CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 4, Sep 15

USCUniversity of

Southern California

Administrivia

o HW2 will be released tonight, due in about 2 weeks.
o We will post some practice problems for the quiz by early next
week.

Recap

Ensuring generalization

Theorem. Let F be a function class with size |F|. Lety = f*(x) for some f* €
F. Suppose we get a training set S = {(®1,y1),- .., (Tn,yn)} of size n with each
datapoint drawn i.i.d. from the data distribution D. Let

ERM —argmln— g o f
fer N

For any constants €,0 € (0, 1), zfn > m('ﬂ/é) , then with probability (1 — §) over
{($layl)7"'7(mnayn)}: R(E)

A useful rule of thumb: to guarantee generalization, make sure that
your training data set size n is at least linear in the number d of free
parameters in the function that you're trying to learn.

Beyond linear models: nonlinearly transformed features

1. Use a nonlinear mapping
d(x):xeR = zeRM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

Y
o O 0.6
0.5 Q° gOO od%OOOO o]
§ &o O(x) 04 ©
of %P C§8 » ggb% % _
o A 0.2 o B 0
)
05 3 v%(%O%;@;oo
0. 0 &
0.5
06

-1 0 . ’
-1 -05 0 05 1 ot

Polynomial basis functions

Polynomial basis functions for d =1

1
z M
p@)=| T | = f@)=w+ Y wne™
: m=1
M

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space

Underfitting and overfitting

M < 2 is underfitting the data
@ large training error

o large test error

M > 9 is overfitting the data
@ small training error

o large test error

—©— Training
—6— Test

More complicated models = larger gap between training and test error

How to prevent overfitting?

See Colab notebook

Preventing overfitting: Regularization

Regularized linear regression: new objective
G(w) = RSS(w) + \p(w)
Goal: find w* = argmin,, G(w)

o 1 : R* - RT is the regularizer

e measure how complex the model w is, penalize complex models

e common choices: ||wl|3, ||w]1, etc.

@)\ > 0 is the regularization coefficient

e A =0, no regularization
o A = 400, w — argmin,, 1 (w)

e i.e. control trade-off between training error and complexity

Understanding
regularization

¥, regularization: penalizing large weights
{5 regularization, 1) (w) = ||w||3:
G(w) = RSS(w) + Aw|3 = || Xw — y[|3 + Aw|3

VG(w) =2(X"Xw - X'y) + 2w =0
= (X'X+A)w=X"y
= w' = (X"X + M) Xy

Linear regression with /5 regularization is also known as ridge regression.

With a Bayesian viewpoint, corresponds to a Gaussian prior for w.

Encouraging sparsity: ¢, regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w||

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications
we have numerous possible features, only some of which may have any
relationship with the label.

o Sparse models may also be more interpretable. They could narrow down a small
number of features which carry a lot of signal.

o Data required to learn sparse model maybe significantly less than to learn dense
model.

WEe'll see more on the third point next.

£, regularization: The good, the bad and the ugly
Choose 1 (w) = ||w||o-

G(w) = Z(wTa;i —ui)” + Mwlo.

1=1
book © Difoumabion: theorckially’ gpeot | (e fus dbs Bl

Sugpes€. wdight A A - -
wpp g S A W e s {\I\/, W-H’ ,,.O) ,Wj'

How oy Sudh S- SPehS @ veddns ane Hhog Lrtnsiony €

Ans wen (d\ 4 (z,w)S P bsli Fy
S

£, regularization: The good, the bad and the ugly

Mow wudy dota to fou ? (@& @y)
Aboud lOZG.F“ Sampl ez L loosn . (\Asl'wg e Theoremn ;w\ (sl ﬁq'me)

,> [Oa ((3)(}@5): \02 ((%3 L \52 ((ZQS) V‘:‘i Wai%:;(h& *\7"“‘9‘}‘“9
= (9leg @ ¢ (g (2w)

Hew nony tmo_ pramedens S every bt is ke o poramden
N A veed o (ﬂmh
S (hese ¢ w-odinodes ¢ nead loa& POy (B andiredy

D slegl m btal,

—

> doose Hy velve (,eﬁ nam- 3 58 oy oselivods Ft ¢ wluae = S(Og\'\) in totad,

£, regularization: The good, the bad and the ugly

RRTYN g P , witheul S- wa\%i'(’;‘ raad. abksul &o(
Somplss 1 d- dimepsion, |

Ch s e d, ved nud s g g g, 1

B__Qé" “W uo

ey nen- (enyex 2 ”w“p) PL\ A

Non- ewnyey .

. - . - ’h
n\W\AW\t},‘y\% (h[ww = % (wtl;'anz 4 /lello

s NP kand (.

