CSCI567: Machine Learning USC, Fall 2022

Homework 2

Instructor: Vatsal Sharan Due: September 28 by 2:00 pm PST

We would like to thank previous 567 staff, and Gregory Valiant (Stanford) for kindly sharing many of the problems
with us.

A reminder on collaboration policy and academic integrity: Our goal is to maintain an optimal learning envi-
ronment. You can discuss the homework problems at a high level with other groups, but you should not look at any
other group’s solutions. Trying to find solutions online or from any other sources for any homework or project is
prohibited, will result in zero grade and will be reported. To prevent any future plagiarism, uploading any material
from the course (your solutions, quizzes etc.) on the internet is prohibited, and any violations will also be reported.
Please be considerate, and help us help everyone get the best out of this course.

Please remember the Student Conduct Code (Section 11.00 of the USC Student Guidebook). General principles of
academic honesty include the concept of respect for the intellectual property of others, the expectation that individual
work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own
academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected
to understand and abide by these principles. Students will be referred to the Office of Student Judicial Affairs and
Community Standards for further review, should there be any suspicion of academic dishonesty.

Total points: 75 points

Notes on notation:

¢ Unless stated otherwise, scalars are denoted by small letter in normal font, vectors are denoted by small letters
in bold font and matrices are denoted by capital letters in bold font.

* ||.|| means L2-norm unless specified otherwise i.e. ||.|| = ||.||2

Instructions

We recommend that you use LaTeX to write up your homework solution. However, you can also scan handwritten
notes. We will announce detailed submission instructions later.

Theory-based Questions

Problem 1: Support Vector Machines (19pts)

Consider a dataset consisting of points in the form of (z,y), where x is areal value, and y € {—1, 1} is the class label.
There are only three points (z1,y1) = (—1, —1), (22,42) = (1, —1), and (z3,y3) = (0, 1), shown in Figure[l]

label = -1 label = +1 label = -1

o & .
T T

-1 0 1

Figure 1: Three data points considered in Problem 1

1.1 (2pts) Can these three points in their current one-dimensional feature space be perfectly separated with a linear
classifier? Why or why not?

1.2 (3pts) Now we define a simple feature mapping ¢(z) = [z, 2?7 to transform the three points from one-
dimensional to two-dimensional feature space. Plot the transformed points in the new two-dimensional feature space.
Is there a linear model w” x + b for some w € R? and b € R that can correctly separate the three points in this new
feature space? Why or why not?

T write down the 3 x 3 kernel/Gram matrix K for this dataset.

1.3 (2pts) Given the feature mapping ¢(x) = [z, 22

1.4 (4pts) Now write down the primal and dual formulations of SVM for this dataset in the two-dimensional feature
space. Note that when the data is separable, we set the hyperparameter C' to be +o0o which makes sure that all slack
variables (§) in the primal formulation have to be 0 (and thus can be removed from the optimization).

1.5 (5pts) Next, solve the dual formulation exactly (note: while this is not generally feasible, the simple form of
this dataset makes it possible). Based on that, calculate the primal solution.

1.6 (3pts) Plot the decision boundary (which is a line) of the linear model w*Tx + b* in the two-dimensional
feature space, where w* and b* are the primal solution you got from the previous question. Then circle all support
vectors. Finally, plot the corresponding decision boundary in the original one-dimensional space (recall that the deci-
sion boundary is just the set of all points z such that w*” ¢(z) + b* = 0).

Problem 2: Kernel Composition (6pts)

Prove that if ky, ko : R? x R? — R are both kernel functions, then k(x,x’) = k;(x, x')k2(x, x') is a kernel function
too. Specifically, suppose that ¢; and ¢ are the corresponding mappings for k1 and ko respectively. Construct the
mapping ¢ that certifies k being a kernel function.

