CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 5, Sep 22

USCUniversity of
Southern California

Administrivia

- HW2 due in about a week.
- Quiz 1 in 2 weeks.

Recap

Regularized least squares

We looked at regularized least squares with non-linear basis:

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmin}} F(\boldsymbol{w}) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}}\left(\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}\right) \\
& =\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

$$
\boldsymbol{\Phi}=\left(\begin{array}{c}
\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)^{\mathrm{T}} \\
\vdots \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)^{\mathrm{T}}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

This solution operates in the space \mathbb{R}^{M} and M could be huge (and even infinite).

Regularized least squares solution: Another look

We realized that we can write,

$$
\boldsymbol{w}^{*}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)
$$

Thus the least square solution is a linear combination of features of the datapoints! We calculated what $\boldsymbol{\alpha}$ should be,

$$
\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
$$

where $\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ is the kernel matrix.

Kernel trick

The prediction of \boldsymbol{w}^{*} on a new example \boldsymbol{x} is

$$
\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})
$$

Therefore, only inner products in the new feature space matter!
Kernel methods are exactly about computing inner products without explicitly computing ϕ. The exact form of ϕ is inessential; all we need to do is know the inner products $\phi(\boldsymbol{x})^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)$.

The kernel trick: Example 1

Consider the following polynomial basis $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$:

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left(\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)
$$

What is the inner product between $\boldsymbol{\phi}(\boldsymbol{x})$ and $\boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)$?

$$
\begin{aligned}
\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}\right)^{2}
\end{aligned}
$$

Therefore, the inner product in the new space is simply a function of the inner product in the original space.

Kernel functions

Definition: a function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a kernel function if there exists a function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{M}$ so that for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$,

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)
$$

Popular kernels:

1. Polynomial kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}+c\right)^{M}
$$

for $c \geq 0$ and M is a positive integer.
2. Gaussian kernel or Radial basis function (RBF) kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right) \quad \text { for some } \sigma>0
$$

Prediction with kernels

As long as $\boldsymbol{w}^{*}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)$, prediction on a new example \boldsymbol{x} becomes

$$
\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right) .
$$

This is known as a non-parametric method. Informally speaking, this means that there is no fixed set of parameters that the model is trying to learn (remember \boldsymbol{w}^{*} could be infinite). Nearest-neighbors is another non-parametric method we have seen.

Classification with kernels

Input Space

Feature Space

Similar ideas extend to the classification case, and we can predict using $\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})\right)$.
Data may become linearly separable in the feature space!
We'll see this today.

Support vector machines (SVMs)

1.1 Why study SVM?

- One of the most commonly used classification algorithms
- Allows us to explore the concept of margins in classification
- Works well with the kernel trick
- Strong theoretical guarantees

We focus on binary classification here.
The function class for SVMs is a linear function on a feature map ϕ applied to the datapoints: $\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x})+b\right)$. Note, the bias term b is taken separately for SVMs, you'll see why.

1.2 Margins: separable case, geometric intuition

When data is linearly separable, there are infinitely many hyperplanes with zero training error:

1.2 Margins: separable case, geometric intuition

The further away the separating hyperplane is from the datapoints, the better.

Margin for linearly separable data: Distance from the hyperplane to the point closest to the hyperplane.

1.2 Formalizing geometric intuition: Distance to hyperplane

What is the distance from a point \boldsymbol{x} to a hyperplane $\left\{\boldsymbol{x}: \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b=0\right\}$?