£, regularization: The good, the bad and the ugly

UQEQ ' "wllo a3 hﬁa l«Q; - dig Cenbnueuy .
Wwllo]z
/I, W

6D heg we lwfc"

£, regularization as a proxy for £, regularization

Choose ¥(w) = ||w||1.

G(w) = Z(’waL’i — i) + Mwl|:.

"wl\| 1S eunyes('-) b wse (AD/SM) Lo pelg |

Mimw\;},;r\g ol often culhices to mininuz e (lwlly |

£, regularization as a proxy for £, regularization

Theorem. Given n vectors {x; € R% i € [n|} drawn i.i.d. from N(0,I), let y; =

w*l'x; for some w* with |w*||o = s. Then for some fixed constant C > 0, the

minimizer of G(w) with ¢(w) = ||wl|; will be w* as long as n > C - slogd (with
high probability over the randomness in the training datapoints x;).

[similar result can also be proven under more general conditions].

(e dials of s Thesram one
not ngerlout, just feas en the to»hmm%

Why does ¢, regularization encourage sparse solutions?

Optimization problem: argmin,, RSS(w) , subject to (w) < f Lont ouse b'm.g

i lines o{mg
REVASE I X
hemmans bt

P
W\
Ve

B5SL) = || X, - yi>

Wi = Uwll, V) = a2

Adapted from ESL

Diving deeper: #; and ¥, regularization for the “isotropic” case

|solnepic ‘m{,-v\vwwu? ™eang
\5@%&?((CLSS\UV\PHG"\ . \LT‘(\ :-_T_ @ Al 6{20&%-&5 hove vreon 0

- OLU ve VOLM.C»we
ORI R s O o b !

) @ JGQDIUL)\@ one unwehelated
u@:% (4 w-) +Alwl

WX = (4\‘* .\./\’D'(*T\I

N@\D, “LT* =1 =D UJ ~/\ \
4-,\ }“f\ how of L

(%)

g vodivgle of WS w’\ﬂwiohch of 4th foctwn wHs Jobol

Diving deeper: #; and ¥, regularization for the “isotropic” case
l. %eaulmk}o.i%w Y thinks " the b ofod Peram for g .

Nofe © avhew «éauku%d hove vreguall velione , (, Peg lora gobiom
apphia i daty shoa v\b,aa e te o-% tn Y

a,tal}ch (.Qaﬂw\@ ton be impertant .

@ Wl = wll,
(lw): % (' w- 5}“2 + Affwll,

Ld' 2vamne e 37\5«1'\‘%!/\1-

Diving deeper: #; and ¥, regularization for the “isotropic” case

Whal 43 ?a«‘izmt é);(r |uu|7'
d lwl | W7o
- w <£90

At wsd we hawve a M%M&M, Jghm & new.

i\

™m
Ko u P)
D(I\(W\ . 2 E%‘(‘L- w ‘J(\ l‘lg + A S'ﬁ“(w-‘}j
QW% _,ﬁ/w)
ghn- o oxdirale 6-& L«

Diving deeper: #; and ¥, regularization for the “isotropic” case

Y Llw)

=Li('&lnw) Li‘l., +) .
duy L 9 e A an(wﬂ}

-
Tis {otlows

A X

- 2,“% - L 1\(2)‘1 oA sy [w'ﬁ

L <
H - 7 ‘L(()\/ + A siyn (waﬂ

Y & vy - "\()—Cw; - -Lc(\‘\[\) -\'/\5:3n(w7‘,\)

Diving deeper: £; and ¢, regularization for the “isotropic™ case
Ldi wndostard b grodicut -
Finst, whhed (., hefa\«ncdxi}o}\.ﬂ’wj
Wo & wy 2N wy- e ¥
Wik (, heguladzokion ; (np olwsg Yos o skipt of - N\ Asignluy)

whi Jn pushes doupends 9.

Diving deeper: #; and ¥, regularization for the “isotropic” case

Let B; = X(1yy
Using subgradients, we can show that for the £, regularized case:

(B —2A/2,B; > A/2
w, =< 0,|B| =1/2
B+ /2,8 < —2/2

Diving deeper: £, and #, regularization for the “isotropic” case

Summary: Isotropic case (XX = I).

No regularization w; = g;

¢, regularization w; = ; /(1 + 1)

Bj —A/2,B; > /2
i ¢, regularization w; = 0,8 < 2/2
yad ; Bi+1/2,8; < —1/2

Implicit regularization

So far, we explicitly added a ¥ (w) term to our objective function to regularize.

In many cases, the optimization algorithm we use can themselves act as
regularizers, favoring some solutions over others.

