risk) under some
distribution D:

R(f) = E(x,y)∼D[ !(f(x), y) ]

=
∑

x′,y′

Pr
D
(x = x′, y = y′) !(f(x′), y′).

We measure this with a test set.

Training
set

Test
set

Generalization gap
(Test error – Training error)

What if we get training samples from D, but test samples from D′?



Distribution shifts: Setup
What if we get training samples from D, but test samples from D′?

D′ can differ from D in two of these ways:

• Let p(x) and p
′(x) be marginals of x under D and D′. Then p

′(x) may be different from p(x).
This is known as a covariate shift, only the covariates x have changed.

• The conditional distribution PrD[y|x] may be different from PrD′ [y|x]. This is known as a
concept shift. Here the ground-truth itself has changed.

For covariate shifts, we can loosely split them into two kinds of shifts the community thinks about:

• When p(x) and p
′(x) are collected from independent and potentially different data collec-

tion processes, for example data from two different hospital systems. We saw this in class
presentations last week.

• When p
′(x) can be regarded as a reweighting of p(x), for example considering the group of

“darker skinned females” for facial recognition, or “images of waterbirds on land background”
for the landbirds/waterbirds task. This is also known as subgroup robustness.



Distributionally robust optimization for subgroup robustness
In usual supervised ML we care about finding some predictor f∗ such that

f∗ := argmin
f∈F

{

E(x,y)∼D[ !(f(x), y) ]
}

.

Suppose we have a set of groups g ∈ G, each of which defines some distribution Dg (which could
be a re-weighting of D with respect to the marginal of x). Then we can define the distributionally
robust formulation of ML as:

f∗
DRO := argmin

f∈F

{

max
g∈G

E(x,y)∼Dg
[ !(f(x), y) ]

}

.

As is usual in supervised ML, we do not actually have access to the distribution Dg , but work with
empirical samples.

f̂∗
DRO := argmin

f∈F

{

max
g∈G

1

|#samples from group g|

∑

(x,y)∈ group g

!(f(x), y)
}

.

Also see Distributionally Robust Neural Networks for Group Shifts: On the Importance of 
Regularization for Worst-Case Generalization, Sagawa et al. ‘20



Distributionally robust optimization for subgroup robustness
Distributionally robust optimization (DRO) empirical objective:

f̂∗
DRO := argmin

f∈F

{

max
g∈G

1

|#samples from group g|

∑

(x,y)∈ group g

!(f(x), y)
}

.

How to solve this optimization problem?

• Minimax optimization: find worst-case group g ∈ G, update model with gradient with respect to samples
in group g (as for ERM, usually do this for a batch of samples).

• Can also define a weight qg ∈ [0, 1] for each group g ∈ G and define a weighted version of the DRO
objective:

f̂∗
DROv2 := argmin

f∈F

{

sup
q∈∆|G|

∑

g∈G

qg
1

|#samples from group g|

∑

x∈ group g

!(f(x), y)
}

.

Then, choose a group g uniformly at random, update its weight based on the loss on the group, and then
take a gradient step on samples from that group. This is found to lead to more stable training.



Worst-group generalization, and importance of regularization

Fig from An Investigation of Why Overparameterization Exacerbates Spurious Correlations, Sagawa et al. ‘20

Overparameterized models use the signal 
from majority group (so relying on the 
spurious feature here), and “memorize” the 
minority group samples

Need to add regularization to get 
generalization on minority group



Algorithmic Fairness



The Many Dimensions of Fairness
• Fairness has been subject of a long line of work in philosophy, law, social sciences, and 

computer science as well (even before the ML era)
• Concerns about fairness predate computers — from Aristotle’s distributive justice, Rawls’ 

theory of justice, to modern anti-discrimination law — ML inherits these debates.

• It is an interdisciplinary study and requires multiple perspectives (ethical, legal, social, and 
technical), and often demands some normative assumptions

• We will mainly explore a ML perspective on the problem, but keep in mind that this is one 
piece of a bigger picture

• Some further reading
• Introduction to fairness in philosophy: https://omereingold.wordpress.com/wp-

content/uploads/2022/12/cs-256-stanford-political-philosophy-.pdf
• Perspectives from law: https://fairmlbook.org/legal.html

https://omereingold.wordpress.com/wp-content/uploads/2022/12/cs-256-stanford-political-philosophy-.pdf
https://fairmlbook.org/legal.html


Fig. based on the book Fairness And ML: Limitations and Opportunities

The ML loop

State of the world Individuals

Data Model

Measurement

Learning

Action Feedback



Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• Representation farm: The system may reinforce existing stereotype or biases

• …



Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• Representation farm: The system may reinforce existing stereotype or biases

• …



Unequal accuracy: The GenderShades project

http://gendershades.org/

We saw this: models can do well on average but not on sub-populations  

http://gendershades.org/


Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Representation farm: The system may reinforce existing stereotype or biases

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• …



Bias in representation: Word embeddings
• A word embedding is a (dense) mapping from words, to vector representations of the words. 
• Ideally, this mapping has the property that words similar in meaning have representations which are 

close to each other in the vector space.
• Usually learned from some large internet corpus
• Simple way to get word embeddings: Build word co-occurrence matrix from a corpus -> SVD on (log 

of) co-occurrence matrix -> singular vectors give good word embeddings



Bias in representation: Word embeddings

!"#$% − #$% ≈ &'((% − )*%+

From Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, Bolukbasi et al. ‘16

!"#$% − #$% ≈ ,"#(#$)(- − ."#/'0(- /-"+-$##(-

Word analogy questions:

man: woman :: king : ??



Bias in representation: Machine Translation

• Hindi does not have gendered pronouns
• Machine translation model seems to pick on existing stereotypes (likely from its training 

data), and rely on them 
• Some efforts to mitigate such biases: https://research.google/blog/a-scalable-approach-to-

reducing-gender-bias-in-google-translate/, but problems remain

https://research.google/blog/a-scalable-approach-to-reducing-gender-bias-in-google-translate/


Bias in representation: Image generation

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023



Model amplifies existing biases

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023
For more discussion, see A Systematic Study of Bias Amplification, Hall et al., 2022



Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Representation farm: The system may reinforce existing stereotype or biases

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• …



Bias in predictions: The COMPAS software

• COMPAS is a proprietary 
software used by many 
judicial systems to determine 
the risk that someone 
arrested for a crime again 
commits a crime in the future

• Used for decisions such as for 
deciding bail



Biases in COMPAS

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

“In forecasting who would re-offend, the 
algorithm made mistakes with black and white 
defendants at roughly the same rate but in very 
different ways.
• The formula was particularly likely to falsely 
flag black defendants as future criminals, 
wrongly labeling them this way at almost twice 
the rate as white defendants.
•White defendants were mislabeled as low risk 
more often than black defendants.”

We will also see later that there are inherent 
tensions here: the COMPAS algorithm is biased
in one way and unbiased in another, and it may 
be impossible to simultaneously be unbiased in 
both. 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

