
CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 5, Sep 22

Administrivia

HW2 due in about a week.
Quiz 1 in 2 weeks.

Recap

w∗ = argmin
w

F (w)

= argmin
w

(

‖Φw − y‖2
2
+ λ‖w‖2

2

)

=
(

Φ
T
Φ+ λI

)

−1
Φ

Ty

Φ =

φ(x1)T

φ(x2)T

...

φ(xn)T

, y =

y1

y2
...

yn

We looked at regularized least squares with non-linear basis:

This solution operates in the space RM and M could be huge (and even infinite).

Regularized least squares

We realized that we can write,

w∗ = Φ
Tα =

n∑

i=1

αiφ(xi)

Thus the least square solution is a linear combination of features of the datapoints!

We calculated what α should be,

α = (K + λI)−1y

where K = ΦΦ
T
∈ Rn×n is the kernel matrix.

Regularized least squares solution: Another look

The prediction of w∗ on a new example x is

w∗T
φ(x) =

n∑

i=1

αiφ(xi)
Tφ(x)

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly comput-

ing φ. The exact form of φ is inessential; all we need to do is know the inner products

φ(x)Tφ(x′).

Kernel trick

Consider the following polynomial basis φ : R2 → R3:

φ(x) =

x
2
1√

2x1x2

x
2
2

What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2
x
′

1

2
+ 2x1x2x

′

1x
′

2 + x2
2
x
′

2

2

= (x1x
′

1 + x2x
′

2)
2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the inner product

in the original space.

The kernel trick: Example 1

Definition: a function k : Rd × Rd → R is called a kernel function if there exists a
function φ : Rd → RM so that for any x,x′ ∈ Rd,

k(x,x′) = φ(x)Tφ(x′)

Popular kernels:

1. Polynomial kernel
k(x,x′) = (xTx′ + c)M

for c ≥ 0 and M is a positive integer.

2. Gaussian kernel or Radial basis function (RBF) kernel

k(x,x′) = exp

(

−
‖x− x′‖22

2σ2

)

for some σ > 0.

Kernel functions

As long as w∗ =
∑n

i=1
αiφ(xi), prediction on a new example x becomes

w∗T
φ(x) =

n∑

i=1

αiφ(xi)
Tφ(x) =

n∑

i=1

αik(xi,x).

This is known as a non-parametric method. Informally speaking, this means that
there is no fixed set of parameters that the model is trying to learn (remember w∗

could be infinite). Nearest-neighbors is another non-parametric method we have seen.

Prediction with kernels

Classification with kernels

Similar ideas extend to the classification case, and we can predict using sign(wTφ(x)).
Data may become linearly separable in the feature space!

We’ll see this today.

Support vector
machines (SVMs)

• One of the most commonly used classification algorithms

• Allows us to explore the concept of margins in classification

• Works well with the kernel trick

• Strong theoretical guarantees

We focus on binary classification here.

The function class for SVMs is a linear function on a feature map φ applied to the

datapoints: sign(wTφ(x) + b). Note, the bias term b is taken separately for SVMs,
you’ll see why.

1.1 Why study SVM?

1.2 Margins: separable case, geometric intuition
When data is linearly separable, there are infinitely many hyperplanes with
zero training error:

Which one should we choose?

The further away the separating hyperplane is from the datapoints, the better.

1.2 Margins: separable case, geometric intuition

What is the distance from a point x to a hyperplane {x : wT
x+ b = 0}?

Assume the projection is x′ = x− β w

‖w‖2
, then

0 = w
T

(

x− β
w

‖w‖2

)

+ b = w
T
x− β‖w‖+ b =⇒ β =

w
T
x+ b

‖w‖2
.

Therefore the distance is ‖x− x
′‖2 = |β| = |wT

x+b|
‖w‖2

.

For a hyperplane that correctly classifies (x, y), the distance becomes
y(wT

x+b)
‖w‖2

.

1.2 Formalizing geometric intuition: Distance to hyperplane

Pr[y | x;w] = σ(y(wT
x+ b)) = 1

1+exp(−y(wT
x+b))

1.2 Margins: functional motivation

1.3 Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

MARGIN OF (w, b) = min
i

yi(wTφ(xi) + b)

‖w‖2

The intuition “the further away the better” translates to solving

max
w,b

min
i

yi(wTφ(xi) + b)

‖w‖2
= max

w,b

1

‖w‖2
min
i

yi(w
Tφ(xi) + b)

1.3 Maximizing margin, rescaling

MARGIN OF (w, b)

=
1

‖w‖2
min
i

yi(w
Tφ(xi) + b)

=
1

‖w‖2

Note: rescaling (w, b) by multiplying both by some scalar does not change the hyper-
plane.

We can thus always scale (w, b) s.t. mini yi(wTφ(xi) + b) = 1

The margin then becomes

1.4 SVM for separable data: “Primal” formulation

For a separable training set, we aim to solve

max
w,b

1

‖w‖2
s.t. min

i
yi(w

Tφ(xi) + b) = 1

This is equivalent to

min
w,b

1

2
‖w‖22

s.t. yi(w
Tφ(xi) + b) ≥ 1, ∀ i ∈ [n]

SVM is thus also called max-margin classifier. The constraints above are called hard-

margin constraints.

