CSCI 567: Machine Learning

Vatsal Sharan Fall 2022

Lecture 4, Sep 15

Administrivia

- HW2 will be released tonight, due in about 2 weeks.
- We will post some practice problems for the quiz by early next week.

Ensuring generalization

Theorem. Let \mathcal{F} be a function class with size $|\mathcal{F}|$. Let $y = f^*(x)$ for some $f^* \in \mathcal{F}$. Suppose we get a training set $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ of size n with each datapoint drawn i.i.d. from the data distribution D. Let

$$f_S^{ERM} = \operatorname*{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(\boldsymbol{x}_i), y_i).$$

For any constants $\epsilon, \delta \in (0, 1)$, if $n \geq \frac{\ln(|\mathcal{F}|/\delta)}{\epsilon}$, then with probability $(1 - \delta)$ over $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}$, $R(f_S^{ERM}) < \epsilon$.

A useful rule of thumb: to guarantee generalization, make sure that your training data set size n is at least linear in the number d of free parameters in the function that you're trying to learn.

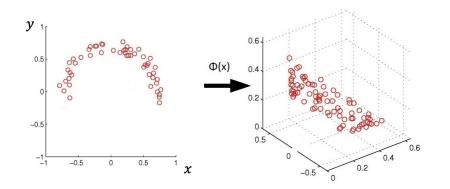
Beyond linear models: nonlinearly transformed features

1. Use a nonlinear mapping

 $oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{d} ooldsymbol{z}\in\mathbb{R}^{M}$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).



Polynomial basis functions

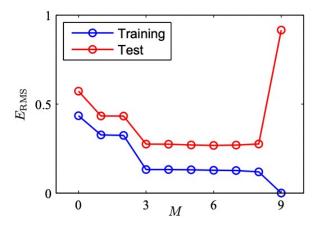
Polynomial basis functions for d = 1

$$oldsymbol{\phi}(x) = egin{bmatrix} 1 \ x \ x^2 \ dots \ x^M \end{bmatrix} \quad \Rightarrow \quad f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space = learning an *M*-degree polynomial model in the original space

Underfitting and overfitting

- $M \leq 2$ is underfitting the data
 - large training error
 - large test error
- $M \geq 9$ is *overfitting* the data
 - small training error
 - large test error



More complicated models \Rightarrow larger gap between training and test error

How to prevent overfitting?

Preventing overfitting: Regularization

Regularized linear regression: new objective

 $G(\boldsymbol{w}) = \operatorname{RSS}(\boldsymbol{w}) + \lambda \psi(\boldsymbol{w})$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_w G(\boldsymbol{w})$

- $\psi : \mathbb{R}^d \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model ${m w}$ is, penalize complex models
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the *regularization coefficient*
 - $\lambda = 0$, no regularization
 - $\lambda
 ightarrow +\infty$, $oldsymbol{w}
 ightarrow rgmin_w \psi(oldsymbol{w})$
 - i.e. control trade-off between training error and complexity

W_2 W_2 W_{LS} W_{LS} Understanding regularization W_1

ℓ_2 regularization: penalizing large weights

 ℓ_2 regularization, $\psi(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$G(\boldsymbol{w}) = \operatorname{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla G(\boldsymbol{w}) = 2(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{w} - \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

Linear regression with ℓ_2 regularization is also known as **ridge regression**.

With a Bayesian viewpoint, corresponds to a Gaussian prior for w.

Encouraging sparsity: ℓ_0 regularization

Sparsity of w**:** Number of non-zero coefficients in w. Same as $||w||_0$

Advantage:

- Sparse models are a natural inductive bias in many settings. In many applications we have numerous possible features, only some of which may have any relationship with the label.
- Sparse models may also be more **interpretable**. They could narrow down a small number of features which carry a lot of signal.
- Data required to learn sparse model maybe significantly less than to learn dense model.

We'll see more on the third point next.

