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Administrivia

o HW2 will be released tonight, due in about 2 weeks.
o We will post some practice problems for the quiz by early next
week.



Recap



Ensuring generalization

Theorem. Let F be a function class with size |F|. Lety = f*(x) for some f* €
F. Suppose we get a training set S = {(®1,y1),- .., (Tn,yn)} of size n with each
datapoint drawn i.i.d. from the data distribution D. Let
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For any constants €,0 € (0, 1), zfn > m('ﬂ/é) , then with probability (1 — §) over
{($layl)7"'7(mnayn)}: R( E )

A useful rule of thumb: to guarantee generalization, make sure that
your training data set size n is at least linear in the number d of free
parameters in the function that you're trying to learn.




Beyond linear models: nonlinearly transformed features

1. Use a nonlinear mapping
d(x):xeR = zeRM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).
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Polynomial basis functions

Polynomial basis functions for d =1

1
z M
p@)=| T | = f@)=w+ Y wne™
: m=1
M

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space



Underfitting and overfitting

M < 2 is underfitting the data
@ large training error

o large test error

M > 9 is overfitting the data
@ small training error

o large test error

—©— Training
—6— Test

More complicated models = larger gap between training and test error

How to prevent overfitting?

See Colab notebook



Preventing overfitting: Regularization

Regularized linear regression: new objective
G(w) = RSS(w) + \p(w)
Goal: find w* = argmin,, G(w)

o 1 : R* - RT is the regularizer

e measure how complex the model w is, penalize complex models

e common choices: ||wl|3, ||w]1, etc.

@ )\ > 0 is the regularization coefficient

e A =0, no regularization
o A = 400, w — argmin,, 1 (w)

e i.e. control trade-off between training error and complexity



Understanding
regularization



¥, regularization: penalizing large weights
{5 regularization, 1) (w) = ||w||3:
G(w) = RSS(w) + Aw|3 = || Xw — y[|3 + Aw|3

VG(w) =2(X"Xw - X'y) + 2w =0
= (X'X+A)w=X"y
= w' = (X"X + M) Xy

Linear regression with /5 regularization is also known as ridge regression.

With a Bayesian viewpoint, corresponds to a Gaussian prior for w.



Encouraging sparsity: ¢, regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w||

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications
we have numerous possible features, only some of which may have any
relationship with the label.

o Sparse models may also be more interpretable. They could narrow down a small
number of features which carry a lot of signal.

o Data required to learn sparse model maybe significantly less than to learn dense
model.

WEe'll see more on the third point next.



£, regularization: The good, the bad and the ugly
Choose 1 (w) = ||w||o-

G(w) = Z(wTa;i —ui)” + Mwlo.
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£, regularization: The good, the bad and the ugly
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£, regularization: The good, the bad and the ugly
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£, regularization: The good, the bad and the ugly
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£, regularization as a proxy for £, regularization

Choose ¥(w) = ||w||1.

G(w) = Z(’waL’i — i) + Mwl|:.
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£, regularization as a proxy for £, regularization

Theorem. Given n vectors {x; € R% i € [n|} drawn i.i.d. from N(0,I), let y; =

w*l'x; for some w* with |w*||o = s. Then for some fixed constant C > 0, the

minimizer of G(w) with ¢(w) = ||wl|; will be w* as long as n > C - slogd (with
high probability over the randomness in the training datapoints x;).

[similar result can also be proven under more general conditions].
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Why does ¢, regularization encourage sparse solutions?

Optimization problem: argmin,, RSS(w) , subject to (w) < f Lont ouse b'm.g
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Diving deeper: #; and ¥, regularization for the “isotropic” case
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Diving deeper: #; and ¥, regularization for the “isotropic” case
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Diving deeper: #; and ¥, regularization for the “isotropic” case
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Diving deeper: #; and ¥, regularization for the “isotropic” case
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Diving deeper: £; and ¢, regularization for the “isotropic™ case
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Diving deeper: #; and ¥, regularization for the “isotropic” case

Let B; = X(1yy
Using subgradients, we can show that for the £, regularized case:

(B —2A/2,B; > A/2
w, =< 0,|B| =1/2
B+ /2,8 < —2/2




Diving deeper: £, and #, regularization for the “isotropic” case

Summary: Isotropic case (XX = I).

