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Recap



How to obtain fair classifiers?
Observation: No fairness by just excluding sensitive attributes
Why? Sensitive attribute can often be reconstructed from other features

Zip code has a lot of information about race



Ensuring fairness in classification: Group & Individual fairness notions

Two broad classes of fairness notions in classification:

Individual fairness: Algorithm treats similar individuals similarly

Group fairness: Algorithm is “unbiased” on protected groups (such as race, gender etc.)



Individual fairness

Fairness Through Awareness. Cynthia Dwork, Moritz Hardt, Toniann
Pitassi, Omer Reingold, Richard Zemel. 2011

Define a metric !(#, #!) for the similarity between any two individuals # and #′.

e.g.: ! #, #! = ∥ # − #! ∥"

If classifier predicts *(#) as the probability of label being one for #, if

* # − * #! ≤ , ! #, #! ,

then predictions of the classifier are individually fair with parameter ,. 

If these two individuals 
are similar, then their 
risk scores should be 
similar.



Group fairness
Group fairness notions require that the models predictions obey certain properties over 
protected groups (e.g. by race, gender).

Many different notions have been proposed

• Statistical parity

• Equalized odds

• Calibration across groups



Statistical parity/Demographic parity
Binary classification setup (e.g. admitting a student to a degree program)

• Classifier !
• Datapoint (#, %)
• Sensitive attribute ' ∈ {0,1}

Statistical parity (also known as demographic parity): Pr! ! # = 1 ' = 1] = Pr! ! # = 1 ' = 0]

In words: Predictions are independent of sensitive attribute

E.g., admit equal fraction of men or women into program

Can be too strong if labels and sensitive attribute are not independent.

E.g. if one demographic is more likely to be qualified than the other



Equalized odds & Equality of opportunity
Same binary classification setup (e.g. admitting student to degree program)

• Classifier !
• Datapoint (#, %)
• Sensitive attribute ' ∈ {0,1}

Equalized odds: Following 2 constraints are satisfied

1. Pr!,# ! # = 1 ' = 1, % = 1] = Pr!,# ! # = 1 ' = 0, % = 1]
2. Pr!,# ! # = 0 ' = 1, % = 0] = Pr!,# ! # = 0 ' = 0, % = 0]

Equivalently:
Recall for % = 1 is the same for both groups (1st condition)
False positive rate (FPR) is the same for both groups (2nd condition)

Also equivalent to saying: Conditioned on label, prediction is independent of 
sensitive attribute

From Equality of Opportunity in Supervised Learning, Hardt et al. ‘16

Recall for class 1 =
Pr#,% / # = 1 1 = 1]

Just having 1st constraint (for % = 1)
gives equality of opportunity

FPR =
Pr
#,%

/ # = 1 1 = 0]



Calibration

Calibration: A model ! for binary classification 
is calibrated if 

Pr!,# % = 1 !(#) = 1] = 1

Informally, this says that “predictions mean 
what they should” 

This is known as a reliability diagram



Calibration across groups

A model ! for binary classification is calibrated for 
groups defined by sensitive attribute ' if 

Pr!,# % = 1 ! # = 1, ' = 1] = 1 ,
Pr!,# % = 1 ! # = 1, ' = 0] = 1.

Informally, this says that “predictions mean what they 
should for each group” 



Achieving these notions: Post-processing for statistical parity

Consider binary classification setup (e.g. admitting a student to a degree program)

• Predictor 2 which predicts a score in [0,1] (higher score => higher probability of label 1)
• Datapoint (#, %)
• Sensitive attribute ' ∈ {0,1}

We want use 2 to get classifier ! which maximizes accuracy but obeys statistical parity:

Pr! ! # = 1 ' = 1] = Pr! ! # = 1 ' = 0]

• What would ! be if we only wanted to maximize accuracy? (Suppose 2 # = Pr[% = 1|#]) 
Threshold the predictions at 0.5!

• How to ensure statistical parity? Threshold the predictions appropriately!



The input data: FICO scores and their distribution by race
• FICO scores based on 300k TransUnion scores from 2003
• Range from 300-850, aim to predict risk of defaulting on a loan
• 620 is common threshold for good loan rates. Corresponds to 82% non-default rate in the data

Fig. from Equality of Opportunity in Supervised Learning, Hardt et al. ‘16



What happens when we pick a single threshold?