Assume the projection is $\boldsymbol{x}^{\prime}=\boldsymbol{x}-\beta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}$, then

$$
0=\boldsymbol{w}^{\mathrm{T}}\left(\boldsymbol{x}-\beta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}\right)+b=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}-\beta\|\boldsymbol{w}\|+b \Longrightarrow \beta=\frac{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b}{\|\boldsymbol{w}\|_{2}} .
$$

Therefore the distance is $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}=|\beta|=\frac{\left|\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right|}{\|\boldsymbol{w}\|_{2}}$. $\longrightarrow \operatorname{sign}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+\boldsymbol{6}\right)=\boldsymbol{y}$
For a hyperplane that correctly classifies (\boldsymbol{x}, y), the distance becomes $\frac{y\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right)}{\|\boldsymbol{w}\|_{2}}$.
1.2 Margins: functional motivation

This should be Pr $[y=1 \mid x ; w]$.

$$
\hat{\operatorname{Pr}}[y \mid \boldsymbol{x} ; \boldsymbol{w}]=\sigma\left(y\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right)\right)=\frac{1}{1+\exp \left(-y\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right)\right)}
$$

If $y=1$, want $w^{\top} x+b \gg 0$
If $y=-1$, want $w^{\top} x+6 \ll 0$
\therefore want $y\left(w^{\top} x+6\right) \gg 0$

1.3 Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

$$
\operatorname{MARGIN} \operatorname{OF}(\boldsymbol{w}, b)=\min _{i} \frac{y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)}{\|\boldsymbol{w}\|_{2}} \quad\left\{\begin{array}{l}
\text { lata } \\
\left(x_{i}, y_{i}\right)
\end{array}, i \in\{(\ldots, n\}\right.
$$

The intuition "the further away the better" translates to solving

$$
\max _{\boldsymbol{w}, b} \min _{i} \frac{y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)}{\|\boldsymbol{w}\|_{2}}=\max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|_{2}} \min _{i} y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)
$$

1.3 Maximizing margin, rescaling

Note: rescaling (\boldsymbol{w}, b) by multiplying both by some scalar does not change the hyperplane.

Decision boundary: $w^{\top} \phi(x)+6=0 \Leftrightarrow\left(10^{6} \omega\right)^{\top} \phi(x)+10^{6} 6=0$ multiplying original (ω, b) by $\frac{1}{\min _{i}\left(y_{i}^{\prime}\left(\omega^{\top} \phi\left(x_{i}\right)+6\right)\right)}$
We can thus always scale (\boldsymbol{w}, b) s.t. $\min _{i} y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)=1$

$$
\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})+b=1
$$

The margin then becomes
MARGIN OF (\boldsymbol{w}, b)

$$
\begin{aligned}
& =\frac{1}{\|\boldsymbol{w}\|_{2}} \min _{i} y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \\
& =\frac{1}{\|\boldsymbol{w}\|_{2}}
\end{aligned}
$$

1.4 SVM for separable data: "Primal" formulation

For a separable training set, we aim to solve

$$
\max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|_{2}} \quad \text { s.t. } \min _{i} y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)=1
$$

(this is non-convex)

This is equivalent to

$$
\begin{array}{cll}
\min _{\boldsymbol{w}, b} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} & \text { convex function } \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1, \forall i \in[n] \quad & \text { with convex constraint } \\
\text { is convex. }
\end{array}
$$

SVM is thus also called max-margin classifier. The constraints above are called hardmargin constraints.
1.5 General non-separable case

If data is not linearly separable, the previous constraint

$$
y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1, \quad \forall i \in[n] \quad \begin{aligned}
& \operatorname{sign}\left(\omega^{\top} \psi\left(x_{i}\right)+6\right) \\
& \text { \& } y \quad \forall i \in[n],
\end{aligned}
$$

is obviously not feasible. What is the right thing to do? if not linearly separable.

Even if data is lineally separable, should we always separate it?
 forcing darsifias to classify all datapoints correctly might not be good.

1.5 General non-separable case

If data is not linearly separable, the previous constraint $y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1, \forall i \in[n]$ is not feasible. And more generally, forcing classifier to always classify all datapoints correctly may not be the best idea.

