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Administrivia

e Start on your project if you haven’t already!
 Make groups (of 4) by tomorrow (Nov 11), minimum team size is 3.
e Top teams as of Nov 16 can get a bonus!

e HWA4 is due in about one weeks (Nov 16 at 2pm).
 WEe'll release another question on Gaussian mixture models tomorrow.

* Today’s plan:
 C(Clustering
* Gaussian Mixture Models and Expectation Maximization (EM)
* In the discussion, we will go over popular evaluation metrics for
supervised learning



A simplistic taxonomy of ML

Unsupervised
learning:
Aim to discover

hidden patterns and

explore data

Supervised learning:
Aim to predict
outputs of future
datapoints

Reinforcement
learning:
Aim to make
sequential decisions






Clustering

* |ntroduction



Clustering: Informal definition
Given: a set of data points (feature vectors), without labels
Output: group the data into some clusters, which means
e assign each point to a specific cluster

e find the center (representative/prototype/...) of each cluster
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Clustering: More formal definition
Given: data points 1, ..., z, € R? and #clusters k we want

Output: group the data into k clusters, which means,

e find assignment ;; € {0, 1} for each data point ¢ € [n] and j € [k] s.t. > (7 = 1 for
any fixed ¢ o0 dad prinl  is "“‘J'bW-DL ‘o Uwﬂy C Lusfer -

e find the cluster centers pt,. .., p;, € R?
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Many applications

Clustering is one of the most fundamental ML tasks, with many applications:

e recognize communities in a social network
e group similar customers in market research
e image segmentation

e accelerate other algorithms (e.g. nearest neighbor classification)



Clustering

* Formalizing and solving the objective (alternating minimization)



Formal objective

As with PCA, no ground-truth to even measure the quality of the answer (no labels given).

What is the high-level goal here?

We want to partition the points into £ clusters, such that points within each cluster are close to their
cluster center.

We can turn this into an optimization problem, find ;; and g to minimize
n k
F({d Awgd) = DD milles — 3
i=1 j=1

i.e. the sum of squared distances of each point to its center. This is the ‘“A-means” objective.



How to solve this? Alternating minimization

Unfortunately, finding the exact minimizer of the £-means objective 1§ NP-hard! M m to e .
Lrashty selvo (o zéoﬁw-»ﬂ«a,

Therefore, we use a heuristic (alternating minimization) that alternatingly minimizes over {7;; } and {p; }:

Initialize {u§1) 7 € K]}
Fort—=1,2,... SERIRV QEW A
e find /7

[yt = aggm;nF ({%j}, me })
Fr {73 ol Sy
e find A

{m ™y = argmin F (13570 4my)



Alternating minimization: Closer look

The first step
min F ({v;;},{p;}) = min Z Z%JH% — ;15
{7ij} {vig i g
= min Y yylla — 3
p {vij} j

is simply to assign each x; to the closest p;, i.e.

iy =1 |7 == anganin | — o I3
C?LQ
forall j € [k] and ¢ € [n]. \f/
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Alternating minimization: Closer look

The second step
min F' ({vii}, {1, }) = min il — |3
{“j} ({/VJ} {I’LJ}) {M}ZZ’}/]H “’j”Q
—me > i — 3

Hi 1:y45=1

is simply to average the points of each cluster (hence the name)

W, = Z'L i =1 Li Z /7@]331 e e&
ST = 0 i~ uufy“fﬁw
vi\

for each j € [k].



Clustering

* k-means algorithm



k-means algorithm

Step 0 Initialize p, ..., @y

Step 1 For the centers .y, ..., ;. being fixed, assign each point to the closest center:

vi; =1 |j == argmin ||z; — p.|3
C

Step 2 For the assignments {~;; } being fixed, update the centers

W, = D Vi
’ Zz Yij

Step 3 Return to Step 1 if not converged (convergence means that all the assigments +;; are un-
changed in Step 1).



k-means algorithm: Example




k-means algorithm: Convergence

k-means will converge in a finite number of iterations, why?

e objective strictly decreases at each step if the algorithm has not converged.

Why? Fort =1,2,...

e find
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k-means algorithm: Convergence

k-means will converge in a finite number of iterations, why?

e objective strictly decreases at each step if the algorithm has not converged.