No regularization w; = g;

¢, regularization w; = ; /(1 + 1)

Bj —A/2,B; > /2
i ¢, regularization w; = 0,8 < 2/2
yad ; Bi+1/2,8; < —1/2



Implicit regularization

So far, we explicitly added a ¥ (w) term to our objective function to regularize.

In many cases, the optimization algorithm we use can themselves act as
regularizers, favoring some solutions over others.

Currently a very active area of research, you’ll see more in the homework.



Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-
variance fradeoff in the literature.

A model whose complexity is too small for the task will underfit. This is a model
with a large bias because the model’s accuracy will not improve even if we add
a lot of training data.

sin(x) fitting example we saw in Lec 3



Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-
variance fradeoff in the literature.

A model whose complexity is too /arge for the amount of available training data
will overfit. This is a model with high variance, because the model’s predictions
will vary a lot with the randomness in the training data (it can even fit any noise
in the training data).

sin(x) fitting example we saw in Lec 3



Kernels



Motivation

Recall the nonlinear function map for linear regression:

1. Use a nonlinear mapping
d(x):xeR > zeRM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

Kernel methods give a way to choose and efficiently work with the nonlinear map
¢ : R4 — RM (for linear regression, and much more broadly).



Regularized least squares

Let’s continue with regularized least squares with non-linear basis:

w* = argmin F(w) i ¢(x)T
“ i o)t
:argm1n(||<1>w—y|\g+)\||w||§) ! — ( _2) . Y=
w » et : eR”
= (®"® + AI) ' ®"y i d(xn)"

This operates in space RM and M could be huge (and even infinite).



Regularized least squares solution: Another look

By setting the gradient of F(w) = ||[®w — yl|3 + A||w]|3 to be O:
secdy b? A /:_L/,

®'(dw* —y) + \w* =0 —T
«[ = 7
we know \_/H A % b <
1

———

Thus the least square solution is a linear combination of features of the datapoints!

This calculation does not show what a should be, but ignore that for now.



Why is this helpful?
Assuming we know «, the prediction of w™* on a new example « is

w (o) = Y aidlw) o) e £ ) )

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly comput-
ing Q.

But we need to figure out what « is first!



Solving for a, Step 1: Kernel matrix

Plugging in w = ® ' o into F(w) gives
H(a) = F(®'a)
= ||®® o — y5 + A|®" a3
= || Ka — yHg + o' Ka (K = dPp! ¢ R™>™)

= @‘DT@Q TR TAY
4

K is called Gram matrix or kernel matrix where the (7, j)-th entry is

K= ¢($i)T¢(wj)



Kernel matrix: Example



Kernel matrix vs Covariance matrix

dimensions entry (3,7) property
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Solving for a, Step 2: Minimize the dual
Minimize (the so-called dual formulation)
H(a)=|Ka—yl3 + ' Ka
Setting the derivative to O we have

0= (K>+)\K)a—- Ky= K (K +\)a —y)

Thus o = (K + M)~ !y is a minimizer and we obtain

w*=®'a=®"(K+ )ty

Exercise: are there other minimizers? and are there other w*’s?



Comparing two solutions

(8Vevuon &

Note I has different dimensions in these two formulas.

Natural question: are the two solutions the same or different?
They have to be the same because F'(w) has a unique minimizer!
And they are:

(®'® + \I)" '@y

(®T® 4+ M) '@T(®®" + A (®D" + \I) 'y
(@@ 4+ M) (@' PP + \D) (@D +AI)ly
= (®"® + )" H @@+ AP (PP + M)y
T (D" + M)y



The kernel trick

If the solutions are the same, then what is the difference? o(“’) tme
lon  solUe 4 0d%) time
" /TM
First, computing (<I><I> + AI)~! can be more efficient than computing (<I> ® -+ \I)~!
when n < M. Y\-UA -‘(MV\LV\S\HA MM dinmemsienal

More importantly, computing o = (K + M\ )™ty also only requires computing inner
products in the new feature space!

Now we can conclude that the exact form of ¢(-) is not essential; all we need to do is
know the inner products ¢(x)’ p(x’).

For some ¢ it is indeed possible to compute ¢(x)T¢(x’) without computing/knowing
¢. This is the kernel trick.



The kernel trick: Example 1

Consider the following polynomial basis ¢ : R? — R3:

2

L1

W= ("-~ () = | V2z129
e $2
2

What is the inner product between ¢(x) and ¢(x')?
()" p(x') = 125, + 2wy 207 2y + x5,

— CIZ1$U,—|—CC2£I?’ 2: $T$/2
( 1 2

Therefore, the inner product in the new space is simply a function of the inner product
in the original space.