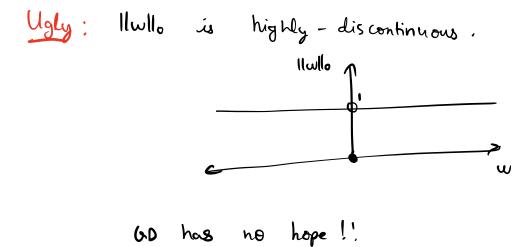
 ℓ_0 regularization: The good, the bad and the ugly Choose $\psi({m w}) = \|{m w}\|_0.$

$$G(\boldsymbol{w}) = \sum_{i=1}^{n} (\boldsymbol{w}^T \boldsymbol{x}_i - y_i)^2 + \lambda \|\boldsymbol{w}\|_0.$$

ℓ_0 regularization: The good, the bad and the ugly

ℓ_0 regularization: The good, the bad and the ugly

ℓ_0 regularization: The good, the bad and the ugly



ℓ_1 regularization as a proxy for ℓ_0 regularization

Choose $\psi(\boldsymbol{w}) = \|\boldsymbol{w}\|_1$.

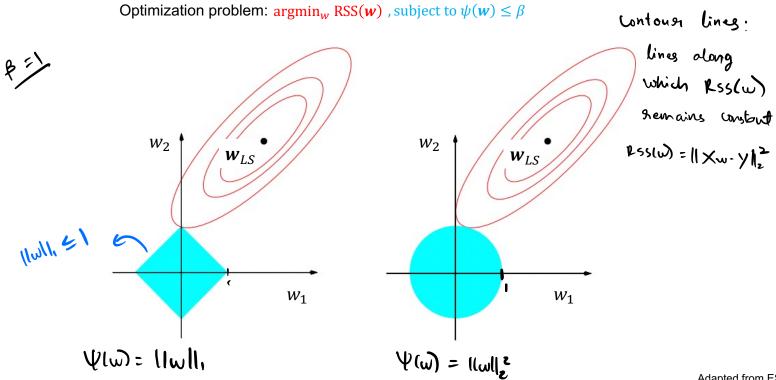
$$G(\boldsymbol{w}) = \sum_{i=1}^{n} (\boldsymbol{w}^T \boldsymbol{x}_i - y_i)^2 + \lambda \|\boldsymbol{w}\|_1.$$

ℓ_1 regularization as a proxy for ℓ_0 regularization

Theorem. Given n vectors $\{x_i \in \mathbb{R}^d, i \in [n]\}\ drawn i.i.d.$ from N(0, I), let $y_i = w^{*T}x_i$ for some w^* with $||w^*||_0 = s$. Then for some fixed constant C > 0, the minimizer of G(w) with $\psi(w) = ||w||_1$ will be w^* as long as $n > C \cdot s \log d$ (with high probability over the randomness in the training datapoints x_i).

[similar result can also be proven under more general conditions].

Why does ℓ_1 regularization encourage sparse solutions?



Adapted from ESL

Low,
$$\mathbf{x}^{\mathsf{T}}\mathbf{x} = \mathbf{I} \implies \mathbf{w}^{\mathsf{T}} = \begin{pmatrix} \mathbf{L} \\ \mathbf{l} + \lambda \end{pmatrix} \mathbf{x}^{\mathsf{T}}\mathbf{Y}$$
 jth now of \mathbf{x}^{T}
 $\mathbf{w}_{\mathfrak{F}}^{\mathsf{T}} = \begin{pmatrix} \mathbf{L} \\ \mathbf{l} + \lambda \end{pmatrix} \mathbf{x}^{\mathsf{T}}\mathbf{Y}$ jth now of \mathbf{x}^{T}
 $\mathbf{v}_{\mathfrak{F}}^{\mathsf{T}} = \begin{pmatrix} \mathbf{L} \\ \mathbf{l} + \lambda \end{pmatrix} \mathbf{x}^{\mathsf{T}}\mathbf{y}$ is a second of \mathbf{x}^{T} is a second of \mathbf{x}^{T} is a second of \mathbf{z}^{T} is a second of $\mathbf{z}^{\mathsf{$

What is gradient of
$$|w|?$$

 $\frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \frac{\partial |w|}{\partial w} = \frac{\partial |w|}{\partial w} = \begin{cases} 1 & w & 70 \\ \frac{\partial |w|}{\partial w} = \frac{\partial |w$

