CSCI 567: Machine Learning

Vatsal Sharan Fall 2022

Lecture 5, Sep 22

Administrivia

- HW2 due in about a week.
- Quiz 1 in 2 weeks.

Regularized least squares

We looked at regularized least squares with non-linear basis:

$$\begin{split} \boldsymbol{w}^* &= \operatorname*{argmin}_{\boldsymbol{w}} F(\boldsymbol{w}) \\ &= \operatorname*{argmin}_{\boldsymbol{w}} \left(\|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2 \right) \\ &= \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \end{split} \quad \boldsymbol{\Phi} = \begin{pmatrix} \boldsymbol{\phi}(\boldsymbol{x}_1)^{\mathrm{T}} \\ \boldsymbol{\phi}(\boldsymbol{x}_2)^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\phi}(\boldsymbol{x}_n)^{\mathrm{T}} \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

н

This solution operates in the space \mathbb{R}^M and M could be huge (and even infinite).

Regularized least squares solution: Another look

We realized that we can write,

$$oldsymbol{w}^* = oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{lpha} = \sum_{i=1}^n lpha_i oldsymbol{\phi}(oldsymbol{x}_i)$$

Thus the least square solution is a linear combination of features of the datapoints! We calculated what α should be,

$$\boldsymbol{\alpha} = (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

where $K = \Phi \Phi^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ is the kernel matrix.

Kernel trick

The prediction of w^* on a new example x is

$$\boldsymbol{w}^{*^{\mathrm{T}}}\boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_{i}\boldsymbol{\phi}(\boldsymbol{x}_{i})^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x})$$

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly computing ϕ . The exact form of ϕ is inessential; all we need to do is know the inner products $\phi(\mathbf{x})^T \phi(\mathbf{x}')$.

The kernel trick: Example 1

Consider the following polynomial basis $\phi : \mathbb{R}^2 \to \mathbb{R}^3$:

$$oldsymbol{\phi}(oldsymbol{x}) = \left(egin{array}{c} x_1^2 \ \sqrt{2}x_1x_2 \ x_2^2 \end{array}
ight)$$

What is the inner product between $\phi(x)$ and $\phi(x')$?

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2$$
$$= (x_1 x_1' + x_2 x_2')^2 = (\boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}')^2$$

Therefore, the inner product in the new space is simply a function of the inner product in the original space.

Kernel functions

Definition: a function $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called a *kernel function* if there exists a function $\phi : \mathbb{R}^d \to \mathbb{R}^M$ so that for any $x, x' \in \mathbb{R}^d$,

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}')$$

Popular kernels:

1. Polynomial kernel

$$k(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}' + c)^{M}$$

for $c \ge 0$ and M is a positive integer.

2. Gaussian kernel or Radial basis function (RBF) kernel

$$k(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|_2^2}{2\sigma^2}\right)$$
 for some $\sigma > 0$.

Prediction with kernels

As long as $w^* = \sum_{i=1}^n \alpha_i \phi(x_i)$, prediction on a new example x becomes

$$\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i k(\boldsymbol{x}_i, \boldsymbol{x}).$$

This is known as a **non-parametric method**. Informally speaking, this means that there is no fixed set of parameters that the model is trying to learn (remember w^* could be infinite). Nearest-neighbors is another non-parametric method we have seen.

Classification with kernels

Similar ideas extend to the classification case, and we can predict using sign $(w^T \phi(x))$. Data may become linearly separable in the feature space!

We'll see this today.

Support vector machines (SVMs)

1.1 Why study SVM?

- One of the most commonly used classification algorithms
- Allows us to explore the concept of *margins* in classification
- Works well with the kernel trick
- Strong theoretical guarantees

We focus on **binary classification** here.

The function class for SVMs is a linear function on a feature map ϕ applied to the datapoints: sign($w^T \phi(x) + b$). Note, the bias term b is taken separately for SVMs, you'll see why.

1.2 Margins: separable case, geometric intuition

When data is **linearly separable**, there are infinitely many hyperplanes with zero training error:

1.2 Margins: separable case, geometric intuition

The further away the separating hyperplane is from the datapoints, the better.

