CSCI 567: DISCUSSION 3
Linear Algebra II

- Practice Problems $3 \& 4$
- Intuition for least Squares Solution
- Quadratic Form
- Eigenvalues \& Eigenvectors
- Practice Problems ll z

Q3: Given $f(\omega)=\|x \omega-y\|_{2}^{2}+\omega^{\top} M \omega, \quad\left(x \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}\right.$,
Find $\omega^{*}=\arg \min _{\omega \in \mathbb{R}^{d}} f(\omega)$

$$
\begin{align*}
f(\omega) & =\|x \omega-y\|_{2}^{2}+\omega^{\top} M \omega \\
& =(x \omega-y)^{\top}(x \omega-y)+\omega^{\top} M \omega \\
& =(x \omega)^{\top} x \omega+y^{\top} y-y^{\top} x \omega-(x \omega)^{\top} y+\omega^{\top} M \omega \\
& =\omega^{\top} x^{\top} x \omega+y^{\top} y-2 y^{\top} x \omega+\omega^{\top} M \omega \\
& =\omega^{\top} \underbrace{\left(x^{\top} x+M\right)}_{A} \omega-2 \underbrace{y^{\top} x}_{b^{\top}} \omega+y^{\top} y \\
& =f_{1}(\omega)-2 f_{2}(\omega)+y^{\top} y
\end{aligned} \begin{aligned}
& A=x^{\top} x+M, \\
& b=x^{\top} y
\end{align*}
$$

$$
f_{1}(\omega)=\omega^{\top} A \omega . \quad f_{2}(\omega)=b^{\top} \omega .
$$

$$
\begin{equation*}
\frac{\partial f(\omega)}{\partial \omega}=\frac{\partial f_{1}(\omega)}{\partial \omega}-2 \frac{\partial f_{2}(\omega)}{\partial \omega}=0 \text {. } \tag{i1}
\end{equation*}
$$

$$
b^{\top} w=\sum_{i=1}^{d} w_{i} b_{i}
$$

1. $\frac{\partial f_{2}(w)}{\partial w}$:

$$
\begin{align*}
& \frac{\partial f_{2}(\omega)}{\partial \omega_{k}} \\
= & b_{k} \tag{III}\\
\Rightarrow & \frac{\partial f_{2}(\omega)}{\partial \omega}=\left[\begin{array}{c}
\frac{\partial f_{2}(\omega)}{\partial \omega_{1}} \\
\vdots \\
\frac{\partial f_{2}(\omega)}{\partial \omega d}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
b_{d}
\end{array}\right]=b
\end{align*}
$$

2. $\frac{\partial f_{1}(\omega)}{\partial \omega}$: Two WAYS:

$$
\begin{aligned}
& v=A \omega \\
& \omega^{\top} A \omega=\sum_{i} \omega_{i} v_{i} \\
& v_{i}=a_{i}^{\top} \omega=\sum_{j} A_{i j} \omega_{j}
\end{aligned}
$$

$$
=\sum_{i=1}^{d} \omega_{i}^{2} A_{i i}+\sum_{i=1, i+j}^{d} \sum_{j=1}^{d} \omega_{i} A_{i j} \omega_{j}
$$

$$
\frac{\partial f_{r}(\omega)}{\partial \omega_{k}}=2 \omega_{k} A_{k k}+\sum_{i=1, i \neq k}^{d} \omega_{i} A_{i k}+\sum_{j=1, j \neq k}^{d} A_{k j} \omega_{j}
$$

$$
=\sum_{i=1}^{\alpha} A_{i k} \omega_{i}+\sum_{j=1}^{\alpha} A_{k j} \omega_{j}
$$

$$
=\left(a^{k}\right)^{\top} \omega+a_{k}^{\top} \omega
$$

column vector row vector

$$
\begin{align*}
\Rightarrow \begin{array}{l}
\frac{\partial f_{r}(w)}{\partial \omega}
\end{array} & =\underbrace{\left[\begin{array}{c}
-\left(a^{\prime}\right)^{\top}- \\
\vdots \\
-\left(a^{d}\right)^{\top}-
\end{array}\right]}_{A^{\top}} \omega+\underbrace{\left[\begin{array}{c}
-a_{\grave{1}}^{\top}- \\
\vdots \\
-a_{d}^{\top}-
\end{array}\right]}_{A} \omega \\
& =\left(A^{\top}+A\right) \omega \tag{10}
\end{align*}
$$