At w=0, we have a subgradient, ignore for now. For with postinate of w $\frac{\partial G(w)}{\partial w_{j}} = 2 \sum_{i=1}^{2} (x_{i}^{T}w - y_{i}) \sum_{i=j}^{2} + A sign(w_{j})$ $\frac{\partial w_{j}}{\partial w_{j}} = 2 \sum_{i=1}^{2} (x_{i}^{T}w - y_{i}) \sum_{i=j}^{2} + A sign(w_{j})$

$$\frac{\partial (u)}{\partial w_{j}} = 2 \underbrace{\underbrace{\varepsilon}}_{i=1}^{\infty} \left(\underbrace{\operatorname{ti}}_{i,j} \underbrace{\operatorname{ti}}_{i} w \right) - 2 \underbrace{\underbrace{\varepsilon}}_{i=1}^{\infty} \operatorname{\operatorname{ti}}_{i,j} \underbrace{\operatorname{ti}}_{i=1}^{\infty} \underbrace{\operatorname{ti}}_{i,j} \underbrace{\operatorname{ti}}_{i=1}^{\infty} \underbrace{w}_{j} - 2 \underbrace{\operatorname{ti}}_{i,j} \underbrace{w}_{j} + d \operatorname{sign} \left(w_{j} \right)$$

$$= 2 \underbrace{\underbrace{\varepsilon}}_{i=1}^{\infty} \underbrace{\operatorname{ti}}_{i,j} \underbrace{w}_{j} - 2 \underbrace{\operatorname{ti}}_{i=1}^{\infty} \underbrace{w}_{j} + d \operatorname{sign} \left(w_{j} \right)$$

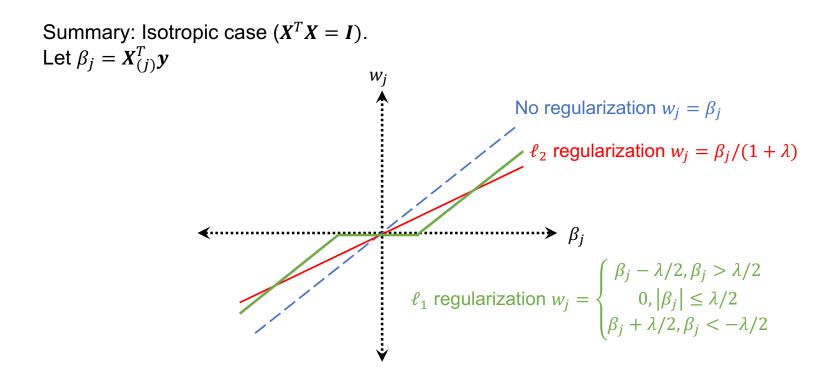
$$= 2 \underbrace{w_{j}}_{j} - 2 \underbrace{\operatorname{ti}}_{i=1}^{\infty} \underbrace{w}_{j} + d \operatorname{sign} \left(w_{j} \right)$$

$$(50 \text{ steps} : w_{j} \leftarrow w_{j} - \mathcal{N} \left(2 \left(w_{j} - 4 \operatorname{ti}_{i} \Big(y \right) \right) + d \operatorname{sign} \left(w_{j} \right) \right)$$

Let $\beta_j = \boldsymbol{X}_{(i)}^T \boldsymbol{y}$

Using subgradients, we can show that for the ℓ_1 regularized case:

$$w_{j} = \begin{cases} \beta_{j} - \lambda/2, \beta_{j} > \lambda/2 \\ 0, |\beta_{j}| \le \lambda/2 \\ \beta_{j} + \lambda/2, \beta_{j} < -\lambda/2 \end{cases}$$



Implicit regularization

So far, we explicitly added a $\psi(w)$ term to our objective function to regularize.

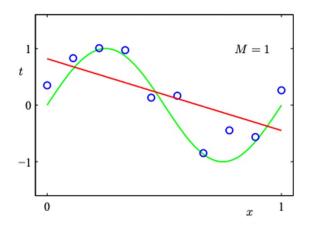
In many cases, the optimization algorithm we use can themselves act as regularizers, favoring some solutions over others.

Currently a very active area of research, you'll see more in the homework.

Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the *bias-variance tradeoff* in the literature.

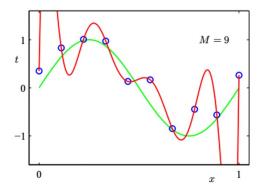
A model whose complexity is too *small* for the task will *underfit*. This is a model with a large bias because the model's accuracy will not improve even if we add a lot of training data.

