CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 3, Sep 8

Sylzz

=T
_—

USCUniversity of

Southern California

)

Administrivia
HW |
B2 due in about 1 week (9/14 at 2pm).
Each person gets 1 late day, if you want to use a late day we’ll ask to
fill a form (late day counts towards the group member filling form).
Max 1 late day per HW.
Please submit your groups by end of today (form on Ed Discussion
post by Rachitha).

Recap

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Summary: Optimization methods

GD/SGD is a first-order optimization method.

GD/SGM coverages to a stationary point. For convex objectives, this is all
we need. For nonconvex objectives, it is possible to get stuck at local

minimizers or “bad” saddle points (random initialization escapes “good”
saddle points).

Newton’s method is a second-order optimization method.
Newton’s method has a much faster convergence rate, but each iteration

also takes much longer. Usually for large scale problems, GD/SGD and their
variants are the methods of choice.

Linear classifiers

Binary classification:
e input (feature vector): = € R¢
e output (label): y € {—1,+1}.
e goal: learn a mapping f:RY — {—1,+1}

Representation

Definition: The function class of separating hyperplanes is defined as
F ={f(x) = sign(wTx):w € R4).

Loss function

Use a convex surrogate loss

....................

@ perceptron |0ss £perceptron(2) = max{0, —z} (used in Perceptron)
o hinge l0ss hinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £ogistic(2) = log(1 + exp(—=z)) (used in logistic regression;
the base of log doesn’'t matter)

Optimization

Empirical risk minimization (ERM) problem:

1 n
w” = argmin — E Uy, w'x;)
welRd n i=1

Solve using a suitable optimization algorithm:
o GD: w +— w —nVF(w)
o SGD: w+ w—1nVF(w) (E[VF(w)] = VF(w))
e Newton: w + w — (VQF('w))_1 VF(w)

Maximum likelihood estimation

What we observe are labels, not probabilities.

Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing labels y1,--- ,y; given
x1, - ,x;, as a function of some w?

n

P(w) = [[Py | @i w)

1=1

MLE: find w* that maximizes the probability P(w)

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

Training Set Test Set

Generalization

Reviewing definitions

@ Input space: X

e Output space: Y

@ Predictor: f(x): X =)Y
e Distribution D over (x,y).

- !_.etdenote the distribution of n samples {(x;,v;),7 € [n]} drawn
doFen o Lid. from D.

o Risk of a predictor f () is R(f) = Ezy)~D [E(f(a:),y)}
o Consider the 0-1 loss, £(f(x,y)) = 1(f(x) # y).

The analysis we’ll do could also help you solve Problem 3 on HW1.

Assumptions for today’s theory

Finte sized funchon clusges .

Def! A funckion dows F i Lt <iged A4 Tl gt

“9: F 4 LD = Wk we {-o, ¥

| ¥Fl=3

M}g&b‘l} . Tl’\U\Q @71,;3& QL* > - €.

y: .L*() ¢ x eX.

Intuition: When does ERM generalize?

'3’ ([
" ol
R4
R4
Nl -
LR -
’
o’ /
e # D4
’ ‘ -
e R
4 > 4
s
o" 7
4
-

.
R
G
- £ ¢
G
R4
£ ’
R4
’
’
R4
’
’
’
R
’
’
G
R4
R
G
R4
....................
........................... Jmmmmmmm————— -
- ~
G
’
G
R4
R
G
’
.
R4
R
0 I
’
R4
R
0 A
o" (e
e -
’ P
' -
’ L4

Dist}du

S

M BveH +: (-f,’{-l)
Uﬂ({,&’\m

L8 e wgmn L2 0040,)
e F -
Tf wv> QM i\?I/Q , then oty p)nofwﬁn'b‘? G’é)

oy S (Hig), i€ Y Q(J(f‘“‘) £ 5 (fn wostonts
£05)

S9-827 00, S:00 | Hen wih ny, 00 (10 (71

Sonples M, Pwkaﬂrub 9 Q(Qﬂm Z o

?—%: Nele, +Hiat theve sxistce \[y*e'{?—’ . 2({7*)70‘

de Fy- 4 [eF -) 5)

bool V. What 45 tne Probobility o geling taicked
% v Laed (e Ty

Lonsider seme '€ Toag .