Programming-based Questions

A reminder of the instructions for the programming part. To solve the programming based questions, you need to
first set up the coding environment. We use python3 (version > 3.7) in our programming-based questions. There are
multiple ways you can install python3, for example:

* You can use conda to configure a python3 environment for all programming assignments.
* Alternatively, you can also use |virtualenv| to configure a python3 environment for all programming assignments

After you have a python3 environment, you will need to install the following python packages:

* numpy
» matplotlib (for you plotting figures)
* scikit-learn (only for Problem 5)

Note: You are not allowed to use other packages, such as tensorflow, pytorch, keras, scipy, etc. to help you
implement the algorithms you learned. If you have other package requests, please ask first before using them. Note
that you will be using scikit-learn in the provided code for Problem 5; but you are not allowed to use scikit-learn for
the remaining problems.

Problem 3: Regularization (31pts)

This problem is a continuation of the linear regression problem from the previous homework (HW1 Problem 5). Let
us recall the setup. Given d-dimensional input data X1, . ..,x,, € R? with real-valued labels y1, ..., y, € R, the goal
is to find the coefficient vector w that minimizes the sum of the squared errors. The total squared error of w can be
written as f(w) = Y"1 | f;(w), where f;(w) = (wTx; — y;)? denotes the squared error of the ith data point. We
will refer to f(w) as the objective function for the problem.

Last homework, we considered the scenario where the number of data points was much larger than the number of
dimensions and hence we did not worry too much about generalization. (If you remember, the gap between training
and test accuracies in 5.1 of the last HW was not too large). We will now consider the setting where d = n, and
examine the test error along with the training error. Use the following Python code for generating the training data and
test data.

import numpy as np

train_n = 100

test_n = 1000

d = 100

X_train = np.random.normal (0,1, size=(train_n,d))

w_true = np.random.normal (0,1, size=(d,1))

y_train = X_train.dot (w_true) + np.random.normal (0,0.5,size=(train_n,1))
X_test = np.random.normal (0,1, size=(test_n,d))

y_test = X_test.dot (w_true) + np.random.normal(0,0.5,size=(test_n,1))

3.1 (2pts) We will first setup a baseline, by finding the test error of the linear regression solution w = X'y
without any regularization. This is the closed-form solution for the minimizer of the objective function f(w). (Note
the formula is simpler than what we saw in the last homework because now X is square as d = n). Report the training
error and test error of this approach, averaged over 10 trials. For better interpretability, report the normalized error
f(w) rather than the value of the objective function f(w), where we define f(w) as

1 Xw oyl
™=

Note on averaging over multiple trials: We’re doing this to get a better estimate of the performance of the algo-
rithm. To do this, simply run the entire process (including data generation, and sampling w) 10 times, and find the

https://docs.conda.io/en/latest/
https://virtualenv.pypa.io/en/stable/

average value of f(w) over these 10 trials.

3.2 (7pts) We will now examine /5 regularization as a means to prevent overfitting. The /5 regularized objective
function is given by the following expression:

m

Do (whxi = yi)* + Allwl.

i=1

As discussed in class, this has a closed-form solution w = (XTX +)\I)_lXTy. Using this closed-form solution,
present a plot of the normalized training error and normalized test error f(w) for A = {0.0005, 0.005, 0.05, 0.5, 5, 50, 500}
As before, you should average over 10 trials. Discuss the characteristics of your plot, and also compare it to your an-
swer to (3.1).

The following questions explore the concept of implicit regularization. This is a very active topic of research, with the
idea being that optimization algorithms such as SGD can themselves act like regularizers (in the sense that they prefer
the solutions to the regularized problems instead of just the original problem). There’s no one correct answer we’re
looking for in many of these questions, and idea is to make you think about what is happening and report your findings.