Fig. from Equality of Opportunity in Supervised Learning, Hardt et al. ‘16

Rescaling x-axis to 
represent within group 

thresholds
Claim: Pr / # = 1 1 = 1, 4] is fraction of 

area under the curve that is shaded



Fig. from Equality of Opportunity in Supervised Learning, Hardt et al. ‘16

What are thresholds for different rules?



What fairness and utility do different rules obtain?

Fig. from Equality of Opportunity in Supervised Learning, Hardt et al. ‘16



Inherent tradeoffs 
between notions



Consider three basic fairness notions
• Calibration for groups:

Pr!,# % = 1 ! # = 1, # ∈ 5$] = 1 ,
Pr!,# % = 1 ! # = 1, # ∈ 5%] = 1.

• Balance for positive class: The average score received by individuals with 
% = 1 is the same for the two groups.

∑ !,# : ! ∈ (&, #)% !(#)
| #, % : # ∈ 5$, % = 1| =

∑ !,# : ! ∈ (',#)% !(#)
| #, % : # ∈ 5%, % = 1|

• Balance for negative class: The average score received by individuals with 
% = 0 is the same for the two groups.

∑ !,# : ! ∈ (&,#)$ !(#)
| #, % : # ∈ 5$, % = 0| =

∑ !,# : ! ∈ (',#)$ !(#)
| #, % : # ∈ 5%, % = 0|



Except in special cases, impossible to achieve all 3!!

Theorem (Kleinberg-Mullainathan-Raghavan ‘16 ): Consider any predictor ! which satisfies 
(1) calibration across groups, (2) balance for positive class, and (3) balance for negative 
class. Then, 
• either !(#) is a perfect predictor, with ! # ∈ 0,1 , 
• or the two groups have equal base rates.

Let the base rate for group 3$ = Pr % = 1 # ∈ 3$ ] .

Similar result is also true for classifiers which satisfy approximate versions of the 3 fairness conditions.



Inherent tradeoff in fairness, proof sketch
Theorem (Kleinberg-Mullainathan-Raghavan ‘16 ): Consider any predictor ! which satisfies 
(1) calibration across groups, (2) balance for positive class, and (3) balance for negative 
class. Then, 
• either !(#) is a perfect predictor, with ! # ∈ 0,1 , 
• or the two groups have equal base rates.



What does this say about COMPAS?

Also see Fair prediction with disparate impact: A study of bias in recidivism prediction instruments, Chouldechova et al. ‘17

• The recidivism rate among black defendants in the data is 51%, compared to 39% for White defendants.

• Classifier is far from perfect (~60% accuracy)

COMPAS: Unfair because black defendants who 
did not recommit crime are assigned higher 

score (i.e. does not obey balance)

COMPAS: Fair because probability of 
recommitting crime is similar for a given 

risk score, for both groups (i.e. is calibrated)

https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c

https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c
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applied to rankings



Individual fairness defines fairness via a metric
Define a metric !(#, #!) for the similarity between any two individuals # and #′.

e.g.: ! #, #! = ∥ # − #! ∥"

If classifier predicts *(#) as the probability of label being one for #, if

* # − * #! ≤ , ! #, #! ,

then predictions of the classifier are individually fair with parameter ,. 

Individual fairness via a metric: If 
these two individuals are similar, then 
their risk scores should be similar.

However, it can be difficult to get access to this metric.

A solution: 

1. Define the metric to be the distance between ground truth distribution
2. Now instead of attempting to measure similarity between individuals, obtain 

uncertainty in prediction for each individual
3. Use randomization to make decisions (so that discontinuities are not 

introduced due to thresholding)



Individual fairness in rankings

Consider the simpler setting where we are 
trying to select one of these 3 candidates 
for a single job. 

Individual fairness:
Observable features enforce a Lipschitz continuity condition on model 
via some metric



Singh-Kempe-Joachims’21: Observable features induce a 
posterior merit distribution of the individuals for the job
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ML models can often give these distributions over merits

An alternate view on individual fairness



Singh-Kempe-Joachims’21: Observable features induce a 
posterior merit distribution of the individuals for the job
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Suppose goal is to select one candidate.
Define utility as the expected merit of selected candidate.

How will a utility maximizing algorithm select candidates here?
What would individual fairness require?

An alternate view on individual fairness
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Uncertainty as the keystone of fairness:
similar individuals should be treated similarly because similar
observable features give rise to similar posterior distributions over merits.

If a candidate is the top candidate with prob. !, then they should get job with prob. !