b)

$$
\begin{align*}
& f_{1}(\omega)=g^{\top}(\omega) \omega, \quad g(\omega)=A^{\top} \omega \text {. } \\
& \frac{\partial f_{1}(\omega)}{\partial \omega}=\left(\frac{\partial g(\omega)}{\partial \omega}\right)^{\top} \omega+\left(\frac{\partial \omega}{\partial \omega}\right)^{\top} g(\omega) \text {. } \\
& \frac{\partial g(\omega)}{\partial \omega}=\left[\begin{array}{ccc}
\frac{\partial g(\omega)}{\partial \omega} & \ldots & \frac{\partial g(\omega)}{\partial \omega \alpha}
\end{array}\right]=\left[\begin{array}{c}
-\left(\frac{\partial g_{1}(\omega)}{\partial \omega}\right)^{\top}- \\
\vdots \\
-\left(\frac{\partial g_{\alpha}(\omega)}{\partial \omega}\right)^{\top}-
\end{array}\right] \\
& g_{k}(\omega)=\left(a^{k}\right)^{\top} \omega \quad \frac{\partial g_{k}(\omega)}{\partial \omega}=a^{k} \\
& \left.\begin{array}{c}
\left.\frac{\partial g(\omega)}{\partial \omega}\right]=\left[-a^{\prime \top}\right. \\
\vdots \\
-a^{d^{\top}}-
\end{array}\right]=A^{\top} \\
& \frac{\partial \omega}{\partial \omega}=\left[\begin{array}{cccc}
\frac{\partial \omega_{1}}{\partial \omega_{1}} & \frac{\partial \omega_{1}}{\partial \omega_{2}} & \cdots & \frac{\partial \omega_{1}}{\partial \omega_{d}} \\
\frac{\partial \omega_{2}}{\partial \omega_{1}} & \frac{\partial \omega_{2}}{\partial \omega_{2}} & \cdots & \cdots \\
\vdots & \vdots \\
\frac{\partial \omega_{d}}{\partial \omega_{1}} & \vdots & \cdots & \cdots \\
\frac{\partial \omega_{d}}{\partial \omega_{d}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & \vdots \\
\vdots & \vdots & \cdots & \vdots \\
0 & \cdots & \cdots & 1
\end{array}\right]=I_{d \times d} \\
& \frac{\partial f_{1}(\omega)}{\partial \omega}=A \omega+I^{\top} A^{\top} \omega=\left(A+A^{\top}\right) \omega \tag{IV}
\end{align*}
$$

$$
\frac{\partial f(\omega)}{\partial \omega}=\frac{\partial f_{1}(\omega)}{\partial \omega}-2 \frac{\partial f_{2}(\omega)}{\partial \omega}=0 .
$$

Using (III), (II) in (II):

$$
\begin{aligned}
\frac{\partial f(\omega)}{\partial \omega} & =\left(A+A^{\top}\right) \omega-2 b=0 \\
& \Rightarrow \omega^{*}=\left(\frac{A+A^{T}}{2}\right)^{-1} b \quad \text { (when } A+A^{\top} \text { is invertible) }
\end{aligned}
$$

Using (11): $A=x^{\top} x+m, b=x^{\top} y$

$$
\begin{array}{ll}
\Rightarrow & A+A^{\top}=2 x^{\top} x+m+m^{\top} \\
\Rightarrow & w^{*}=\left[x^{\top} x+\frac{1}{2}\left(m+m^{\top}\right)\right]^{-1}\left(x^{\top} y\right) \tag{Ans.}
\end{array}
$$

special case: $M=\lambda I_{d \times d}$

$$
\begin{aligned}
\Rightarrow & \omega^{*}=\left(x^{\top} x+\lambda I\right)^{-1}\left(x^{\top} y\right) . \\
& \lambda=0 \\
\Rightarrow & \omega^{*}=\left(x^{\top} x\right)^{-1} x^{\top} y .
\end{aligned}
$$

SHORT-ANSWER QUESTION. The following questions use linear algebra and calculus in ML formulations. They particularly test your knowledge of gradients of multivariate functions.