3.3 (7pts) Run stochastic gradient descent (SGD) on the original objective function f(w), with the initial guess of
w set to be the all 0’s vector. Run SGD for 1,000,000 iterations for each different choice of the step size, {0.00005,
0.0005, 0.005}. Report the normalized training error and the normalized test error for each of these three settings,
averaged over 10 trials. How does the SGD solution compare with the solutions obtained using /5 regularization?
Note that SGD is minimizing the original objective function, which does not have any regularization. In Part (3.1) of
this problem, we found the optimal solution to the original objective function with respect to the training data. How
does the training and test error of the SGD solutions compare with those of the solution in (3.1)? Can you explain
your observations? (It may be helpful to also compute the normalized training and test error corresponding to the true
coefficient vector w* for comparison, this is w_t rue in the code.)

3.4 (10pts) We will now examine the behavior of SGD in more detail. Let w® refer to the SGD solution at the
t-th iteration. For step sizes {0.00005,0.005} and 1,000,000 iterations of SGD (and a single trial),

(i) Plot the normalized training error of the SGD iterate w(t)Avs. the iteration number ¢. On the plot of training
error, draw a line parallel to the x-axis indicating the error f(w*) of the true model w*.

(ii) Plot the normalized test error of the SGD iterate w(*) vs. the iteration number ¢. Your code might take a long
time to run if you compute the test error after every SGD step—feel free to compute the test error every 100
iterations of SGD to make the plots.

(iii) Plot the 5 norm of the SGD iterate w(*) vs. the iteration number ¢.

Comment on the plots. What can you say about the generalization ability of SGD with different step sizes? Does the
plot correspond to the intuition that a learning algorithm starts to overfit when the training error becomes too small,
i.e. smaller than the noise level of the true model so that the model is fitting the noise in the data? How does the
generalization ability of the final solution depend on the /5 norm of the final solution?

3.5 (5pts) We will now examine the effect of the starting point on the SGD solution. Fixing the step size at 0.00005
and the maximum number of iterations at 1,000,000, choose the initial point randomly from the d-dimensional sphere
with radius » = {0,0.1,0.5, 1, 10, 20, 30} (to do this random initialization, you can sample from the standard Gaussian
N(0,1), and then renormalize the sampled point to have ¢ norm r). Plot the average normalized training error and the
average normalized test error over 10 trials vs 7. Comment on the results, in relation to the results from part (3.2) where
you explored different /5 regularization coefficients. Can you provide an explanation for the behavior seen in this plot?

Deliverables for Problem 3: Code for the previous parts as a separate Python file Q3. py. Training and test error
for part 3.1. Plots for part 3.2, 3.4 and 3.5. Training and test error for different step sizes for part 3.3. Explanation for
parts 3.2, 3.3, 3.4, 3.5.

Problem 4: Logistic Regression (11 pts)

In this problem we will consider a simple binary classification task. We are given d-dimensional input dataxy,--- ,X, €
R along with labels y1,--- ,y, € {—1, +1}. Our goal is to learn a linear classifier sign(w”x) to classify the dat-
apoints x. We will find w by minimizing the logistic loss. The total logistic loss for any w can be written as
f(w) = 257" | fi(w), where f;(w) = log (1 + exp(—y;wTx;)) denotes the logistic loss of the ith data point

T n

(xi, ;). We will refer to f(w) as the objective function for the problem.

Use the following Python code for generating the training data and test data. The data consists of points drawn
from a Gaussian distribution with mean [0.12,0.12, ...,0.12] € R? for the class labelled as +1. Similarly, points are
drawn from a Gaussian distribution with mean [—0.12, —0.12, ..., —0.12] € R for the class labelled as —1. The data
is then split such that 80% of the points are in the training data and the remaining 20% form the test data.

import numpy as np

np.random.seed (42)

d = 100 # dimensions of data

n = 1000 # number of data points
hf train_sz = int (0.8 * n//2)

X_pos = np.random.normal (size=(n//2, d))
X_pos = X_pos + .12
X_neg = np.random.normal (size=(n//2, d))
X_neg = X_neg - .12