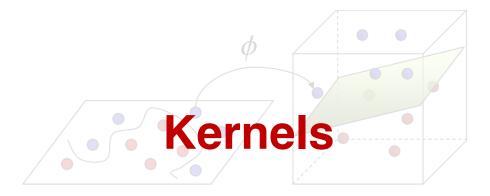


Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the *bias-variance tradeoff* in the literature.

A model whose complexity is too *large* for the amount of available training data will *overfit*. This is a model with high variance, because the model's predictions will vary a lot with the randomness in the training data (it can even fit any noise in the training data).





Input Space

Feature Space

Motivation

Recall the nonlinear function map for linear regression:

1. Use a nonlinear mapping

 $oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{d} ooldsymbol{z}\in\mathbb{R}^{M}$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Kernel methods give a way to choose and efficiently work with the nonlinear map $\phi : \mathbb{R}^d \to \mathbb{R}^M$ (for linear regression, and much more broadly).

Regularized least squares

Т

Let's continue with regularized least squares with non-linear basis:

$$\begin{split} \boldsymbol{w}^{*} &= \operatorname*{argmin}_{\boldsymbol{w}} F(\boldsymbol{w}) \\ &= \operatorname*{argmin}_{\boldsymbol{w}} \left(\|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2} \right) \\ &= \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \end{split} \quad \boldsymbol{\Phi}^{\mathrm{T}} \left(\begin{array}{c} \boldsymbol{\phi}(\boldsymbol{x}_{1})^{\mathrm{T}} \\ \boldsymbol{\phi}(\boldsymbol{x}_{2})^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\phi}(\boldsymbol{x}_{n})^{\mathrm{T}} \end{array} \right), \quad \boldsymbol{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ \boldsymbol{\phi}(\boldsymbol{x}_{n})^{\mathrm{T}} \end{pmatrix} \\ \boldsymbol{\theta}^{\mathrm{T}} \left(\begin{array}{c} \boldsymbol{\phi}(\boldsymbol{x}_{1})^{\mathrm{T}} \\ \boldsymbol{\phi}(\boldsymbol{x}_{2})^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\phi}(\boldsymbol{x}_{n})^{\mathrm{T}} \end{array} \right), \quad \boldsymbol{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}$$

This operates in space \mathbb{R}^M and M could be huge (and even infinite).

Regularized least squares solution: Another look

By setting the gradient of $F(\boldsymbol{w}) = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$ to be 0: $\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{w}^{*} - \boldsymbol{y}) + \lambda \boldsymbol{w}^{*} = \mathbf{0}$ we know $\boldsymbol{w}^{*} = \frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{w}^{*}) = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\alpha} = \sum_{i=1}^{n} \alpha_{i}\phi(\boldsymbol{x}_{i})$

Thus the least square solution is a linear combination of features of the datapoints! This calculation does not show what α should be, but ignore that for now.

Why is this helpful?

Assuming we know α , the prediction of w^* on a new example x is

$$\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_{i}\boldsymbol{\phi}(\boldsymbol{x}_{i})^{T}\boldsymbol{\phi}(\boldsymbol{x}) \leftarrow \boldsymbol{\xi}\left(\boldsymbol{x}, \boldsymbol{\phi}(\boldsymbol{x}_{i})\right)^{T}\boldsymbol{\phi}(\boldsymbol{x})$$

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products *without explicitly computing* ϕ .

But we need to figure out what α is first!

Solving for α , Step 1: Kernel matrix

Plugging in
$$\boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$
 into $F(\boldsymbol{w})$ gives

$$H(\boldsymbol{\alpha}) = F(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha})$$

$$= \|\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}\|_{2}^{2}$$

$$= \|\boldsymbol{K} \boldsymbol{\alpha} - \boldsymbol{y}\|_{2}^{2} + \lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\alpha} \quad (\boldsymbol{K} = \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \in \mathbb{R}^{n \times n})$$

K is called Gram matrix or kernel matrix where the (i, j)-th entry is

$$\boldsymbol{K}_{(i,j)} = \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_j)$$