To deal with this issue, we relax the constraints to ℓ_{1} norm soft-margin constraints:

$$
\begin{aligned}
& y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \forall i \in[n] \\
\Longleftrightarrow & 1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \leq \xi_{i}, \quad \forall i \in[n]
\end{aligned}
$$

where we introduce slack variables $\xi_{i} \geq 0$.
Recall the hinge loss: $\ell_{\text {hinge }}(z)=\max \{0,1-z\}$. In our case, $z=y\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})+b\right)$.

hinge loss $\quad l(z)=$ max $(0,1-z)$
squared hinge loss $l(z)=\max (0,1-z)^{2}$
what would be different?
x^{2} grows much faster than x.
squared hinge loss would really penalize getting some predictions wrong.

Aside: Why ℓ_{1} penalization?
Because of this absolute value las can be more robust to outliers in data compared to squared lois.
a $1-D$ regression example: mean us. median
+1 I have $x_{1}, x_{2}, \ldots, x_{n}$
What is $\omega_{l_{2}}^{*}=\underset{\omega}{\operatorname{argmin}} \sum_{i}\left(x_{i}-w\right)^{2} ? \quad w_{L_{2}}^{*}=\frac{\sum x_{i}}{n} \begin{aligned} & \text { median is more st to outliers } \\ & \text { what than mean }\end{aligned}$
What is $\omega_{c_{1}}^{*}=\underset{w}{\operatorname{argmin}} \sum_{i}\left|x_{i}-w\right| ? \quad \omega_{i}^{*}=\operatorname{median}\left(x_{1}, \ldots, x_{n}\right)$

Aside: Why ℓ_{1} penalization?

For $1-0$ regression.

$$
y=10 x+\text { noise } \quad y=10 x
$$

add outlier
consider

$$
\begin{aligned}
& w_{L_{2}}^{*}=\operatorname{argmin} \sum_{i}\left(y_{i}-w x_{i}\right)^{2} \\
& w_{41}^{*}=\operatorname{argmin} \sum_{i}\left|y_{i}-w x_{i}\right|
\end{aligned}
$$

1.5 Back to SVM: General non-separable case

If data is not linearly separable, the constraint $y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1, \forall i \in[n]$ is not feasible.

To deal with this issue, we relax the constraints to ℓ_{1} norm soft-margin constraints:

$$
y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \forall i \in[n]
$$

where we introduce slack variables $\xi_{i} \geq 0$.

1.5 SVM General Primal Formulation

We want ξ_{i} to be as small as possible. The objective becomes

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \forall i \in[n] \\
& \xi_{i} \geq 0, \quad \forall i \in[n]
\end{aligned}
$$

where C is a hyperparameter to balance the two goals.

1.6 Understanding the slack conditions

- when $\xi_{i}=0$, point is classified correctly and satisfies large margin constraint.
- when $\xi_{i}<1$, point is classified correctly but does not satisfy large margin constraint.
- when $\xi_{i}>1$, point is misclassified.

1.7 Primal formulation: Another view

In one sentence: linear model with ℓ_{2} regularized hinge loss. Recall:

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\} \rightarrow$ Perceptron
- logistic loss $\ell_{\text {logistic }}(z)=\log (1+\exp (-z)) \rightarrow$ logistic regression
- hinge loss $\ell_{\text {hinge }}(z)=\max \{0,1-z\} \rightarrow \mathbf{S V M}$

1.7 Primal formulation: Another view

For a linear model (\boldsymbol{w}, b), this means

$$
\min _{\boldsymbol{w}, b} \sum_{i} \max \left\{0,1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)\right\}+\frac{\lambda}{2}\|\boldsymbol{w}\|_{2}^{2}
$$

- recall $y_{i} \in\{-1,+1\}$
- a nonlinear mapping ϕ is applied
- the bias/intercept term b is used explicitly (why is this done?)

What is the relation between this formulation and the one which we just saw before?