?ﬁmn L{s‘ & ow ELMJ (4" gds Rs ({,*):0)

- ?a.m..[_ Axiedom | G - O]

) T\ f’u;@): L) . L . \} (..A wssumphon, [n L5 =Pr(e)h(c)

¥ B By omve JV‘JQ»pWOQP\f)

~“
< ﬂ (\, 2W (L € {'bvo() X;“’D>
(<
é % Q.Z cn(@ (-5 & 6'19 \\\Q:’.1
(:é_zq /’\
- (-

(hoal. @ Whal 1 e Mmﬁ‘hﬁx"& 9{5 ()'GV\ Toni e
}”2 22 .ke Fod .

Ur\'\ ’ :
o be{m& ?-ﬁ(E\ UEteg)
DN U ’
7 s [—%le% L s an ELM\SJ _2‘ (< (e
7 |
_keéﬂ,,& L§ i o een] ﬁ%g

. < “th =3 ;
} Gc?sa&e = Wgle ™ & LF| oo

T4 on Jg: (vﬁm(lﬁ{:ls + QM(”Q)

hen p’lsfmv\ [%Bﬁal%% 143 an ELM‘\SJ < S

o s GE)
—

L™ 2o

y W f (—é

-
Note that w s age he empirucd sk ;’i; Uf“ﬂ) -0, ne 25(4“):0
(i e¥ alwwys il Baiving set porfetly, ' Goponoligabiony gop s £ (1E2H)

Relaxing our assumptions

e We assumed that the function class is finite-sized. Results can be
extended to infinite function classes (such as separating hyperplanes).

@ We considered 0-1 loss. Can extend to real-valued loss (such as for
regression).

e We assumed realizability. Can prove similar theorem which guarantees
small generalization gap without realizability (but with an €2 instead of
€ in the denominator). This is called agnostic learning.

Rule of thumb for generalization

Suppose the functions f in our function class F have d parameters which can be set.
Assume we discretize these parameters so they can take W possible values each.
How much data do we need to have small generalization gap? .. . agbe 32

| Fle wé ot nedey oty

3@9\&%0\“30&% qf A8 ofynost 2 Ath n 7/ QM[\F”}) 50""\#@

- @k‘%ﬁg Sawpla

A useful rule of thumb: to guarantee generalization, make sure that your
training data set size n is at least linear in the number d of free parameters
in the function that you’re trying to learn.

Nonlinear basis

What if a linear model is not a good fit?

Let’s go back to the regression setup (output Y € R).
A linear model could be a bad fit for the following data:

Y

0.5}

-1 -0.5 0 0.5 1

A solution: nonlinearly transformed features
1. Use a nonlinear mapping
¢(x):xeR?— ze RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

)
§0° 0
0.5 e o OH Oo o
D(x) 04] " @

0% o
o230

o

-0.5

A solution: nonlinearly transformed features

1. Use a nonlinear mapping
¢(x):xeR?— ze RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

gg Consi dan c |- z
- €
49 7{; ([

2 J° Wi olx)
Ar—,| 2 ‘77_, Jﬁo’\ w = ('\)o)_¢7

Regression with nonlinear basis

Model: f(z) = w'¢(x) where w € RM

Objective:

n

RSS(w) = Z (w'(x;) — y;)

=1

2

Similar least square solution:

w* = (@T@)_l &Ly where &= & RraM

Example

Polynomial basis functions for d = 1

1
z M
dp@)=| % | = f@=w+) wna"
. m=1
Y

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space

Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

Ir D\C\) M=0 1

See Colab notebook

Why nonlinear?

Can | use a fancy linear feature map?
e -

3CE4 — X3

¢(@) = | 2py + 24+ 25 | = AT for some A € RMx4

No, it basically does nothing since

. 2 . T)
min (’wTsz' — yz-) = min E (w' L; — yi)
weRM - w’€lm(AT)CR y

Overfitting and
Regularization

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

It O—~0 M=0 1

See Colab notebook

Underfitting and overfitting

M < 2 is underfitting the data 9— Traiing
—6— Test
@ large training error
o large test error 2 05
=

M > 9 is overfitting the data

@ small training error L | |

o large test error 0 S M ° 2

More complicated models = larger gap between training and test error

How to prevent overfitting?

See Colab notebook

Method 1: More data!!