/-7 k ﬂOSS:b‘(Q’ mssuﬁvmm o QOJ/\ I’Ll:lpf
e #possible_assignments is finite (k", exponentially large though)

Therefore, the algorithm must converge in at most £™ steps.

Why? More specifically, why can’t the algorithm cycle between different clusterings?

e Suppose the algorithm finds the same clustering at time steps ¢ and ¢s.

e Since the objective function value decreases at every step, this means the same clustering (at
time steps t1 and t2) has two different costs, which is not possible.

e Therefore, by contradiction, the algorithm cannot cycle between clusterings.



k-means algorithm: Convergence

k-means will converge in a finite number of iterations, why?

e objective strictly decreases at each step if the algorithm has not converged.
e #possible_assignments is finite (k™, exponentially large though)

However
e it could take exponentially many iterations to converge

e and it might not converge to the global minimum of the k-means objective



k-means algorithm: How to initialize?

There are different ways to initialize:
e randomly pick k points as initial centers oy, . .., p;

e or randomly assign each point to a cluster, then average to find centers

—

e or more sophisticated approaches (e.g. k-means++)

Initialization matters for convergence.



k-means algorithm: Local vs Global minima

Simple example: 4 data points, 2 clusters, 2 different initializations

<
K-means converges immediately in both cases, but b we W L,
Con s
e left has K-means objective L? = 4?2 \ Woko  fhe (ocgd  minive

e right has K-means objective W?2, 4 times better than left! .
_ . ik 70{;‘}0\‘“’\4 veald o

e in fact, left is local minimum, and right is global minimum. o ot [ invUgene |.




k-means algorithm: Summary

Clustering is a fundamental unsupervised learning task.
k-means is a alternating minimization algorithm for the £-means objective.
The algorithm always converges, but it can converge to a local minimum.

Initialization matters a lot for the convergence. There are principled initialization schemes,
which have guarantees on the solution they find (e.g. k-means++).
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Gaussian Mixture Model

* |ntroduction



Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

e more explanatory than minimizing the k-means objective

e can be seen as a soft version of k-means

To solve GMM, we will introduce a powerful method for learning probabilistic models:
the Expectation Maximization (EM) algorithm.



A generative model
5 f'h[},%,w3:€‘ﬁt;w'ﬂ

For classification, we discussed the sigmoid model to “explain” / this will MJQ o
how the labels are generated. oUS("-:[MM 1 lew  prbolity ovds- P

> : :
Similarly, for clustering, we want to come up with a probabilis- L}

tic model p to “explain’ how the data is generated.

That is, each point is an independent sample of & ~ p. 0.5l

Why do generative modelling?

e can generate data from p 0f

e can estimate probability of seeing any datapoint (useful 0 05 :
for many tasks, such as for finding outliers/anomalies in

data) What probabilistic model

generates data like this?



GMM: Intuition

GMM is a natural model to explain such data.

Assume there are 3 ground-truth Gaussian models.

To generate a point, we

e first randomly pick one of the Gaussian models,

e then draw a point according this Gaussian.

Hence the name “Gaussian mixture model”.

0 0.5 1
Figure from Wikipedia



GMM: Formal definition

L C\ ous S:Q v

A GMM has the following density function:

7 — then
k /\/'
p(x) = gN(CB | 15, %5)

J=1 \_a
where prbelilly oy pidz;vj

e : the number of Gaussian components (same as #clusters we want)
e Tq,...,TL: Mmixture weights, a distribution over £ components
e p; and 3;: mean and covariance matrix of the 4-th Gaussian

e V: the density function for a Gaussian
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Another view

unobsav LcQ

(’ﬁ‘)"‘ P—;

By introducing a latent variable z € [k], which indicates cluster membership, we can see p as a
marginal distribution

p@) = pl@z=j) =) p(z=jp=)) Z% (@ | pj, Z5)

x and z are both random variables drawn from the model
e x 1s observed

e 2 is unobserved/latent



0.5

An example

The conditional distributions are

p(e|z=red) = N(x | p;, %)
p(x | z =blue) = N(x | py, 32)
p(x | z = green) = N (& | 1y, 2s)

The marginal distribution is

p(x) = p(red) N (z | p1, 31) + p(blue) N (a | py, 3)
+ pgreen) V(| pey, 303)



Learning GMMs

Learning a GMM means finding all the parameters 8 = {7;, p;, 3; };‘?:1.