1.2 Formalizing geometric intuition: Distance to hyperplane

What is the **distance** from a point x to a hyperplane $\{x : w^{T}x + b = 0\}$?

WTX+6=0 Assume the **projection** is $x' = x - \beta \frac{w}{\|w\|_2}$, then $0 = \boldsymbol{w}^{\mathrm{T}}\left(\boldsymbol{x} - \beta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}\right) + b = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} - \beta \|\boldsymbol{w}\| + b \implies \beta = \frac{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}{\|\boldsymbol{w}\|_{2}}.$ Therefore the distance is $\|\boldsymbol{x} - \boldsymbol{x}'\|_2 = |\beta| = \frac{|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + b|}{\|\boldsymbol{w}\|_2}$. For a hyperplane that correctly classifies (x, y), the distance becomes $\frac{y(w^T x+b)}{\|w\|_2}$.

1.2 Margins: functional motivation

1.3 Maximizing margin

Margin: the *smallest* distance from all training points to the hyperplane

MARGIN OF
$$(\boldsymbol{w}, b) = \min_{i} \frac{y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b)}{\|\boldsymbol{w}\|_2}$$

 $\int d\mathbf{x} d\mathbf$

.

The intuition "the further away the better" translates to solving

$$\max_{\boldsymbol{w}, b} \min_{i} \frac{y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b)}{\|\boldsymbol{w}\|_2} = \max_{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|_2} \min_{i} y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b)$$

1.3 Maximizing margin, rescaling

Note: rescaling (w, b) by multiplying both by some scalar does not change the hyperplane.

Devision boundary :
$$w^{\mathsf{t}} \psi(x) + \mathfrak{t} = 0 \quad \boldsymbol{\epsilon} = \left(\left[\left(\mathbf{0}^{\mathsf{t}} w \right)^{\mathsf{T}} \psi(x) + 10^{\mathsf{t}} \mathbf{0}^{\mathsf{t}} = 0 \right] \right)$$

We can thus always scale (w, b) s.t. $\min_{i} y_{i} (w^{\mathsf{T}} \phi(x_{i}) + b) = 1$
The margin then becomes
MARGIN OF (w, b)
 $= \frac{1}{\|w\|_{2}} \min_{i} y_{i} (w^{\mathsf{T}} \phi(x_{i}) + b)$
 $= \frac{1}{\|w\|_{2}}$
 $w^{\mathsf{T}} \phi(x) + b = -1$

1.4 SVM for separable data: "Primal" formulation

For a separable training set, we aim to solve

$$\begin{split} \max_{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|_2} \quad \text{s.t.} \quad \min_i y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b) = 1 \\ \text{(His is non-conver)} \end{split}$$
This is equivalent to
$$\begin{aligned} \min_{\boldsymbol{w}, b} \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 \quad \text{(Inimizing a convex function)} \\ \text{s.t.} \quad y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b) \geq 1, \quad \forall \ i \in [n] \end{aligned}$$

SVM is thus also called *max-margin* classifier. The constraints above are called *hard-margin* constraints.

1.5 General non-separable case

1.5 General non-separable case

If data is not linearly separable, the previous constraint $y_i(\boldsymbol{w}^T\boldsymbol{\phi}(\boldsymbol{x}_i)+b) \ge 1, \forall i \in [n]$ is not feasible. And more generally, forcing classifier to always classify all datapoints correctly may not be the best idea.

To deal with this issue, we relax the constraints to ℓ_1 norm soft-margin constraints:

$$y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b) \ge 1 - \xi_i, \ \forall i \in [n]$$
$$\iff 1 - y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b) \le \xi_i, \ \forall i \in [n]$$

where we introduce slack variables $\xi_i \ge 0$.

Recall the hinge loss: $\ell_{\text{hinge}}(z) = \max\{0, 1 - z\}$. In our case, $z = y(\boldsymbol{w}^{T}\boldsymbol{\phi}(\boldsymbol{x}) + b)$.