More data = smaller gap between training and test error

See Colab notebook

Method 2: Control model complexity

For polynomial basis, the degree M clearly controls the complexity
@ use cross-validation to pick hyper-parameter M

Cross-validation: Explored in HW1. Idea is to do a three-way split in
addition to training set/test set, and tune hyperparameters on a validation

set.

When M or in general @ is fixed, are there still other ways to control
complexity?

Magnitude of the weights

Least square solution for the polynomial example:

M=0 M=1 M=3 M=9
wo 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
Wo -25.43 -5321.83
w3 17.37 48568.31
Wy -231639.30
ws 640042.26
We -1061800.52
wy 1042400.18
wg -557682.99
Wo 125201.43

Intuitively, large weights = more complex model

See Colab notebook

How to make the weights small?

Regularized linear regression: new objective
G(w) = RSS(w) + M (w)

Goal: find w* = argmin,, G(w)
e 1 : R* —» RY is the regularizer

e measure how complex the model w is, penalize complex models

o common choices: |w||3, ||lw]1, etc.

How to make the weights small?

Regularized linear regression: new objective
G(w) = RSS(w) + M (w)
Goal: find w* = argmin,, G(w)
e 1 : R* - RT is the regularizer

e measure how complex the model w is, penalize complex models

o common choices: |w||3, ||lw]1, etc.

@ A\ > 0 is the regularization coefficient

e A =0, no regularization
o A\ = 400, w — argmin,, Y (w)

e i.e. control trade-off between training error and complexity

£, regularization with non-linear basis: The effect of 4

when we increase regularization coefficient \

In\=—-00 InA=-18 InA=0
wo 0.35 0.35 0.13
w1 232.37 4.74 -0.05
Wo -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
wy | -231639.30 -3.89 -0.03
ws 640042.26 55.28 -0.02
we | -1061800.52 41.32 -0.01
wry | 1042400.18 -45.95 -0.00
wg | -557682.99 -01.53 0.00
Wy 125201.43 72.68 0.01

See Colab notebook

£, regularization with non-linear basis : A tradeoff

when we increase regularization coefficient)\

Erums

In)=-18
o\ O
o
o
0 1
1
Training
Test
.5
0 /’—_/
=35 =30 . 25 =20

See Colab notebook

Why is regularization useful?

If you don’t have sufficient data to fit your more expressive model, then ERM will overfit.
Regularization helps with generalization.

So should it not be useful in many practical settings, where we have enough data?

Why is regularization useful?

If you don’t have sufficient data to fit your more expressive model, then ERM will overfit.
Regularization helps with generalization.

So should it not be useful in many practical settings, where we have enough data?

In general, a viewpoint is that we should always be trying to fit a more expressive model if
possible. We want our function class to be rich enough that we could almost overfit if we
are not careful.

Since we’re often in this regime where the models we want to fit are more and more
complex, regularization is very useful to help generalization (it’s also a relatively simple
knob to control).

Understanding
regularization

How to solve the regularized objective G (w)?

Let’s go back to the original linear model.
Simple for /5 regularization, v)(w) = ||w||3:
G(w) = RSS(w) + Awl[5 = | Xw — yl|5 + A[wl]3
VG(w) =2(XTXw — XTy) + 2w =0
= (XTX + /\I) w=X"y
= w* = (XTX +AI) " XTy

Linear regression with ¢y regularization is also known as ridge regression.

For other regularizers, as long as it's convex, standard optimization
algorithms can be applied.

Aside: Least-squares when X! X is not invertible

Wh e, «T¢ 3 wol twveh e w T\
bs:@*‘- ~LT7, 5wt %w_,(

This wuld hoppen when

D o2 - 4. -

@ Y"\IMQ W <t +w = \/ > ‘/e}; (ool of o

@ v o owost gy =Y

(Q,gQ

Whol dee> .Qz, 9\020«00.\230}{0’\6 Jﬁ l""’\e ?
Wl 2 Udw-SlIE b Al 2
N———/

0] 6 a8 W ek, “*\U:‘I
. P segulengobon cueses W wih emallest Nully o€ Kwe Y,

Aside: Least-squares when X! X is not invertible

Intuition: what does inverting X X do?

i M 0 .- 0
0 Xg === 0
eigendecomposition: XTX =U"' | : : : : U
B - X 0
0 - 0 Agy1
where A\; > Ao > -+ A\g41 > 0 are eigenvalues.
. .
= 0 sen 0
0)‘_12 0
inverse: (X1X)!= vt | : : : U
0 x 0
1
) ¢ L Ad41

I.e. just invert the eigenvalues

Aside: Least-squares when X! X is not invertible

Non-invertible = some eigenvalues are O.