Kernel matrix: Example

$$\phi(x_1) = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \quad \phi(x_2) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \phi(x_3) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Gram/Kernel matrix

$$\boldsymbol{K} = \begin{pmatrix} \phi(x_1)^{\mathrm{T}} \phi(x_1) & \phi(x_1)^{\mathrm{T}} \phi(x_2) & \phi(x_1)^{\mathrm{T}} \phi(x_3) \\ \phi(x_2)^{\mathrm{T}} \phi(x_1) & \phi(x_2)^{\mathrm{T}} \phi(x_2) & \phi(x_2)^{\mathrm{T}} \phi(x_3) \\ \phi(x_3)^{\mathrm{T}} \phi(x_1) & \phi(x_3)^{\mathrm{T}} \phi(x_2) & \phi(x_3)^{\mathrm{T}} \phi(x_3) \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 4 \end{pmatrix}$$

Kernel matrix vs Covariance matrix

		dimensions	entry (i,j)	property
	$\mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}$	n + n	$\phi(\pi)^{T}\phi(\pi_{s})$	both are symmetric
	$\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}$	M + M	$\sum_{k=1}^{\infty} \phi(x_k); \phi(x_k);$	le positive semi-definite (psd)
			ith co-ordinate of footure	
why	are they	psd?		
	Any	motrix	A= UUT is ps.d.	
	($\pi^{T}A\pi =$	$x^T u u^T x = \ U^T x$	$\ _{\iota}^{2} \rightarrow 0$

 \mathbf{V}

Solving for α , Step 2: Minimize the dual

Minimize (the so-called *dual formulation*)

$$H(\boldsymbol{\alpha}) = \|\boldsymbol{K}\boldsymbol{\alpha} - \boldsymbol{y}\|_2^2 + \lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\alpha}$$

Setting the derivative to **0** we have

$$\mathbf{0} = (\mathbf{K}^2 + \lambda \mathbf{K})\boldsymbol{\alpha} - \mathbf{K}\mathbf{y} = \mathbf{K}\left((\mathbf{K} + \lambda \mathbf{I})\boldsymbol{\alpha} - \mathbf{y}\right)$$

Thus $\boldsymbol{\alpha} = (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$ is a minimizer and we obtain

$$\boldsymbol{w}^* = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} = \boldsymbol{\Phi}^{\mathrm{T}} (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

Exercise: are there other minimizers? and are there other w^* 's?

Comparing two solutions Minimizing F(w) gives $w^* = \Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ Minimizing $H(\alpha)$ gives $w^* = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y$, Kernel Note I has different dimensions in these two formulas.

Natural question: are the two solutions the same or different?

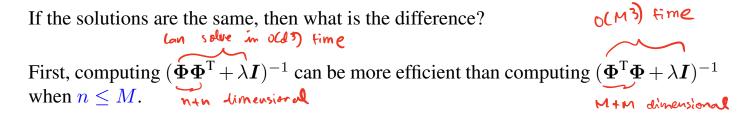
They have to be the same because F(w) has a unique minimizer!

And they are:

$$(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

= $(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \lambda \boldsymbol{I})(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$
= $(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \lambda \boldsymbol{\Phi}^{\mathrm{T}})(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$
= $(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$
= $\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$

The kernel trick



More importantly, computing $\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$ also only requires computing inner products in the new feature space!

Now we can conclude that the exact form of $\phi(\cdot)$ is not essential; all we need to do is know the inner products $\phi(\mathbf{x})^T \phi(\mathbf{x}')$.

For some ϕ it is indeed possible to compute $\phi(x)^T \phi(x')$ without computing/knowing ϕ . This is the *kernel trick*.

Consider the following polynomial basis $\phi : \mathbb{R}^2 \to \mathbb{R}^3$:

$$\mathcal{P}(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

What is the inner product between $\phi(x)$ and $\phi(x')$?

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2$$
$$= (x_1 x_1' + x_2 x_2')^2 = (\boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}')^2$$

Therefore, the inner product in the new space is simply a function of the inner product in the original space.

