CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 2, Sep 1

Yz

B

USCUniversity of

Southern California

Administrivia

o HW1is out
o Due in about 2 weeks (9/14 at 2pm). Start early!!!
o Post on Ed Discussion if you're looking for teammates.

Recap

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Linear regression

Predicted sale price = price_per_sqft x square footage + fixed_expense

2.5/
[] ’4
’/
2 ="
-
@ .’/
-
S15 & - o
o ° o .-G ® ®
< ao? & °
G 1[% ofz=itece
G
I :
0.5

O 1 L 1 1 1 J
1000 2000 3000 4000 5000 6000 7000
Square footage

How to solve this? Find stationary points

Are stationary points minimizers?

\465 (onve R ol \
5 ke" ___x 06560{"\/"‘5 y Ty\ lu\ah o(jmusigns :

hot
convey ,

e
-
e
-
e
-
-

Lenve (&

'ihl. Jro;w:r‘} 7 15 f";“}s
alrove frunchov)

o

Vz(FC‘L\» 's poscbve
semv= dofinte (psd)

General least square solution

Objective

where -
Ty Y1
o ﬁET y2
X=| 7 |erx@d 4| 7 [crn
532 Yn

(XTX)w - XTy=0 = & =(XTX)"'XTy

Optimization methods
(continued)

Problem setup
Given: a function F(w)
Goal: minimize F(w) (approximately)

Two simple yet extremely popular methods
Gradient Descent (GD): simple and fundamental
Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is the first-order information of a function.
Therefore, these methods are called first-order methods.

Gradient descent
GD: keep moving in the negative gradient direction
Start from some w®. For ¢t =0,1,2,...
wttD w® — pVF(w®)

where 11 > 0 is called step size or learning rate

* in theory n should be set in terms of some parameters of F

* in practice we just try several small values

* might need to be changing over iterations (think F(w) = |w|)

* adaptive and automatic step size tuning is an active research area

lw‘u{km ‘

Why GD?

Fovst —ofan ‘\’qvl - 2y g

FLw\ 3 F(Iw“\) r Vel w(f\)“’(w_wcﬂ>

© [

/h

v (wwm) = F(wm) - M thewl

n 2
= F’(ww‘m) r\:‘. F thﬂ) e

C{'h?s .'S Ghﬂz, U af‘)’\,{)?&w\w('\ﬂﬂ,
md tan Lo pavalid W Slep
613& S too lu”la(,)

~

z

Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations t (in terms of €) are needed to achieve

Fw®)—Fw") <«

Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations t (in terms of €) are needed to achieve

Fw®)—Fw") <«

Even for nonconvex objectives, some guarantees exist:
e.g. how many iterations t (in terms of €) are needed to achieve

|IVFow®)|| <«
that is, how close is w® as an approximate stationary point

for convex objectives, stationary point = global minimizer
for nonconvex objectives, what does it mean?

Stationary points: non-convex objectives

A stationary point can be a local minimizer or even a local/global maximizer
(but the latter is not an issue for GD).

10 -

-10 -

fw) =w® +w? — 5w

Stationary points: non convex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

° f(w)=wi—wj
o Vf(w) = (2wi, —2ws)

e so w = (0,0) is stationary

@ local max for blue direction (w; = 0)

@ local min for green direction (we = 0)

Switch to Colab

Stationary points: non convex objectives

This is known as a saddle point

@ but GD gets stuck at (0,0) only if
initialized along the green direction

@ so not a real issue especially when
initialized randomly

Stationary points: non convex objectives

But not all saddle points look like a “saddle” ...
o flw) = w?+ui
o Vf(w)= (2wy, 3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction i
(w1 =0)

Switch to Colab

Stationary points: non convex objectives

But not all saddle points look like a “saddle” ...
o f(w)=w?+ws
o Vf(w)= (2wy, 3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction
(w1 = 0)

@ GD gets stuck at (0,0) for any initial
point with wy > 0 and small n

Even worse, distinguishing local min and saddle point is generally NP-hard.

Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction
w) — w® — pVF(w®)
where VEF(w®) is a random variable (called stochastic gradient) s.t.

E [@F(w(t))] = VF(w®) (unbiasedness)

Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

w) — w® — pVF(w®)

where VEF(w®) is a random variable (called stochastic gradient) s.t.

E [@F(w(t))] = VF(w®) (unbiasedness)

o Key point: it could be much faster to obtain a stochastic gradient!
o Similar convergence guarantees, usually needs more iterations but
each iteration takes less time.