Aside: Why ℓ_1 penalization? hinge loss llz) = max (or1-2) Squared hinge loss l(z) = max (0,1-z) 2 what would be different? n' grows much faster than n. squared hinge loss would really pendize getting some predictions worry.

Aside: Why ℓ_1 penalization?

Because of this obsolute value loss can be more robust to outliers in data compared to squared loss.

the I have
$$\chi_{i_1} \chi_{i_2} \ldots \chi_{i_n} \chi_{i_n}$$

what is $w_{i_2}^{*} = \alpha_{i_1} \min \left\{ \left\{ z_i - w \right\}_{i_n}^{2} \right\}_{i_n}^{2} = \frac{1}{2} \sum_{i_n}^{i_n} \frac{1}{2} \frac{1}$

Aside: Why ℓ_1 penalization?

1.5 Back to SVM: General non-separable case

If data is not linearly separable, the constraint $y_i(\boldsymbol{w}^T\boldsymbol{\phi}(\boldsymbol{x}_i) + b) \ge 1, \ \forall i \in [n]$ is not feasible.

To deal with this issue, we relax the constraints to ℓ_1 norm soft-margin constraints:

$$y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i)+b) \geq 1-\xi_i, \ \forall i \in [n]$$

where we introduce slack variables $\xi_i \ge 0$.

1.5 SVM General Primal Formulation

We want ξ_i to be as small as possible. The objective becomes

$$\min_{\boldsymbol{w}, b, \{\boldsymbol{\xi}_i\}} \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_i \boldsymbol{\xi}_i$$

s.t. $y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b) \ge 1 - \boldsymbol{\xi}_i, \ \forall i \in [n]$
 $\boldsymbol{\xi}_i \ge 0, \ \forall i \in [n]$

where C is a hyperparameter to balance the two goals.

1.6 Understanding the slack conditions

- when $\xi_i = 0$, point is classified correctly and satisfies large margin constraint.
- when $\xi_i < 1$, point is classified correctly but does not satisfy large margin constraint.
- when $\xi_i > 1$, point is misclassified.

1.7 Primal formulation: Another view

In one sentence: linear model with ℓ_2 regularized hinge loss. Recall:

- perceptron loss $\ell_{\text{perceptron}}(z) = \max\{0, -z\} \rightarrow \text{Perceptron}$
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z)) \rightarrow \text{logistic regression}$
- hinge loss $\ell_{\text{hinge}}(z) = \max\{0, 1-z\} \rightarrow \mathbf{SVM}$

1.7 Primal formulation: Another view

For a linear model (w, b), this means

$$\min_{\boldsymbol{w},b} \sum_{i} \max\left\{0, 1 - y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b)\right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

- recall $y_i \in \{-1, +1\}$
- a nonlinear mapping ϕ is applied
- the bias/intercept term b is used explicitly (why is this done?)

What is the relation between this formulation and the one which we just saw before?

1.7 Equivalent forms

The formulation

$$\begin{array}{ll} \min_{\boldsymbol{w},b,\{\xi_i\}} & C\sum_i \xi_i + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{ s.t. } & 1 - y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b) \leq \xi_i, \quad \forall \ i \in [n] \\ & \xi_i \geq 0, \quad \forall \ i \in [n] \end{array}$$

In order to minimize $\boldsymbol{\xi} \boldsymbol{\xi}_i$:
we should set $\boldsymbol{\xi}_i$ to be as small as possible, which is:
is equivalent to

$$\min_{\boldsymbol{w}, b, \{\xi_i\}} \quad C \sum_i \xi_i + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$\max\left\{0, 1 - y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b)\right\} = \xi_i, \quad \forall i \in [n]$$

1.7 Equivalent forms

$$\min_{\boldsymbol{w}, b, \{\xi_i\}} \quad C \sum_i \xi_i + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

s.t.
$$\max\left\{0, 1 - y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b)\right\} = \xi_i, \quad \forall i \in [n]$$

is equivalent to

$$\min_{\boldsymbol{w},b} C \sum_{i} \max\left\{0, 1 - y_i(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}_i) + b)\right\} + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

and

$$\min_{\boldsymbol{w},b} \sum_{i} \max\left\{0, 1 - y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b)\right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

with $\lambda = 1/C$. This is exactly minimizing ℓ_2 regularized hinge loss!