1.7 Equivalent forms

The formulation

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & 1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \leq \xi_{i}, \quad \forall i \in[n] \\
& \xi_{i} \geq 0, \quad \forall i \in[n]
\end{aligned}
$$

In order to minimize $\sum_{i} \xi_{i}$ we should set ε_{i} to be as small as passible, which is: is equivalent to

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & \max \left\{0,1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)\right\}=\xi_{i}, \quad \forall i \in[n]
\end{aligned}
$$

1.7 Equivalent forms

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & \max \left\{0,1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)\right\}=\xi_{i}, \quad \forall i \in[n]
\end{aligned}
$$

is equivalent to

$$
\min _{\boldsymbol{w}, b} C \sum_{i} \max \left\{0,1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)\right\}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}
$$

and

$$
\min _{\boldsymbol{w}, b} \sum_{i} \max \left\{0,1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right)\right\}+\frac{\lambda}{2}\|\boldsymbol{w}\|_{2}^{2}
$$

with $\lambda=1 / C$. This is exactly minimizing ℓ_{2} regularized hinge loss!

1.8 Optimization

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \forall i \in[n] \\
& \xi_{i} \geq 0, \quad \forall i \in[n] .
\end{aligned}
$$

- it is a convex (in fact, a quadratic) problem
- thus can apply any convex optimization algorithms, e.g. SGD
- there are more specialized and efficient algorithms
- but usually we apply kernel trick, which requires solving the dual problem

SVMs:
 Dual formulation \& Kernel trick

Recall SVM formulation for separable case:

$$
\begin{array}{ll}
\min _{w, 6} & \frac{1}{2}\|w\|_{2}^{2} \\
\text { s.t. } & y_{i}\left(w^{\top} \phi\left(x_{i}\right)+6\right) \geqslant 1 \quad \forall i \in[n] .
\end{array}
$$

Can we use the kernel trick???

Can we show that ω^{*} is a linear combination of feature vectors $\phi\left[x_{i}\right)$??

How did we show this for regularized least squares?

By setting the gradient of $F(\boldsymbol{w})=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}$ to be $\mathbf{0}$:

$$
\boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{w}^{*}-\boldsymbol{y}\right)+\lambda \boldsymbol{w}^{*}=\mathbf{0}
$$

we know

$$
\boldsymbol{w}^{*}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{y}-\boldsymbol{\Phi} \boldsymbol{w}^{*}\right)=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)
$$

Thus the least square solution is a linear combination of features of the datapoints!
2.1 Kernelizing SVM

Claim: For the SVM problem, $\omega^{*}=\sum_{i} \alpha_{i}^{*} y_{i} \phi\left(x_{i}\right)$
Informal Proof:
formulation as a linear model with l_{2} regularized hinge lars:

$$
F(\omega)=\min _{\omega, 6} \sum_{i=1}^{n} \underbrace{n}_{\text {hinge los 5 }}\left\{0,1-y_{i}\left(w^{2} \phi\left(x_{i}\right)+6\right)\right\}+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

This is a convex problem \therefore GD will find a minimizer with any initialization (for some appropriate step size).

Recall $l_{\text {nirge }}(z)=\max (0,1-z)$

$$
\frac{\partial f(\omega)}{\partial \omega}=\sum_{i=1}^{n}\left(\left.\frac{\partial l_{\text {hirge }}(z)}{\partial z}\right|_{z=y_{i}\left(\omega^{\top} \phi\left(x_{i}\right)+6\right)}\left(-y_{i} \phi\left(x_{i}\right)\right)\right)+\lambda \omega^{(t)}
$$

$\omega^{(0)} \leftarrow 0$

$$
\omega^{(t+1)} \leftarrow \omega^{(t)}-\eta_{i=1}^{n}\left(\left.\frac{\partial l_{\text {hirge }}(z)}{\partial z}\right|_{z=y_{i}\left(\omega^{\top} \phi\left(x_{i}\right)+6\right)}\left(-y_{i} \underline{\left.\overline{\phi\left(x_{i}\right)}\right)}\right)+\lambda \omega^{(t)}\right)
$$

$\therefore w^{(t)}$ always lie in span of $\phi\left(x_{i}\right)$
$\omega^{(t)}=\sum \alpha_{i}^{(t)} y_{i} \phi\left(x_{i}\right) \quad \forall t$, for some $\alpha_{i}^{(t)}$
$\therefore w^{*}=\sum_{i} \alpha_{i}^{*} y_{i} \phi\left(x_{i}\right)$ for some α_{i}^{*}