Switch to Colab

Summary: Gradient descent & Stochastic Gradient descent

o GD/SGD coverages to a stationary point

o for convex objectives, this is all we need

Summary: Gradient descent & Stochastic Gradient descent

GD/SGD coverages to a stationary point
for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad” saddle
points (random initialization escapes “good” saddle points)

recent research shows that many problems have no “bad” saddle points or
even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)

Second-order methods
60: .lgi,\5f~aa,c£a9, Taal@x agpronimabisn
P 3 F(w) + 7 Fw) (w-u™®
6 = [0+ {00 Gox) + L'0D (gD
What aboll o cecond- oden Taglon approdmation ? i
FWD) & e(w) ¢ VF(W“‘\((\»-W““) L (w-wtT He (w- w“\j

2
whoe He s e (W) e T s Hessin of F o u®

'-(,l,“-’a‘ =)7— F(“D
FW w4

we W)

Define '\;(w\'z 2nd ool an QP wimahizy,
St VFlw) -0 & Jind pinima

Nw'\’bn‘s

methhad

! Mekia a-’x
Newoten's

: el
% Wo \ew\mv«a

verdan @
*

%« vl Hessmv,s
¥ Kuew

3
siem fabe, 0(d 7
(MVEen S

G0

ned tp fune
X SI«QUU& mv%aewe
*
¥ fost '

Od) +img

Linear classifiers

The Setup

Recall the setup:
e input (feature vector): & € RY
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RY — [C]

This lecture: binary classification
@ Number of classes: C =2
o Labels: {—1,+1} (cat or dog)

Representation: Choosing the function class

Let's follow the recipe, and pick a function class F.

T2

We continue with linear models, but how to predict a label using w
Sign of wTx predicts the label:

. T +1 ifwlax >0
Sign(WZ) =\ 1 i Ty <0

(Sometimes use sgn for sign too.)

Representation: Choosing the function class

Still makes sense for “almost” linearly separable data

Choosing the loss function

Moct omnon loss K(uﬂ,a) = 1 (=) :t;)
Loss a3 q .kuuch'eh % }wT’L
20-‘ LWT'D =1 (3(4117(< 0)
lcf‘!m (. r W 1\

........

‘c}"ﬂ %

Choosing the loss function: minimizing 0/1 loss is hard

However, 0-1 loss is not convex.

1111111111

Even worse, minimizing 0-1 loss is NP-hard in general.

Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss

||||||||||

Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss L

..........

T2

@ perceptron l0ss perceptron(2) = max{0, —z} (used in Perceptron)

Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss N
L[ﬁduf"l

15

....................

@ perceptron l0ss perceptron(2) = max{0, —z} (used in Perceptron)

@ hinge [0S lhinge(2) = max{0,1 — z}(used in SVM and many others)

Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss

AAAAAAAAA

2 bw"x
@ perceptron l0ss perceptron(2) = max{0, —z} (used in Perceptron)

@ hinge [0S lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss Liogistic(2) = log(1 + exp(—z)) (used in logistic regression;
the base of log doesn't matter)

Onto Optimization!

Find ERM -

X _ . n
W = ogmn -‘;‘- (2 Lyiwx)

we pd

-
C -

wheae QY X e snogals Lew,

o No closed-form solution in general (in contrast to linear regression)
o We can use our optimization toolbox!

Perceptron

New York Times, 1958

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

The Navy last week demonstrated
the embryo of an electronic
computer named the Perceptron
which, when completed in about a
year, is expected to be the first non-
living mechanism able to "perceive,
recognize and identify its
surroundings without human
training or control.”

Recall perceptron loss

111111111

Applying GD to perceptron loss
Gealient s
V EWD = (1)) T?\—\ - ’lL[\;mT'u éoj b &
C only s classified cxamples Cowd)

o0 p
W &~ w + e 2 ﬂ[}‘.mri{éajjil(
~n
)
need the entine ’rwiw"g
et 2 ewua 00 vodate -

Applying SGD to perceptron loss

Ofjeckve fovckom
oSt ML tasks s
o {r'\m‘fl Sum. ""T;LL

U“L(S&W\ly of Ran Ly / fok
% = (wu\‘) < T
-7 1[‘3(.\&! z < ég] Y > O

Uhlﬁc\su(. why °

i BRG] . | 2 oqT. -
Eq (‘*’ _]’ {‘—f_—‘ :".[:&tw ‘Lu’écz]a;ft‘-

How b 3¢t A shdesh¢ n adiewt 7
> Ptk one example i € [n)

2elies
3&0\0\4113

R VAN = (w“’ﬂ

Perceptron algorithm

SLO wity =l on paceptaon Losy

tnl\"'db'3e W 9

Repeat
e Pl'cl AL ov U'\l(: C"h N e ,LJ
v Tf Sgn (w'x) 2 94

W e woryiy

Perceptron algorithm: Intuition
Soy thd W ubey s tbe o (17, 4))
Yiw' L <o
(vsider w ' = w< R &
gi(w}\TI; oW ¢ 9T

$ %D

9 (W'\TI" 7 \giw11n'

Perceptron algorithm: visually

Repeat: Relofed to gueshen n
@ Pick a data point x; uniformly at random dosg ;i thene oqe '

; e w s l S| J '

o If sgn(w"x;) # y; nudbpe w8l L

-y
0 R .