1.8 Optimization

$$\begin{split} \min_{\boldsymbol{w}, b, \{\xi_i\}} & C\sum_i \xi_i + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b) \geq 1 - \xi_i, \quad \forall \ i \in [n] \\ & \xi_i \geq 0, \quad \forall \ i \in [n]. \end{split}$$

- it is a convex (in fact, a **quadratic**) problem
- thus can apply any convex optimization algorithms, e.g. SGD
- there are **more specialized and efficient** algorithms
- but usually we apply kernel trick, which requires solving the *dual problem*

SVMs: Dual formulation & Kernel trick

Recall SVM formulation for separable case :
nin
$$\frac{1}{2} \|w\|_2^2$$

with
sit. y: (w^t $\xi(\tau_i) + i$) $\neq I$ $\forall i \in [n]$.
(an we use the kernel trick????.
(an we show that w^t is a linear combination
of feature vertoes $\xi(\tau_i)$??

How did we show this for regularized least squares?

By setting the gradient of
$$F(w) = \|\Phi w - y\|_2^2 + \lambda \|w\|_2^2$$
 to be 0:

$$\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{\Phi}\boldsymbol{w}^*-\boldsymbol{y})+\lambda\boldsymbol{w}^*=\boldsymbol{0}$$

we know

$$oldsymbol{w}^* = rac{1}{\lambda} oldsymbol{\Phi}^{\mathrm{T}}(oldsymbol{y} - oldsymbol{\Phi}oldsymbol{w}^*) = oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{lpha} = \sum_{i=1}^n lpha_i oldsymbol{\phi}(oldsymbol{x}_i)$$

Thus the least square solution is a linear combination of features of the datapoints!

2.1 Kernelizing SVM

Claim: For the SVM problem,
$$w^* = \xi \operatorname{dig} (x_i)$$

Informal Proof:
formulation as a linear model with l_2 regularized hinge loss:
 $F(w) = \min \left[\frac{2}{w_1 b} + \frac{1}{2} \left[\frac{1}{w_1 b} + \frac{1}{2} + \frac{1}{2} \left[\frac{1}{w_1 b} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \right] \right]$
This is a convex problem ... bid will find a minimized
with any initialization (for some appropriate step size).

Recall lninge(z):
$$rooz(o_{rl-z})$$

 $\frac{\partial F(w)}{\partial w} = \frac{\pi}{2} \left(\frac{\partial L_{hinge}(z)}{\partial z} \right) \left(-y_i \phi(z_i) \right) + \lambda w^{(e)}$
 $\frac{\partial F(w)}{\partial z} = \frac{\pi}{2} \left(\frac{\partial L_{hinge}(z)}{\partial z} \right) + \frac{\partial L_{hinge}(z)}{\partial z} + \frac{\partial L_{hinge}(z$

$$w^{(o)} \leftarrow o$$

$$w^{(e+i)} \leftarrow w^{(e)} - \sqrt{\frac{2}{s_{i}}} \left(\frac{\partial L_{hirge}(z)}{\partial z} \right) \left(-y_{i} \phi(x_{i}) \right) + \lambda w^{(H)} \right)$$

$$E = y_{i} \left(w^{T} \phi(x_{i}) + b \right)$$

...
$$w^{(e)}$$
 always lie in span of $\phi(\pi i)$
 $w^{(e)} = \sum d_i^{(e)} \psi(\pi i)$ $\forall t$, for some $d_i^{(e)}$
... $w^* = \sum d_i^* \psi(\pi i)$ for some d_i^*

We can also geometrically understand why w^* should lie in the span of the data:

2.2 SVM: Dual form for separable case

With some optimization theory (Lagrange duality, not covered in this class), we can show this is equivalent to,

$$\begin{split} \max_{\{\alpha_i\}} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_j) \\ \text{s.t.} & \sum_{i=1}^n \alpha_i y_i = 0 \quad \text{and} \quad \alpha_i \ge 0, \quad \forall \ i \in [n] \end{split}$$