Singh-Kempe-Joachims’21: Observable features induce a 
posterior merit distribution of the individuals for the job

An alternate view on individual fairness
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Proposed solution (for selecting one candidate):
Sample merits, measure probability of each candidate being top. If a candidate is top candidate with 
prob. 2, they are selected with prob. 2

Can also relax fairness requirement to tradeoff utility

Singh-Kempe-Joachims’21: Observable features induce a 
posterior merit distribution of the individuals for the job

An alternate view on individual fairness
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Earlier: Calibration across groups

A model ! for binary classification is calibrated for 
groups defined by sensitive attribute ' if 

Pr!,# % = 1 ! # = 1, ' = 1] = 1 ,
Pr!,# % = 1 ! # = 1, ' = 0] = 1.

Informally, this says that predictions mean what they 
should for each group.

Existing medical risk predictors are 
miscalibrated across groups



Is calibration across groups enough?

Predicted probabilities
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Ideal scenario: Calibrated, meaningful 
predictions for both yellow and purple groups.

Fig. based on talk by Michael Kim, Multicalibration and Outcome Indistinguishability, Simons Institute

A model ! for binary classification is calibrated for 
groups defined by sensitive attribute ' if 

Pr!,# % = 1 ! # = 1, ' = 1] = 1 ,
Pr!,# % = 1 ! # = 1, ' = 0] = 1.

Informally, this says that predictions mean what they 
should for each group.



Is calibration across groups enough?

A model ! for binary classification is calibrated for 
groups defined by sensitive attribute ' if 

Pr!,# % = 1 ! # = 1, ' = 1] = 1 ,
Pr!,# % = 1 ! # = 1, ' = 0] = 1.

Informally, this says that predictions mean what they 
should for each group, but they may not say much!

Predicted probabilities
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Issue (Algorithmic stereotyping): Can achieve 
calibration on purple group by just predicting 
average on the group

Fig. based on talk by Michael Kim, Multicalibration and Outcome Indistinguishability, Simons Institute



Calibration across rich set of groups

Idea: Let’s try to get calibration on all groups in the data.

Can we get calibration on groups which correspond to 
single datapoints in the population?

No, since it would require estimating the ground truth 
probabilities accurately for each datapoint.

Instead: Can we capture some large, meaningful set of 
groups? Predicted probabilities
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The model here is not calibrated on the 
individuals in the group in the blue box .

Fig. based on talk by Michael Kim, Multicalibration and Outcome Indistinguishability, Simons Institute



Multicalibration: Calibration for identifiable groups 
Definition (Multicalibration, Hebert-Johnson et al. ‘18): A predictor ! is multicalibrated 
with respect to a collection of groups ), if ! is calibrated for every * ∈ ), i.e.

Pr5,6 - = 1 ! # = /, # ∈ *] = / ∀ / .

Group calibration Individual fairness

• 7 = small number of groups
• Easy to achieve
• Weak, allows algorithmic stereotyping

• 7 = { # : # ∈ domain }
• Cannot be efficiently achieved
• Strong individual-level fairness guarantee



Multicalibration: Calibration for identifiable groups 

Group calibration Individual fairness

• 7 = small number of groups
• Easy to achieve
• Weak, allows algorithmic stereotyping

• 7 = { # : # ∈ domain }
• Cannot be efficiently achieved
• Strong individual-level fairness guarantee

Multi-calibration

• 7 = potentially infinite
• Efficiently achievable (under certain conditions)
• Much stronger fairness protection than group calibration

Definition (Multicalibration, Hebert-Johnson et al. ‘18): A predictor ! is multicalibrated 
with respect to a collection of groups ), if ! is calibrated for every * ∈ ), i.e.

Pr5,6 - = 1 ! # = /, # ∈ *] = / ∀ / .



Multicalibration: Some nice properties

• (Efficiently achievable) If 8 is defined by a collection of groups such that it is easy to check 
for violation of calibration for 9 ∈ 8, then can efficiently postprocess a predictor to be 
multicalibrated with respect to 8 (without hurting its accuracy).

• (Gives predictors optimal for multiple downstream loss functions) If ! is multicalibrated, 
then is ! is optimal with respect to multiple loss functions at the same time (up to 
postprocessing). This is called omniprediction (Gopalan et al. 2022).

• (Gives predictors robust to distribution shifts) If ! is multicalibrated with respect to some 
groups, then can get group robustness for those groups (Kim et al. 2022).

Definition (Multicalibration, Hebert-Johnson et al. ‘18): A predictor ! is multicalibrated 
with respect to a collection of groups ), if ! is calibrated for every * ∈ ), i.e.

Pr5,6 - = 1 ! # = /, # ∈ *] = / ∀ / .