Currently a very active area of research, you’ll see more in the homework.

Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-
variance fradeoff in the literature.

A model whose complexity is too small for the task will underfit. This is a model
with a large bias because the model’s accuracy will not improve even if we add
a lot of training data.

sin(x) fitting example we saw in Lec 3

Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-
variance fradeoff in the literature.

A model whose complexity is too /arge for the amount of available training data
will overfit. This is a model with high variance, because the model’s predictions
will vary a lot with the randomness in the training data (it can even fit any noise
in the training data).

sin(x) fitting example we saw in Lec 3

Kernels

Motivation

Recall the nonlinear function map for linear regression:

1. Use a nonlinear mapping
d(x):xeR > zeRM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

Kernel methods give a way to choose and efficiently work with the nonlinear map
¢ : R4 — RM (for linear regression, and much more broadly).

Regularized least squares

Let’s continue with regularized least squares with non-linear basis:

w* = argmin F(w) i ¢(x)T
“ i o)t
:argm1n(||<1>w—y|\g+)\||w||§) ! — (_2) . Y=
w » et : eR”
= (®"® + AI) ' ®"y i d(xn)"

This operates in space RM and M could be huge (and even infinite).

Regularized least squares solution: Another look

By setting the gradient of F(w) = ||[®w — yl|3 + A||w]|3 to be O:
secdy b? A /:_L/,

®'(dw* —y) + \w* =0 —T
«[= 7
we know _/H A % b <
1

———

Thus the least square solution is a linear combination of features of the datapoints!

This calculation does not show what a should be, but ignore that for now.

Why is this helpful?
Assuming we know «, the prediction of w™* on a new example « is

w (o) = Y aidlw) o) e £))

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly comput-
ing Q.

But we need to figure out what « is first!

Solving for a, Step 1: Kernel matrix

Plugging in w = ® ' o into F(w) gives
H(a) = F(®'a)
= ||®® o — y5 + A|®" a3
= || Ka — yHg + o' Ka (K = dPp! ¢ R™>™)

= @‘DT@Q TR TAY
4

K is called Gram matrix or kernel matrix where the (7, j)-th entry is

K= ¢($i)T¢(wj)

Kernel matrix: Example

Kernel matrix vs Covariance matrix

dimensions entry (3,7) property
SHT MmN JeN 0 14) beth wre g dhic
e | mav |2 §(x). 60, . .
= \3‘ b bﬂ L posibive Sems firch CP“)
W w-adiveds 4
\ootun ¢

Why ane they ped ?

Av‘\a

ol

(‘L“'Avc. z

A: wu' ps&.
2Tuwta - (TR l(f' > 0)

Solving for a, Step 2: Minimize the dual
Minimize (the so-called dual formulation)
H(a)=|Ka—yl3 + ' Ka
Setting the derivative to O we have

0= (K>+)\K)a—- Ky= K (K +\)a —y)

Thus o = (K + M)~ !y is a minimizer and we obtain

w*=®'a=®"(K+)ty

Exercise: are there other minimizers? and are there other w*’s?

Comparing two solutions

(8Vevuon &

Note I has different dimensions in these two formulas.

Natural question: are the two solutions the same or different?
They have to be the same because F'(w) has a unique minimizer!
And they are:

(®'® + \I)" '@y

(®T® 4+ M) '@T(®®" + A (®D" + \I) 'y
(@@ 4+ M) (@' PP + \D) (@D +AI)ly
= (®"® +)" H @@+ AP (PP + M)y
T (D" + M)y

The kernel trick

If the solutions are the same, then what is the difference? o(“’) tme
lon solUe 4 0d%) time
" /TM
First, computing (<I><I> + AI)~! can be more efficient than computing (<I> ® -+ \I)~!
when n < M. Y\-UA -‘(MV\LV\S\HA MM dinmemsienal

More importantly, computing o = (K + M\)™ty also only requires computing inner
products in the new feature space!

Now we can conclude that the exact form of ¢(-) is not essential; all we need to do is
know the inner products ¢(x)’ p(x’).

For some ¢ it is indeed possible to compute ¢(x)T¢(x’) without computing/knowing
¢. This is the kernel trick.

The kernel trick: Example 1

Consider the following polynomial basis ¢ : R? — R3:

2

L1

W= ("-~ () = | V2z129
e $2
2

What is the inner product between ¢(x) and ¢(x')?
()" p(x') = 125, + 2wy 207 2y + x5,

— CIZ1$U,—|—CC2£I?’ 2: T/2
(1 2

Therefore, the inner product in the new space is simply a function of the inner product
in the original space.