Q3 Consider the following optimization problem:

$$
\boldsymbol{w}_{*}=\arg \min _{\boldsymbol{w} \in \mathbb{R}^{d}}\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\boldsymbol{w}^{T} \boldsymbol{M} \boldsymbol{w}
$$

Here, $\boldsymbol{X} \in \mathbb{R}^{n \times d}, \boldsymbol{y} \in \mathbb{R}^{n}, \boldsymbol{M} \in \mathbb{R}^{d \times d}$ is a positive definite matrix and $\|\cdot\|_{2}$ stands for the ℓ_{2} norm. Find the closed form solution for \boldsymbol{w}_{*}. Proceed in a similar way as how we derived the general least-squares solution in class. (This optimization problem is a generalization of ℓ_{2} regularization, which we will see in class.)

Answer: Setting the gradient $2 \boldsymbol{X}^{T}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y})+\left(\boldsymbol{M}+\boldsymbol{M}^{T}\right) \boldsymbol{w}$ to be $\mathbf{0}$ and using the fact that \boldsymbol{M} is invertible gives

$$
\boldsymbol{w}_{*}^{\prime}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\frac{\boldsymbol{M}+\boldsymbol{M}^{T}}{2}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
$$

Q4 Assume we have a training set $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$, where each outcome y_{i} is generated by a probabilistic model $\boldsymbol{w}_{*}^{\mathrm{T}} \boldsymbol{x}_{i}+\epsilon_{i}$ with ϵ_{i} being an independent Gaussian noise with zero-mean and variance σ^{2} for some $\sigma>0$. In other words, the probability of seeing any outcome $y \in \mathbb{R}$ given $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ is
$\varepsilon_{i}=\boldsymbol{y}_{i}-\boldsymbol{\omega}_{*}^{\top} \boldsymbol{x}_{i} \quad \operatorname{Pr}\left(y \mid \boldsymbol{x}_{i} ; \boldsymbol{w}_{*}, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-\left(y-\boldsymbol{w}_{*}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)$.
Assume σ is fixed and given, find the maximum likelihood estimation for \boldsymbol{w}_{*}. In other words, first write down the probability of seeing the outcomes y_{1}, \ldots, y_{n} given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ as a function of the value of \boldsymbol{w}_{*}; then find the value of \boldsymbol{w}_{*} that maximizes this probability. You can assume $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is invertible, where \boldsymbol{X} is the data matrix with each row corresponding to the features of an example. You may find it helpful to review the steps we took in Lecture 2 to find the maximum likelihood solution for the logistic model.

Answer: The probability of seeing the outcomes y_{1}, \ldots, y_{n} given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ for a linear model \boldsymbol{w} is

$$
\mathcal{P}(\boldsymbol{w})=\prod_{i=1}^{n} \operatorname{Pr}\left(y_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{w}, \sigma\right)=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-\left(y_{i}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}}{2 \sigma^{2}}\right) .
$$

Taking the negative log, this becomes

$$
F(\boldsymbol{w})=n \ln \sqrt{2 \pi}+n \ln \sigma+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{\dot{\boldsymbol{e}}}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{i} \boldsymbol{\varepsilon}}\right)^{2}=n \ln \sqrt{2 \pi}+n \ln \sigma+\frac{1}{2 \sigma^{2}}\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2} . \quad=\boldsymbol{x}_{\boldsymbol{i}}^{\top} \boldsymbol{\omega}-\boldsymbol{y}_{\boldsymbol{i}}
$$

Maximizing \mathcal{P} is the same as minimizing F, which is clearly the same as just minimizing $\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}$, the same objective as for least square regression. Therefore the MLE for \boldsymbol{w}_{*} is exactly the same as the least square solution:

$$
\boldsymbol{w}_{*}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
$$