 $\phi: \mathbb{R}^d \to \mathbb{R}^{2d}$ is parameterized by θ :

$$\boldsymbol{\chi} = \begin{pmatrix} \boldsymbol{\chi}_{i} \\ \boldsymbol{\chi}_{i} \\ \vdots \\ \boldsymbol{\chi}_{d} \end{pmatrix} \qquad \boldsymbol{\phi}_{\theta}(\boldsymbol{x}) = \begin{pmatrix} \cos(\theta x_{1}) \\ \sin(\theta x_{1}) \\ \vdots \\ \cos(\theta x_{m}) \\ \sin(\theta x_{m}) \end{pmatrix}$$

What is the inner product between $\phi_{\theta}(x)$ and $\phi_{\theta}(x')$?

$$\phi_{\theta}(\boldsymbol{x})^{\mathrm{T}}\phi_{\theta}(\boldsymbol{x}') = \sum_{m=1}^{d} \cos(\theta x_{m}) \cos(\theta x'_{m}) + \sin(\theta x_{m}) \sin(\theta x'_{m})$$
$$= \sum_{m=1}^{d} \cos(\theta (x_{m} - x'_{m})) \qquad (\text{trigonometric identity})$$

Once again, the inner product in the new space is a simple function of the features in the original space.

Based on ϕ_{θ} , define $\phi_L : \mathbb{R}^d \to \mathbb{R}^{2d(L+1)}$ for some integer L:

What is the inner product between $\phi_L(x)$ and $\phi_L(x')$?

$$egin{aligned} oldsymbol{\phi}_L(oldsymbol{x})^{\mathrm{T}}oldsymbol{\phi}_L(oldsymbol{x})^{\mathrm{T}}oldsymbol{\phi}_{rac{2\pi\ell}{L}}(oldsymbol{x})^{\mathrm{T}}oldsymbol{\phi}_{rac{2\pi\ell}{L}}(oldsymbol{x}') \ &=\sum_{\ell=0}^L\sum_{m=1}^d\cos\left(rac{2\pi\ell}{L}(x_m-x_m')
ight) \end{aligned}$$

When $L \to \infty$, even if we cannot compute $\phi(x)$ (since it's a vector of *infinite dimension*), we can still compute inner product:

$$\phi_{\infty}(\boldsymbol{x})^{\mathrm{T}}\phi_{\infty}(\boldsymbol{x}') = \int_{0}^{2\pi} \sum_{m=1}^{d} \cos(\theta(x_m - x'_m)) d\theta$$

$$= \sum_{m=1}^{d} \frac{\sin(2\pi(x_m - x'_m))}{x_m - x'_m}$$

Again, a simple function of the original features.

Note that when using this mapping in linear regression, we are *learning a weight* w^* *with infinite dimension!*

Kernel functions

Definition: a function $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called a *kernel function* if there exists a function $\phi : \mathbb{R}^d \to \mathbb{R}^M$ so that for any $x, x' \in \mathbb{R}^d$,

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}')$$

Examples we have seen

$$k(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}')^{2}$$
$$k(\boldsymbol{x}, \boldsymbol{x}') = \sum_{m=1}^{d} \frac{\sin(2\pi(x_{m} - x'_{m}))}{x_{m} - x'_{m}}$$

Using kernel functions

Choosing a nonlinear basis ϕ becomes equivalent to choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply the kernel trick.

Gram/kernel matrix becomes:

$$K = \Phi \Phi^{\mathrm{T}} = \begin{pmatrix} k(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}) & k(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) & \cdots & k(\boldsymbol{x}_{1}, \boldsymbol{x}_{n}) \\ k(\boldsymbol{x}_{2}, \boldsymbol{x}_{1}) & k(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}) & \cdots & k(\boldsymbol{x}_{2}, \boldsymbol{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ k(\boldsymbol{x}_{n}, \boldsymbol{x}_{1}) & k(\boldsymbol{x}_{n}, \boldsymbol{x}_{2}) & \cdots & k(\boldsymbol{x}_{n}, \boldsymbol{x}_{n}) \end{pmatrix}$$

In fact, k is a kernel if and only if K is positive semidefinite for any n and any x_1 , x_2, \ldots, x_n (Mercer theorem).

• useful for proving that a function is not a kernel

Examples which are not kernels

Function

$$k(x, x') = \|x - x'\|_2^2$$

is *not a kernel*, why?