The kernel trick: Example 2

¢ : R? — R?4 is parameterized by 6:

cos(0x1)
1. sin(0x1)

X= 1;L Py(x) = :
de cos(0x,y,)
sin(0x,,)

What is the inner product between ¢, (x) and ¢y (x')?

¢o(x) Py (x Z cos(0z,,) cos(0x!,) + sin(fz,,) sin(6z),)
m=1
= Z cos(0(zm — 7)) (trigonometric identity)

Once again, the inner product in the new space is a simple function of the features in
the original space.

The kernel trick: Example 3

Based on ¢y, define ¢p; : R? — R24(L+1) for some integer L:

bo()

¢ 2z () O venis pum
dr(@) = %(m))

¢L2T’T(w)

What is the inner product between ¢; (x) and ¢, (x')?

Gr(x) P (@) =) Poe () Pane ()

The kernel trick: Example 4

When L — oo, even if we cannot compute ¢(x) (since it’s a vector of infinite dimen-

sion), we can still compute inner product: ~ ’
. U’vhﬁe 9}'4"% 0‘6 snmobiom & M\Qéfwkl

o d

Again, a simple function of the original features.

Note that when using this mapping in linear regression, we are learning a weight w*
with infinite dimension!

Kernel functions

Definition: a function k& : R? x R? — R is called a kernel function if there exists a
function ¢ : R? — RM so that for any «, 2’ € R,

k(z, z') = ¢(x) ¢(a)

Examples we have seen

Using kernel functions
Choosing a nonlinear basis ¢ becomes equivalent to choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply the kernel

trick.
o)) (@(ﬂ%(ﬁ)
e

Gram/kernel matrix becomes:

k(xi,21) k(z1,22) -+ k(x1,xn)
[k(zg,w1) k(x2,®2) -+ kw2, @)
k(wrmwl) k(mn7m2) U k(mn7mn)

In fact, k£ is a kernel if and only if K is positive semidefinite for any n and any x,
To,...,x, (Mercer theorem).

e useful for proving that a function is not a kernel

Examples which are not kernels

Function
k(z, o) =z — 2|3

1s not a kernel, why?

If it 1s a kernel, the kernel matrix for two data points 1 and Z5: s ol 0 B -y 2 -0
-

0 |21 — x2|)3
K —
< |21 — 223 0

must be positive semidefinite, but is it?

\ 0

COLEO ()

Properties of kernels

. 2
For any function f : RY — R, k(z, @) = f(z)f(a') is akemel. —5 W & &°
bR, ¢ G0: ()

If k1(-,-) and ko (-, -) are kernels, then the following are also kernels:
e conical combination: ok (-,) + Bka(-,") ifa,3 >0 = Wwwd 2 ¢ 7

e product: k1(-,)ka(,) =5 wwa b mep o K
&2 Vrop tg)\ W,
e exponential: ¢*(~) |
4 1 wep gay a0
® .- \—Bk,_(_],)
Etodse Ll ¢
Verify using the definition of kernel!

Popular kernels

Polynomial kernel
k(z,z') = ("2’ +)

for ¢ > 0 and M is a positive integer. m oL vy ol »
What is the corresponding ¢?

2

=9, Vltl) we Sauw el on ‘{)(’(\ (J‘z'zzz

1,?

by Py b

The cse of; 0"“"3“‘ M ot b oftadmed

‘)-w.,‘)oaluﬂla, .

Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

Nl — 2|3

k(x,z') = exp < 52
o

) for some o > 0.

What is the corresponding ¢?

L(]-,‘LB = .Q_&Q (- “1“;}) ,L(-P (- l(*!-'((]'z 2P -I'Tx‘
— Ter) N Ge
bCa) = (g(vb ‘,(z')
wh e ‘_,(1): L-(..P(- |(1((:

“_ 2¢q /

4‘V=V\S&.®1VMKM o fhe psodwt

{TMewHug

Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

|2
k(x,z') = exp (—M) for some o > 0.
20
What is the corresponding ¢? e"L . 3
‘27

Q49 \ 1T 3_ Qxﬂw
s \L 3’ z, o

Ladn "% H\%@ ye & ()r%nwui k(ﬂ»mq

oo dimersienel oduwre speug !

Prediction with kernels

Aslongasw* = >"" | a;¢(x;), prediction on a new example x becomes

w p(x) = Z aip(xi) d(x) = Z aik(x;,).

This is known as a non-parametric method. Informally speaking, this means that
there is no fixed set of parameters that the model is trying to learn (remember w™
could be infinite). Nearest-neighbors is another non-parametric method we have seen.

Classification with kernels

Input Space Feature Space

Similar ideas extend to the classification case, and we can predict using sign(w? ¢).
Data may become linearly separable in the feature space!