1.5 General non-separable case
If data is not linearly separable, the previous constraint

yi(w
Tφ(xi) + b) ≥ 1, ∀ i ∈ [n]

is obviously not feasible. What is the right thing to do?

If data is not linearly separable, the previous constraint yi(wTφ(xi)+b) ≥ 1, ∀ i ∈ [n]
is not feasible. And more generally, forcing classifier to always classify all datapoints
correctly may not be the best idea.

To deal with this issue, we relax the constraints to !1 norm soft-margin constraints:

yi(w
Tφ(xi) + b) ≥ 1− ξi, ∀ i ∈ [n]

⇐⇒ 1− yi(w
Tφ(xi) + b) ≤ ξi, ∀ i ∈ [n]

where we introduce slack variables ξi ≥ 0.

Recall the hinge loss: !hinge(z) = max{0, 1− z}. In our case, z = y(wTφ(x) + b).

1.5 General non-separable case

Aside: Why ℓ! penalization?

Aside: Why ℓ! penalization?

Aside: Why ℓ! penalization?

1.5 Back to SVM: General non-separable case

If data is not linearly separable, the constraint yi(wTφ(xi) + b) ≥ 1, ∀ i ∈ [n] is not
feasible.

To deal with this issue, we relax the constraints to !1 norm soft-margin constraints:

yi(w
Tφ(xi) + b) ≥ 1− ξi, ∀ i ∈ [n]

where we introduce slack variables ξi ≥ 0.

1.5 SVM General Primal Formulation

We want ξi to be as small as possible. The objective becomes

min
w,b,{ξi}

1

2
‖w‖22 + C

∑

i

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ∀ i ∈ [n]

ξi ≥ 0, ∀ i ∈ [n]

where C is a hyperparameter to balance the two goals.

!! = 0

!! < 1

• when ξi = 0, point is classified correctly and satisfies large margin constraint.

• when ξi < 1, point is classified correctly but does not satisfy large margin constraint.

• when ξi > 1, point is misclassified.

1.6 Understanding the slack conditions

!! > 1

• perceptron loss !perceptron(z) = max{0,−z} → Perceptron

• logistic loss !logistic(z) = log(1 + exp(−z)) → logistic regression

• hinge loss !hinge(z) = max{0, 1− z}→ SVM

1.7 Primal formulation: Another view

In one sentence: linear model with ℓ! regularized hinge loss. Recall:

For a linear model (w, b), this means

min
w,b

∑

i

max
{

0, 1− yi(w
Tφ(xi) + b)

}

+
λ

2
‖w‖22

• recall yi ∈ {−1,+1}

• a nonlinear mapping φ is applied

• the bias/intercept term b is used explicitly (why is this done?)

What is the relation between this formulation and the one which we just saw before?

1.7 Primal formulation: Another view

1.7 Equivalent forms
The formulation

min
w,b,{ξi}

C
∑

i

ξi +
1

2
‖w‖22

s.t. 1− yi(w
Tφ(xi) + b) ≤ ξi, ∀ i ∈ [n]

ξi ≥ 0, ∀ i ∈ [n]

is equivalent to

min
w,b,{ξi}

C
∑

i

ξi +
1

2
‖w‖22

s.t. max
{

0, 1− yi(w
Tφ(xi) + b)

}

= ξi, ∀ i ∈ [n]

min
w,b,{ξi}

C
∑

i

ξi +
1

2
‖w‖22

s.t. max
{

0, 1− yi(w
Tφ(xi) + b)

}

= ξi, ∀ i ∈ [n]

is equivalent to

min
w,b

C
∑

i

max
{

0, 1− yi(w
Tφ(xi) + b)

}

+
1

2
‖w‖22

and

min
w,b

∑

i

max
{

0, 1− yi(w
Tφ(xi) + b)

}

+
λ

2
‖w‖22

with λ = 1/C. This is exactly minimizing #2 regularized hinge loss!

1.7 Equivalent forms

1.8 Optimization

min
w,b,{ξi}

C
∑

i

ξi +
1

2
‖w‖22

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ∀ i ∈ [n]

ξi ≥ 0, ∀ i ∈ [n].

• it is a convex (in fact, a quadratic) problem

• thus can apply any convex optimization algorithms, e.g. SGD

• there are more specialized and efficient algorithms

• but usually we apply kernel trick, which requires solving the dual problem

SVMs:
Dual formulation

& Kernel trick

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

Φ
T(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
Φ

T(y −Φw∗) = Φ
Tα =

n∑

i=1

αiφ(xi)

Thus the least square solution is a linear combination of features of the datapoints!

How did we show this for regularized least squares?

