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SHORT-ANSWER QUESTION. The following questions use linear algebra and calculus in ML
formulations. They particularly test your knowledge of gradients of multivariate functions.

Q3 Consider the following optimization problem:
w, = arg ming, g | Xw — y|3 + w Mw

Here, X € R"*4 y € R", M € R%? ig a positive definite matrix and [|-||5 stands for the ¢; norm. Find
the closed form solution for w,. Proceed in a similar way as how we derived the general least-squares
solution in class. (This optimization problem is a generalization of ¢y reqularization, which we will see
in class.)

Answer: Setting the gradient 2X 7 (Xw — y) + (M + M")w to be 0 and using the fact that M is
invertible gives

M+ M7\

+> XTy.

= (XTXx
CE R

Q4 Assume we have a training set (1, 91), ..., (€n, yn) € R? xR, where each outcome y; is generated
by a probabilistic model wla; + ¢; with ¢; being an independent Gaussian noise with zero-mean and
variance o2 for some o > 0. In other words, the probability of seeing any outcome y € R given x; € R?
is

V 1 —(y — wlx;)?
doT C - (A) ‘x‘ P e * = g T ? .
g\ a'\. * (% r(y ’ xz: w 70—) 0_\/% eXp 20_2

Assume o is fixed and given, find the maximum likelihood estimation for w,. In other words, first
write down the probability of seeing the outcomes y1,...,y, given x1, ..., x, as a function of the value
of w,; then find the value of w, that maximizes this probability. You can assume X TX is invertible,
where X is the data matrix with each row corresponding to the features of an example. You may find
it helpful to review the steps we took in Lecture 2 to find the maximum likelihood solution for the
logistic model.

Answer: The probability of seeing the outcomes y1,...,y, given x1,...,x, for a linear model w is
n n
| (i — w'a,)’?
P(w) = HPr(yi | iy w, o) = H — exp < 5,2 .
=1 i=1
Taking the negative log, this becomes L)((,)-—\J)

F(w)=nlnv2 —|—nlna+—z —w? i) 2—_nlnv2 —i—nlna—#—iHX’w y||2 -xw ‘d

Maximizing P is the same as minimizing F', which is clearly the same as just minimizing || Xw — y\lﬁ’
the same objective as for least square regression. Therefore the MLE for w, is exactly the same as
the least square solution:

= (XTX)1xTy.