In the process, we will learn the distribution of the latent variable z; as well:
p(zi = j | xi) == vi; € [0,1]
1.e. “soft assignment” of each point to each cluster, as opposed to “hard assignment” by k-means.

GMM is more explanatory than k-means
e both learn the cluster centers p;’s

e in addition, GMM learns cluster weight 7; and covariance XJ;, thus

e we can predict probability of seeing a new point

e we can generate synthetic data



Gaussian Mixture Model

* Learning the parameters



How do we learn the parameters?

As always, we want to do maximume-likelihood estimation (MLE): find

m?(e)
argmax lan x;;0)= argmaXZlnp x; ;0) := argmax P(0).
0

Z
\‘L‘Wm.lﬂw& '*6 Lok

This 1s called incomplete log-likelihood (since z;’s are unobserved). We can still write it down as an
optimization problem by marginalizing out the z;’s.

n n k
= Zlnp($i ;0) = Zln Zp(wiazi =7;0)

i=1 i=1 j=1
_Zln Zp i =7;0)p(xi|z; =7 ;0) Zln Zﬂg $z|ﬂga )

This is a non-concave problem, and does not have a closed-form solution.

One solution is to still apply GD/SGD, but a much more effective approach is the Expectation
Maximization (EM) algorithm.



Preview of EM for learning GMMs

Step 0 Initialize 7;, p;, 3 for each j € [k]

Step 1 (E-Step) update the “soft assignment” (fixing par, Ml hopd
Yij = p(2i = j | ®3)
Step 2 (M-Step) update the model parameter (fixing assignments)
) gnfed
wes
SR VL. (TR DTy /1. R
J n J Zz Yij n
1 -
2j = S s Z%j(wi—ﬂj)(wi—ﬂj)T — weigntel
’ ’ Crvallane D
Step 3 return to Step 1 if not converged clust e

We will see how this is a special case of EM.



Iteration (t)
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Gaussian Mixture Model

 EM algorithm



EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the
maximizer of

. 6,;“‘(\7;‘5 P(0) = Zlnp(mi :0) = Zln&azzi ;0)dz;
i=1 i=1 “i

R .
whegal if 23

0(9 is the parameters for a general probabilistic model o
w

e x;’s are observed random variables

CDI/VL:IV\LAM)

S L

e 2;’s are latent variables

Again, directly solving the objective is usually complicated and does not have a closed form solution.



High-level idea

Keep maximizing a lower bound of P that is more manageable




Jensen’s inequality g (D)= 22
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A lower bound on the log likelihood

Finding the lower bound of P: %\w\\oaQ}rg) rotater
2— -
W€ elay2= 4 ; 6)
Inp(x ;0) 1n<2pwz 0) 9°

1 : p(x,z;0)\ —7 Frue fe "9 2(#) ¥9
= (we Jdse hose i,z(1'3= l)
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%230
> Ezwq(z) lln (p(wq(zz) )>:| C s o(rﬂ(\f {9‘% T@Ncw
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Therefore, our log-likelihood can be written as,
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Alternatively maximizing the lower bound

The expression for the likelihood holds for any {g;}, so how do we choose? If we have some guess
of the parameters 8, we should choose {g¢;} to try to make the lower bound tight at that value of 6,
i.e. make the inequality hold with equality at that value of 6.

eta il P (97
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Alternatively maximizing the lower bound

The expression for the likelihood holds for any {g;}, so how do we choose? If we have some guess
of the parameters 8, we should choose {g¢;} to try to make the lower bound tight at that value of 6,
i.e. make the inequality hold with equality at that value of 6.

Equivalently, this is the same as alternatingly maximizing F’ over {¢; } and @ (similar to k-means).

Suppose we fix ), what should we choose {qgt) +?

The inequality arises from the step where we used Jensen’s inequality. How do we get this step to
hold with equality? The function should be a constant function, i.e.

p(«’ﬂz', Z ;H(t))
¢\ (z)

for some constant c¢; which does not depend on the value taken by the random variable z;.