+F }{‘)" = Thig

,'f" /']

PR m'ﬁM’ fe
e e e 7
AT heen
.

Porceptrom dsetf woud {+d
"3 f frese hypoyl

HW1: Theory for perceptron!

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.

Logistic regression

Logistic loss

Fla: L % Luy Lo x:)

2 % [(,\f 6?};\011“)
N

Predicting probabilities

Theted 4 LY, predict the prckebility

(e Neghession on Maﬁn‘b‘l;)

S(%\moi& + lineah vhodel

\@ (3: +1 ,w\ =z c‘(w-r’()

whoe o). L

\4e- 2

C S‘\a o &\

Properties of sigmoid o(z) =

The sigmoid function

_1
1+e—%

@ between 0 and 1 (good as probability)

o(wTz) > 0.5 < wTz > 0, consistent

with predicting the label with sgn(w?Tz)

T

larger wTx = larger o(wTx) = higher

confidence in label 1

o(z)+o(—z) =1 for all 2

Therefore, the probability of label —1 is

—1|z;w)=1-P(y =+1| z;w)

=1-o(wlz) =o(—wTx)

Py

Therefore, we can model P(y | «; w) = o(yw™'x) =

14 e vw'e

Maximum likelihood estimation

What we observe are labels, not probabilities.

Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing labels y1,--- ,y, given
xi, -+ ,Ty, as a function of some w?

N
P(w) = [Py | @i w)
=1

MLE: find w* that maximizes the probability P(w)

Maximum likelihood solution

n
w”* = argmax P(w) = argmaxH P(y; | x;; w)

w w .
=1

n
= argmaXZln P(y;: | zi; w)
Y =1

n
= argminz —InP(y; | z;; w)

woi=

n
= argmin Z In(1+ e_yinwi)
woi=1
n
= argmin Z biogistic (Yiw " x;)
vooi=

= argmin F'(w)
w

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

SGD to logistic loss

w — w —nVF(w) \E[,% \:(w\J = 7 Flw)
= w — 1)V liogistic (yiw ' ;) (i baun, wnif Sml {Pema [J)
_ Oliogistic(2) - ’
—woh 0z z=y;wlx; yii C it ~oe)
=w-—1 —z) Yiq ﬂoat\ke"‘wj = ;—
l1+e z=y;wTz; S2 +e-?
= w + no(—y;w wz)yzwz S(-2) |- 6‘(,2) “\- 1 = (_'}
= w + NP (—yi | T; w)yix; e ez

This is a soft version of Perceptron!

P(—y;|x;; w) versus I][yz-;ésgn(wTa:Z-)]

Binary
classification: so far

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Loss function

Use a convex surrogate loss

AAAAAAAAAA

@ perceptron l0ss perceptron(2) = max{0, —z} (used in Perceptron)
@ hinge [0S lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss Liogistic(2) = log(1 + exp(—z)) (used in logistic regression;
the base of log doesn't matter)

Representation

Definition: The function class of separating hyperplanes is defined as
F ={f(x) = sign(w"x): w € R4}.

Optimization

Empirical risk minimization (ERM) problem:

1 n
w* = argmin — E U(y;w ;)
weRd n i=1

Solve using a suitable optimization algorithm:
e GD: w <+ w—nVF(w)
o SGD: w ¢+ w—nVF(w) (E[VF(w)] = VF(w))
e Newton: w <+ w — (VQF('w))_1 VF(w)

Generalization

Rich theory! Let’s see a glimpse ©

Training Set Test Set

Generalization

Reviewing definitions

Input space: X

Output space: Y
Predictor: f(x): X =)
Distribution D over (x,y).

Let D™ denote the distribution of n samples {(x;,y;),7 € [n]} drawn
i.i.d. from D.

Risk of a predictor f (x) is R(f) = Egy)~D [E(f(m), y)}
Consider the 0-1 loss, 4(f(x,y)) = 1(f(x) # y).

Next time, we'll see some
generalization theory!