One natural fix: add something positive

A+ A 0 e 0
0 A2+ A E 0
XX 4+ =0t : : : ; U
0 ce Ad+ A 0
0 0 Ad+1+ A
where A > 0 and I is the identity matrix. Now it is invertible:

S ,
W 0 0
yven SEIERE 0

(XX + 2Dt =U" : : : : U
1
a 0 0 Ad+1+A

A “Bayesian view” of £, regularization

Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Let’s continue with the linear model, and Q3 from the practice problems for today.

Han {'/\C&vv‘\vy ﬁ"’t C‘(‘I) yn St s (+L,2y) c (ch < |Q
.. < . .
j\ \A)* T, L é‘ , e;N N(Olga

- h" (\Q'l Loy W«(O'w" L L p - (y- w““’“\a
S 2n

25 %

M[,@il;’ml W whidy QIR Likd&hODCQ Cie ?97(2;[7(;,"“‘67)

A “Bayesian view” of £, regularization

Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Let’s continue with the linear model, and Q3 from the practice problems for today.
A . _ - T N\&
\U}(.("’) (%(‘Itle\ - o (1‘ \A/~L|\ {_ LDV'§T
262

The seluben 4 Wy - GTA'({T)

A “Bayesian view” of £, regularization

Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Bayesian view: A prior over w
Sugpese oun Pue o W N(o)y"ﬂ)

New we Lud ta el widy Mok mizes
b ol (MAR)

Pos kovien g ?Ju‘«p\. Likelihood

A “Bayesian view” of £, regularization

Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Bayesian view: A prior over w

4 n
«%"U\X&'\(uﬂ % l, ("'L . i QAP(- (- wTw\)L
9= | 27r* (= >
~———— 26%

W~ N(0 Y"l)

loj(fosfe)\k@’\ (W_\\ =z ’U&“f - 2 (‘/"W “)

27 & 1z

Mad ("02(90’5"%&’\\\ 'S same oS ™Min ()'\(UJ\ .tre»\ \P(\«D: “u/“l

An equivalent form, and a “Frequentist view”

“Frequentist” approach to justifying regularization is to argue that if the true model has a
specific property, then regularization will allow you to recover a good approximation to the
true model. We this view, we can equivalently formulate regularization as:

argmin RSS(w) subject to ¥(w) <
_ Ccomsidisn Ylwh: llw((;_')
where (3 is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either A or 8 can be done by cross-validation.

Encouraging sparsity: £ regularization
Continuing from the frequentist view, having small norm is one possible structure to impose
on the model. Another very common one is sparsity.
Sparsity of w: Number of non-zero coefficients in w. Same as ||w|]|o

Eg.w=[1,0,—1,0,0.2,0,0] is 3-sparse lwly s wot & womy,

P <o

Encouraging sparsity: £ regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w|]|o

Advantage:
o Sparse models are a natural inductive bias in many settings. In many applications we have
numerous possible features, only some of which may have any relationship with the label.

— d Genes ——>»

Suppose we want to fit a linear models from
gene expression to an outcome (disease,
phenotype etc.).

3

b

St
* >

Expression
levels
in n samples

d is huge, but likely that only a few genes are
related.

Encouraging sparsity: £ regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w|]|o

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications we have
numerous possible features, only some of which may have any relationship with the label.

o Sparse models may also be more interpretable. They could narrow down a small number
of features which carry a lot of signal.

E.g. w = [15,0,—-1.1,0,0.25,0,0] is more interpretable than,
w=[1,0.2,—1.3,0.15,0.2,0.05,0.12]

For a sparse model, it could be easier to understand the model. It is also easier to verify
whether the features which have a high weight have a relation with the outcome (they are
not spurious artifacts of the data).

Encouraging sparsity: £ regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w|]|o

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications we have

numerous possible features, only some of which may have any relationship with the label.
o Sparse models may also be more interpretable. They could narrow down a small number
of features which carry a lot of signal.

o Data required to learn sparse model maybe significantly less than to learn dense model.

We’ll see more on the third point next.