We can also geometrically understand why \boldsymbol{w}^{*} should lie in the span of the data:

If $\omega=\sum_{i} \alpha_{i} y_{i} \phi\left(x_{i}\right)$, how can use use this?

$$
\begin{aligned}
\min _{\boldsymbol{w}, b} \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } y_{j}\left(\boldsymbol{w}^{\mathrm{T}} \phi\left(x_{j}\right)+b\right) \geq 1, \forall j \in[n] .
\end{aligned} \quad \min ^{\alpha_{1}, 6} \frac{1}{2}\left\|\sum_{i} \alpha_{i} y_{i} \phi\left(x_{i}\right)\right\|_{2}^{2}
$$

This is equivalent to,

$$
\begin{array}{ll}
\min _{\alpha, 6} & \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{0}{ }^{\circ} \phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right) \\
\text { s.t. } & y_{j}\left(\sum_{i} \alpha_{i} y_{i} \phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)+b\right) \geqslant 1 \quad \forall i \in[n] .
\end{array}
$$

2.2 SVM: Dual form for separable case

With some optimization theory (Lagrange duality, not covered in this class), we can show this is equivalent to,

$$
\begin{aligned}
\max _{\left\{\alpha_{i}\right\}} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j} \phi\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{j}\right) \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } \quad \alpha_{i} \geq 0, \quad \forall i \in[n]
\end{aligned}
$$

2.2 SVM: Dual form for separable case

Using the kernel function k for the mapping $\boldsymbol{\phi}$, we can kernelize this!

$$
\begin{aligned}
\max _{\left\{\alpha_{i}\right\}} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } \quad \alpha_{i} \geq 0, \quad \forall i \in[n]
\end{aligned}
$$

No need to compute $\boldsymbol{\phi}(\boldsymbol{x})$. This is also a quadratic program and many efficient optimization algorithms exist.

2.3 SVM: Dual form for the general case

For the primal for the general (non-separable) case:

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \forall i \in[n] \\
& \xi_{i} \geq 0, \quad \forall i \in[n] .
\end{aligned}
$$

The dual is very similar,

$$
\begin{aligned}
\max _{\left\{\alpha_{i}\right\}} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } \quad 0 \leq \alpha_{i} \leq C, \quad \forall i \in[n]
\end{aligned}
$$

2.4 Prediction using SVM

How do we predict given the solution $\left\{\alpha_{i}^{*}\right\}$ to the dual optimization problem?
Remember that,

$$
\boldsymbol{w}^{*}=\sum_{i} \alpha_{i}^{*} y_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)=\sum_{i: \alpha_{i}^{*}>0} \alpha_{i}^{*} y_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)
$$

A point with $\alpha_{i}^{*}>0$ is called a "support vector". Hence the name SVM.

To make a prediction on any datapoint \boldsymbol{x},

$$
\begin{aligned}
\operatorname{sign}\left(\boldsymbol{w}^{* \mathrm{~T}} \phi(\boldsymbol{x})+b^{*}\right) & =\operatorname{sign}\left(\sum_{i: \alpha_{i}^{*}>0} \alpha_{i}^{*} y_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})+b^{*}\right) \\
& =\operatorname{sign}\left(\sum_{i: \alpha_{i}^{*}>0} \alpha_{i}^{*} y_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)+b^{*}\right) .
\end{aligned}
$$

All we need now is to identify b^{*}.
2.5 Bias term b^{*}

First, let's consider the separable case:

It can be shown (we will not cover in class), that in the separable case the support vectors lie on the margin.

$$
\begin{aligned}
& y_{i}^{-}\left(w^{*} \phi\left(x_{i}\right)+b^{*}\right)=1 \Rightarrow y_{i}^{2}\left(w^{* \top} \phi\left(x_{i}\right)+b^{*}\right)=y_{i} \\
\Rightarrow & w^{* \top} \phi\left(x_{i}\right)+b^{\top}=y_{i} \\
\Rightarrow & b^{*}=y_{i}-w^{k^{\top} \phi\left(x_{i}\right) \text { for arg } i \text { s.t } \alpha_{i}^{*}>0 .}
\end{aligned}
$$

