
 











SHORT-ANSWER QUESTION. The following questions use linear algebra and calculus in ML
formulations. They particularly test your knowledge of gradients of multivariate functions.

Q3 Consider the following optimization problem:

w⇤ = argminw2Rd kXw � yk22 +wTMw

Here, X 2 Rn⇥d, y 2 Rn, M 2 Rd⇥d is a positive definite matrix and k·k2 stands for the `2 norm. Find
the closed form solution for w⇤. Proceed in a similar way as how we derived the general least-squares
solution in class. (This optimization problem is a generalization of `2 regularization, which we will see
in class.)

Answer: Setting the gradient 2XT (Xw � y) + (M +MT )w to be 0 and using the fact that M is
invertible gives
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Q4 Assume we have a training set (x1, y1), . . . , (xn, yn) 2 Rd⇥R, where each outcome yi is generated
by a probabilistic model wT

⇤ xi + ✏i with ✏i being an independent Gaussian noise with zero-mean and
variance �2 for some � > 0. In other words, the probability of seeing any outcome y 2 R given xi 2 Rd

is
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Assume � is fixed and given, find the maximum likelihood estimation for w⇤. In other words, first
write down the probability of seeing the outcomes y1, . . . , yn given x1, . . . ,xn as a function of the value
of w⇤; then find the value of w⇤ that maximizes this probability. You can assume XTX is invertible,
where X is the data matrix with each row corresponding to the features of an example. You may find
it helpful to review the steps we took in Lecture 2 to find the maximum likelihood solution for the
logistic model.

Answer: The probability of seeing the outcomes y1, . . . , yn given x1, . . . ,xn for a linear model w is
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Taking the negative log, this becomes

F (w) = n ln
p
2⇡ + n ln� +
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Maximizing P is the same as minimizing F , which is clearly the same as just minimizing kXw � yk22,
the same objective as for least square regression. Therefore the MLE for w⇤ is exactly the same as
the least square solution:

w⇤ = (XTX)�1XTy.
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