If it is a kernel, the kernel matrix for two data points x_1 and x_2 : this entry is $||x-x||_v^2 = 0$ $K = \begin{pmatrix} 0 & ||x_1-x_2||_2^2 \\ ||x_1-x_2||_2^2 & 0 \end{pmatrix}$

must be positive semidefinite, but is it?

$$\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \text{ is not psd. Why?}$$
$$\begin{pmatrix} (1 - i) \begin{pmatrix} 0 \\ i \end{pmatrix} \begin{pmatrix} -i \\ -i \end{pmatrix} = \begin{pmatrix} -1 & i \\ -i \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = -2$$

Properties of kernels

For any function $f : \mathbb{R}^d \to \mathbb{R}$, $k(\boldsymbol{x}, \boldsymbol{x}') = f(\boldsymbol{x})f(\boldsymbol{x}')$ is a kernel. $\boldsymbol{\psi} : \mathbb{R}^d \to \mathbb{R}$, $\boldsymbol{\psi}(\boldsymbol{x}) : \boldsymbol{\xi}(\boldsymbol{x})$. If $h(\boldsymbol{x})$ and $h(\boldsymbol{x})$ are kernels, then the following are also kernels:

If $k_1(\cdot, \cdot)$ and $k_2(\cdot, \cdot)$ are kernels, then the following are also kernels:

- conical combination: $\alpha k_1(\cdot, \cdot) + \beta k_2(\cdot, \cdot)$ if $\alpha, \beta \ge 0$ \rightarrow We
- product: $k_1(\cdot,\cdot)k_2(\cdot,\cdot)$ \rightarrow KW2
- exponential: $e^{k(\cdot,\cdot)}$

• • • •

Verify using the definition of kernel!

Popular kernels

Polynomial kernel

$$k(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}' + c)^{M}$$

integer. polynomial in original i.p.

for $c \ge 0$ and M is a positive integer

What is the corresponding ϕ ?

$$c=0, M=2, we saw earlier $\psi(\tau): \begin{pmatrix} \chi_1^2 \\ J2 \\ \chi_2^2 \end{pmatrix}$
The case of larger M can be obtained by applying this repeatedly.$$

Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

$$k(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|_2^2}{2\sigma^2}\right) \quad \text{for some } \sigma > 0.$$

What is the corresponding
$$\phi$$
?

$$k(x, x') = exp\left(-\frac{||x||_{e^{2}}}{2\sigma^{2}}\right) exp\left(-\frac{||+'||_{e^{2}}}{2\sigma^{2}}\right) exp\left(\frac{x^{T}x'}{\sigma^{2}}\right)$$

$$k(x, x') = f(x) f(x')$$
where $f(x) = exp\left(-\frac{||x||_{e^{2}}}{2\sigma^{2}}\right)$

$$transformation for the product.$$

Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

$$k(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|_2^2}{2\sigma^2}\right)$$
 for some $\sigma > 0$.

What is the corresponding
$$\phi$$
?
 $e^{\chi} = \frac{1+\chi+\chi^2}{2!} + \frac{\chi^3}{3!} + \dots$
 $e^{\chi} \left(\frac{\chi^{\intercal}\chi'}{\sigma^2}\right)^2 = \frac{1+\chi^{\intercal}\chi'}{\sigma^2} + \frac{1}{2!} \left(\frac{\chi^{\intercal}\chi'}{\sigma^2}\right)^2 + \frac{1}{3!} \left(\frac{\chi^{\intercal}\chi'}{\sigma^2}\right)^3 + \dots$
 e^{χ} each of these is a prignomial komel
 oo dimensional feature space!

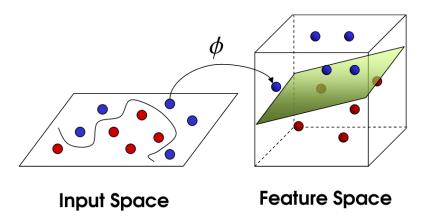
Prediction with kernels

As long as $w^* = \sum_{i=1}^n \alpha_i \phi(x_i)$, prediction on a new example x becomes

$$\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i k(\boldsymbol{x}_i, \boldsymbol{x}).$$

This is known as a **non-parametric method**. Informally speaking, this means that there is no fixed set of parameters that the model is trying to learn (remember w^* could be infinite). Nearest-neighbors is another non-parametric method we have seen.

Classification with kernels



Similar ideas extend to the classification case, and we can predict using sign $(w^T \phi)$. Data may become linearly separable in the feature space!