2.5 Bias term \boldsymbol{b}^{*}

General (non-separable case):
For any support vector $\boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)$ with $0<\alpha_{i}^{*}<C$, it can be shown that $1=y_{i}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b^{*}\right)$ (i.e. that support vector lies on the margin). Therefore, as before,

$$
b^{*}=y_{i}-\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)=y_{i}-\sum_{j=1}^{n} \alpha_{j}^{*} y_{j} k\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right) .
$$

In practice, often average over all i with $0<\alpha_{i}^{*}<C$ to stabilize computation.
With $\boldsymbol{\alpha}^{*}$ and b^{*} in hand, we can make a prediction on any datapoint \boldsymbol{x},

$$
\operatorname{sign}\left(\boldsymbol{w}^{* \mathrm{~T}} \phi(\boldsymbol{x})+b^{*}\right)=\operatorname{sign}\left(\sum_{i: \alpha_{i}^{*}>0} \alpha_{i}^{*} y_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)+b^{*}\right) .
$$

SVMs:

 Understanding them further
3.1 Understanding support vectors

Support vectors are $\phi\left(\boldsymbol{x}_{i}\right)$ such that $\alpha_{i}^{*}>0$.

They are the set of points which satisfy one of the following:
(1) they are tight with respect to the large margin contraint,
(2) they do not satisfy the large margin contraint,
(3) they are misclassified.

- when $\xi_{i}^{*}=0, y_{i}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b^{*}\right)=1$, and thus the point is $1 /\left\|\boldsymbol{w}^{*}\right\|_{2}$ away from the hyperplane.
- when $\xi_{i}^{*}<1$, the point is classified correctly but does not satisfy the large margin constraint.

- when $\xi_{i}^{*}>1$, the point is misclassified.

Support vectors (circled with the orange line) are the only points that matter!

3.1 Understanding support vectors

One potential drawback of kernel methods: non-parametric, need to potentially keep all the training points.

$$
\operatorname{sign}\left(\boldsymbol{w}^{* \mathrm{~T}} \phi(\boldsymbol{x})-b^{*}\right)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)-b^{*}\right)
$$

For SVM though, very often \#support vectors $=\left|\left\{i: \alpha_{i}^{*}>0\right\}\right| \ll n$.

3.2 Examining the effect of kernels

Input Space
Feature Space

Data may become linearly separable when lifted to the high-dimensional feature space!

Polynomial kernel: example

Switch to Colab

Gaussian kernel: example

Gaussian kernel or Radial basis function (RBF) kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

for some $\sigma>0$. This is also parameterized as,

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\gamma\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}\right)
$$

for some $\gamma>0$.

What does the decision boundary look like?
What is the effect of γ ?

Note that the prediction is of the form

$$
\operatorname{sign}\left(\boldsymbol{w}^{* \mathrm{~T}} \phi(\boldsymbol{x})+b^{*}\right)=\operatorname{sign}\left(\sum_{i: \alpha_{i}^{*}>0} \alpha_{i}^{*} y_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)+b^{*}\right) .
$$

SVM: Summary of mathematical forms

SVM: max-margin linear classifier

Primal (equivalent to minimizing ℓ_{2} regularized hinge loss):

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{i}\right\}} & C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \forall i \in[n] \\
& \xi_{i} \geq 0, \quad \forall i \in[n] .
\end{aligned}
$$

Dual (kernelizable, reveals what training points are support vectors):

$$
\begin{aligned}
\max _{\left\{\alpha_{i}\right\}} & \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{j}\right) \\
\text { s.t. } & \sum_{i} \alpha_{i} y_{i}=0 \quad \text { and } \quad 0 \leq \alpha_{i} \leq C, \quad \forall i \in[n]
\end{aligned}
$$