X_train = np.concatenate ([X_pos[:hf_train_sz],
X _neg[:hf_train_sz]])
X_test = np.concatenate([X_pos[hf_train_sz:],
X_negl[hf_train_sz:]])

y_train = np.concatenate([np.ones (hf_train_sz),
-1 x np.ones (hf_train_sz)])
y_test = np.concatenate([np.ones(n//2 - hf_train_sz),
-1 * np.ones(n//2 - hf_train_sz)])

In this part you will implement and run stochastic gradient descent to solve for the value of w that approximately
minimizes f(w) over the training data. Recall that in stochastic gradient descent, you pick one training datapoint at
random from the training data, say (X;,y;), and update your current value of w according to the gradient of f;(w).
Run stochastic gradient descent for 5000 iterations using step sizes {0.0005, 0.005, 0.05}, initializing with the all ze-
ToS vector.

4.1 (7pts) As the algorithm proceeds, compute the value of the objective function on the train and test data at each
iteration. Plot the objective function value on the training data vs. the iteration number for all 3 step sizes. On the same
graph, plot the objective function value on the test data vs. the iteration number for all 3 step sizes. (The deliverable
is a single graph with 6 lines and a suitable legend). How do the objective function values on the train and test data
relate with each other for different step sizes? Comment in 3-4 sentences.

4.2 (2pts) So far in the problem, we’ve minimized the logistic loss on the data. However, remember from class
that our actual goal with binary classification is to minimize the classification error given by the 0/1 loss, and logistic
loss is just a surrogate loss function we work with. We will examine the average 0-1 loss on the test data in this part
(note that the average 0-1 loss on the test data is just the fraction of test datapoints that are classified incorrectly). As
the SGD algorithm proceeds, plot the average 0-1 loss on the test data vs. the iteration number for all 3 step sizes on
the same graph. Also report the step size that had the lowest final 0-1 loss on the test set and the corresponding value

of the 0-1 loss.
4.3 (2pts) Comment on how well the logistic loss act as a surrogate for the 0-1 loss.

Deliverables for Problem 4: Code for the previous parts as a separate Python file Q4 . py. Plot (with 6 lines) and
associated discussion for 4.1. Plot (with 3 lines) and associated discussion for 4.2. Discussion for 4.3.

Problem 5: Classifier Comparison (8 pts)

In this part, we will compare the behaviour of Logistic Regression to SVMs with Linear and Radial Basis Function
(RBF) kernels. You can find the code on https://vatsalsharan.github.io/fall22/cc_hw2.zip.

Take some time to understand the code. Running the code will create 3 datasets: MOON, CIRCLES and LIN-
EARLY _SEPARABLE, train 6 classifiers on each dataset, and generate a graph with 6 x 7 grid of scatter plots. The
first column displays the data while the remaining columns display the learned decision boundary of 6 classifiers. The
number in the bottom right of each plot shows the classifier accuracy. Odd rows correspond to the training data while
even rows correspond to the test data for each dataset. For the following questions, explain your observations in 2-3
lines.

5.1 (2pts) Notice that MOON and CIRCLES are not linearly separable. Do linear classifiers do well on these?
How does SVM with RBF kernel do on these? Comment on the difference.

5.2 (2pts) Try various values of the penalty term C for the SVM with linear kernel. On the LINEARLY _SEPARABLE
dataset, how does the train and test set accuracy relate to C'? On the LINEARLY _SEPARABLE dataset, how does the
decision boundary change?

5.3 (2pts) Try various values of the penalty term C' for the SVM with RBF kernel. How does the train and test set
accuracy relate to C'? How does the decision boundary change?

5.4 (2pts) Try various values of C' for Logistic Regression (Note: C is the inverse regularization strength). Do
you see any effect of regularization strength on Logistic Regression? Hint: Under what circumstances do you expect
regularization to affect the behavior of a Logistic Regression classifier?

https://vatsalsharan.github.io/fall22/cc_hw2.zip