Maximizing over {q;}
(continued) Since ZZ:1 qgt) (z;) = 1, we get,

k
ci= Y plmi, 2z ;0"
Zizl
. i.g(t)
(O = p(xi, 2 ;6™

Zl,;zl (T, 2 ;O(t))

. p(xi, 2 ;B(t))
p(x; ;01)
— plafs 16©)

1.e., the posterior distribution of z; given x; and o).

So at 8™, we found the tightest lower bound F (9, {qft) }) ;
o F (9, {qgﬂ}) < P(8) for all 6.

o 70V {4"}) = P(6")



Maximizing over 6

Fix {q§t) }, maximize over 6:

argmax F' (9, {q,gt) }>
0

& wl?'z’I/?
= argmax E @ |ln

— argmax E o Inp(ax;, z; ;0 E ¢ {ln (t) }
en Z oo [Inp( ; Re (%))
n ¥
= argmaxZ]Ethqgt) [Inp(x;, z; ;0)] deas ol Aspend (&n %)
0 - we'ue  fraed @t ()
.= argmax Q(6 ;0") ({qg )} are computed via 8)
0

@ is the (expected) complete likelihood and is usually more tractable.

e versus the incomplete likelihood: P(0) = >, Inp(x; ;0)



General EM algorithm

Step 0 Initialize 6%, ¢ = 1
Step 1 (E-Step) update the posterior of latent variables z;,

¢ () = plzi | @i ;0

and obtain Expectation of complete likelihood

Q6:6") = ZE (0 Ip(@i, 2 10))

Step 2 (M-Step) update the model parameter via Maximization

o't « argmaxQ(0 ;0WY)
0

Step 3¢ < t + 1 and return to Step 1 if not converged



Pictorial explanation

P(0) is non-concave, but Q(8; 8V) often is concave and easy
to maximize.

c,(u./un a Llowan bouv

p(g(t-l-l))(ﬁg(t-l-l) ;{qzﬁt)})
WO (‘@F (H(t) ;{qqgt)}>
%

w3 = P(6")

T

So EM always increases the objective value and will converge
to some local maximum (similar to £-means).

F (6.{4"})



Gaussian Mixture Model

e EM for the Gaussian Mixture Model



Applying EM to learn GMMs: E-Step

E-Step:
q; (2 =17) ZP(Zi =J | @ ;O(t)>
p (wiazi =J ;H(t)) )
ocp(wi,zi =J ;9(”)
=p (Zz =5 ;:0Y) p(xi | 2 = j ;9“)>
— Wj(-t)N <a:z | u§t), Eg-t))

This computes the “soft assignment” ~;; = ql(t) (z; = 7), i.e. conditional probability of ; belonging

to cluster j.



Applying EM to learn GMMs: M-Step N
le

(2i72
M-Step: ) £ I q"?a w
t n S 2 U—’“té 5 6
argmax Q(6,0") = argmaXZEz_N o [Inp(x,, z; ;0)] (g
0 o = 7% /
— argmax E @ |[np(z;0)+ Inp(x;|z ;0
o 3 E, o Inp(e3:0) + Inplalz )
n k
= argmax ZZ%]- (Inm; +In N(x; | py, X))
{miom i} =1 j=1 T
( v e -
only “depenly o 1 g operls s g
To find 71, ..., 7, solve

n k
arg?ax Z Z Vij In;

i=1 j=1

To find each p;, 335, solve

argmax Z Yig In N (@; | K %)
By =1



Applying EM to learn GMMs: M-Step

Solutions to previous two problems are very natural, for each j

o Zi%jj
T = —n

1.e. (weighted) fraction of examples belonging to cluster j
w, = D i Vi
’ > Vi
i.e. (weighted) average of examples belonging to cluster j
1
> i Vij

i.e (weighted) covariance of examples belonging to cluster j

¥, =

Z%’j($i - “j)(mi - Hj)T

7

You will verify some of these in HW4.



Applying EM to learn GMMs: Putting it together

EM for learning GMMs:
Step 0 Initialize 7;, pt;, 3 for each j € [k]
Step 1 (E-Step) update the “‘soft assignment” (fixing parameters)
Yij = p(zi = j | @) x mjN (x; | pj, 3;)

Step 2 (M-Step) update the model parameter (fixing assignments)

Z@- Yij

o= 2_i Vig o, = >_i YigTi
’ n ’ i Vij
1
;= > il — ) (@i — )T

Step 3 return to Step 1 if not converged