The kernel trick: Example 2

¢ : R? — R?4 is parameterized by 6:

cos(0x1)
1. sin(0x1)

X= 1;L Py(x) = :
de cos(0x,y,)
sin(0x,,)

What is the inner product between ¢, (x) and ¢y (x')?

¢o(x) Py (x Z cos(0z,,) cos(0x!,) + sin(fz,,) sin(6z),)
m=1
= Z cos(0(zm — 7)) (trigonometric identity)

Once again, the inner product in the new space is a simple function of the features in
the original space.



The kernel trick: Example 3

Based on ¢y, define ¢p; : R? — R24(L+1) for some integer L:

bo()

¢ 2z () O venis pum
dr(@) = %(m) )

¢L2T’T(w)

What is the inner product between ¢; (x) and ¢, (x')?

Gr(x) P (@) =) Poe () Pane ()



The kernel trick: Example 4

When L — oo, even if we cannot compute ¢(x) (since it’s a vector of infinite dimen-

sion), we can still compute inner product: ~ ’
. U’vhﬁe 9}'4"% 0‘6 snmobiom & M\Qéfwkl

o d

Again, a simple function of the original features.

Note that when using this mapping in linear regression, we are learning a weight w*
with infinite dimension!



Kernel functions

Definition: a function k& : R? x R? — R is called a kernel function if there exists a
function ¢ : R? — RM so that for any «, 2’ € R,

k(z, z') = ¢(x) ¢(a)

Examples we have seen




Using kernel functions
Choosing a nonlinear basis ¢ becomes equivalent to choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply the kernel

trick.
o) ) (@(ﬂ%(ﬁ)
e

Gram/kernel matrix becomes:

k(xi,21) k(z1,22) -+ k(x1,xn)
[ k(zg,w1) k(x2,®2) -+ kw2, @)
k(wrmwl) k(mn7m2) U k(mn7mn)

In fact, k£ is a kernel if and only if K is positive semidefinite for any n and any x,
To,...,x, (Mercer theorem).

e useful for proving that a function is not a kernel



Examples which are not kernels

Function
k(z, o) =z — 2|3

1s not a kernel, why?

If it 1s a kernel, the kernel matrix for two data points 1 and Z5: s ol 0 B -y 2 -0
-

0 |21 — x2|)3
K —
< |21 — 223 0

must be positive semidefinite, but is it?

\ 0

COLEO ()



Properties of kernels

. 2
For any function f : RY — R, k(z, @) = f(z)f(a') is akemel. —5 W & &°
bR, ¢ G0: ()

If k1(-,-) and ko (-, -) are kernels, then the following are also kernels:
e conical combination: ok (-, ) + Bka(-,") ifa,3 >0 = Wwwd 2 ¢ 7

e product: k1(-, )ka(,) =5 wwa b mep o K
&2 Vrop tg)\ W,
e exponential: ¢*(~) |
4 1 wep gay a0
® .- \—Bk,_(_],)
Etodse Ll ¢
Verify using the definition of kernel!



Popular kernels

Polynomial kernel
k(z,z') = ("2’ + )

for ¢ > 0 and M is a positive integer. m oL vy ol »
What is the corresponding ¢?

2
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Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

Nl — 2|3

k(x,z') = exp < 52
o

) for some o > 0.

What is the corresponding ¢?

L(]-,‘LB = .Q_&Q ( - “1“;}) ,L(-P ( - l(*!-'((]'z 2P -I'Tx‘
— Ter) N Ge
bCa) = (g(vb ‘,(z')
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Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

|2
k(x,z') = exp (—M) for some o > 0.
20
What is the corresponding ¢? e"L . 3
‘27
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Prediction with kernels

Aslongasw* = >"" | a;¢(x;), prediction on a new example x becomes

w p(x) = Z aip(xi) d(x) = Z aik(x;, ).

This is known as a non-parametric method. Informally speaking, this means that
there is no fixed set of parameters that the model is trying to learn (remember w™
could be infinite). Nearest-neighbors is another non-parametric method we have seen.



Classification with kernels

Input Space Feature Space

Similar ideas extend to the classification case, and we can predict using sign(w? ¢).
Data may become linearly separable in the feature space!