2.1 Kernelizing SVM

We can also geometrically understand why !∗ should lie in the span of the data:

min
w,b

1

2
‖w‖22

s.t. yj(w
Tφ(xj) + b) ≥ 1, ∀ j ∈ [n].

max
{αi}

n∑

i=1

αi −
1

2

∑

i,j

yiyjαiαjφ(xi)
Tφ(xj)

s.t.

n∑

i=1

αiyi = 0 and αi ≥ 0, ∀ i ∈ [n]

With some optimization theory (Lagrange duality, not covered in this class),
we can show this is equivalent to,

2.2 SVM: Dual form for separable case

max
{αi}

n∑

i=1

αi −
1

2

∑

i,j

yiyjαiαjk(xi,xj)

s.t.

n∑

i=1

αiyi = 0 and αi ≥ 0, ∀ i ∈ [n]

No need to compute φ(x). This is also a quadratic program and many efficient
optimization algorithms exist.

Using the kernel function ! for the mapping ", we can kernelize this!

2.2 SVM: Dual form for separable case

For the primal for the general (non-separable) case:

min
w,b,{ξi}

C
∑

i

ξi +
1

2
‖w‖22

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ∀ i ∈ [n]

ξi ≥ 0, ∀ i ∈ [n].

The dual is very similar,

max
{αi}

n∑

i=1

αi −
1

2

∑

i,j

yiyjαiαjk(xi,xj)

s.t.

n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C, ∀ i ∈ [n].

2.3 SVM: Dual form for the general case

How do we predict given the solution {α∗

i } to the dual optimization problem?

Remember that,
w∗ =

∑

i

α∗

i yiφ(xi) =
∑

i:α∗

i
>0

α∗

i yiφ(xi)

A point with α∗

i > 0 is called a “support vector”. Hence the name SVM.

To make a prediction on any datapoint x,

sign
(

w∗T
φ(x) + b∗

)

= sign

∑

i:α∗

i
>0

α∗

i yiφ(xi)
Tφ(x) + b∗

= sign

∑

i:α∗

i
>0

α∗

i yik(xi,x) + b∗

 .

All we need now is to identify b∗.

2.4 Prediction using SVM

2.5 Bias term "∗
First, let’s consider the separable case:

It can be shown (we will not cover in class), that in the separable case the support vectors lie on the margin.

General (non-separable case):

For any support vector φ(xi) with 0 < α∗

i <C, it can be shown that 1 = yi(w∗Tφ(xi) + b∗)
(i.e. that support vector lies on the margin). Therefore, as before,

b∗ = yi −w∗T
φ(xi) = yi −

n
∑

j=1

α∗

jyjk(xj ,xi).

In practice, often average over all i with 0 < α∗

i < C to stabilize computation.

With α∗ and b∗ in hand, we can make a prediction on any datapoint x,

sign
(

w∗T
φ(x) + b∗

)

= sign

∑

i:α∗

i
>0

α∗

i yik(xi,x) + b∗

 .

2.5 Bias term !∗

SVMs:
Understanding

them further

3.1 Understanding support vectors

Support vectors (circled with the orange
line) are the only points that matter!

Support vectors are φ(xi) such that α∗

i
> 0.

They are the set of points which satisfy one of the following:
(1) they are tight with respect to the large margin contraint,
(2) they do not satisfy the large margin contraint,
(3) they are misclassified.

• when ξ∗
i
= 0, yi(w∗Tφ(xi) + b∗) = 1,

and thus the point is 1/‖w∗‖2 away from the hyperplane.

• when ξ∗
i
< 1, the point is classified correctly

but does not satisfy the large margin constraint.

• when ξ∗
i
> 1, the point is misclassified.

One potential drawback of kernel methods: non-parametric, need to potentially keep
all the training points.

sign
(

w
∗T
φ(x)− b∗

)

= sign
(

n
∑

i=1

α∗

i yik(xi,x)− b∗
)

.

For SVM though, very often #support vectors =
∣

∣{i : α∗

i
> 0}

∣

∣ " n.

3.1 Understanding support vectors

3.2 Examining the effect of kernels

Data may become linearly separable when lifted to the high-dimensional feature space!

Polynomial kernel: example

Switch to Colab

Gaussian kernel: example

Gaussian kernel or Radial basis function (RBF) kernel

k(x,x′) = exp

(

−
‖x− x

′‖22
2σ2

)

(1)

for some σ > 0. This is also parameterized as,

k(x,x′) = exp
(

−γ‖x− x
′‖22

)

(2)

for some γ > 0.

What does the decision boundary look like?
What is the effect of γ?

Note that the prediction is of the form

sign
(

w
∗T
φ(x) + b∗

)

= sign
(

∑

i:α∗

i
>0

α∗

i yik(xi,x) + b∗
)

. Switch to Colab

SVM: max-margin linear classifier

Primal (equivalent to minimizing !2 regularized hinge loss):

min
w,b,{ξi}

C
∑

i

ξi +
1

2
‖w‖22

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ∀ i ∈ [n]

ξi ≥ 0, ∀ i ∈ [n].

Dual (kernelizable, reveals what training points are support vectors):

max
{αi}

∑

i

αi −
1

2

∑

i,j

yiyjαiαjφ(xi)
Tφ(xj)

s.t.
∑

i

αiyi = 0 and 0 ≤ αi ≤ C, ∀ i ∈ [n].

SVM: Summary of mathematical forms