2.2 SVM: Dual form for separable case

Using the kernel function k for the mapping $\boldsymbol{\phi}$, we can kernelize this!

$$\begin{array}{ll} \max_{\{\alpha_i\}} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j k(\boldsymbol{x}_i, \boldsymbol{x}_j) \\ \text{s.t.} & \sum_{i=1}^n \alpha_i y_i = 0 \quad \text{and} \quad \alpha_i \ge 0, \quad \forall \ i \in [n] \end{array}$$

No need to compute $\phi(x)$. This is also a quadratic program and many efficient optimization algorithms exist.

2.3 SVM: Dual form for the general case

For the primal for the general (non-separable) case:

$$\begin{split} \min_{\boldsymbol{w}, b, \{\xi_i\}} & C\sum_i \xi_i + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b) \geq 1 - \xi_i, \quad \forall \ i \in [n] \\ & \xi_i \geq 0, \quad \forall \ i \in [n]. \end{split}$$

The dual is very similar,

$$\begin{array}{ll} \max_{\{\alpha_i\}} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j k(\boldsymbol{x}_i, \boldsymbol{x}_j) \\ \text{s.t.} & \sum_{i=1}^n \alpha_i y_i = 0 \quad \text{and} \quad 0 \leq \alpha_i \leq C, \quad \forall \ i \in [n]. \end{array}$$

2.4 Prediction using SVM

How do we predict given the solution $\{\alpha_i^*\}$ to the dual optimization problem?

Remember that,

$$\boldsymbol{w}^* = \sum_i lpha_i^* y_i \boldsymbol{\phi}(\boldsymbol{x}_i) = \sum_{i: lpha_i^* > 0} lpha_i^* y_i \boldsymbol{\phi}(\boldsymbol{x}_i)$$

A point with $\alpha_i^* > 0$ is called a "support vector". Hence the name SVM.

To make a prediction on any datapoint x,

$$\operatorname{sign}\left(\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}) + b^{*}\right) = \operatorname{sign}\left(\sum_{i:\alpha_{i}^{*}>0} \alpha_{i}^{*}y_{i}\boldsymbol{\phi}(\boldsymbol{x}_{i})^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}) + b^{*}\right)$$
$$= \operatorname{sign}\left(\sum_{i:\alpha_{i}^{*}>0} \alpha_{i}^{*}y_{i}k(\boldsymbol{x}_{i},\boldsymbol{x}) + b^{*}\right).$$

All we need now is to identify b^* .

2.5 Bias term b^*

It can be shown (we will not cover in class), that in the separable case the support vectors lie on the margin.

.

$$y_i(\hat{w}^{\dagger} \phi(x_i) + b^{*}) = 1 = y_i^2(w^{*T} \phi(x_i) + b^{*}) = y_i^2$$

 $w^{*T} \phi(x_i) + b^{*} = y_i^{*T}$
 $w^{*T} \phi(x_i) + b^{*T} = y_i^{*T}$
 $w^{*T} \phi(x_i) + b^{*T} = y_i^{*T}$

2.5 Bias term b^*

General (non-separable case):

For any support vector $\phi(\mathbf{x}_i)$ with $0 < \alpha_i^* < C$, it can be shown that $1 = y_i(\mathbf{w}^{*T}\phi(\mathbf{x}_i) + b^*)$ (i.e. that support vector lies on the margin). Therefore, as before,

$$b^* = y_i - \boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_i) = y_i - \sum_{j=1}^n \alpha_j^* y_j k(\boldsymbol{x}_j, \boldsymbol{x}_i).$$

In practice, often *average* over all *i* with $0 < \alpha_i^* < C$ to stabilize computation.

With α^* and b^* in hand, we can make a prediction on any datapoint x,

$$\operatorname{sign}\left(\boldsymbol{w}^{*^{\mathrm{T}}}\phi(\boldsymbol{x}) + b^{*}\right) = \operatorname{sign}\left(\sum_{i:\alpha_{i}^{*}>0} \alpha_{i}^{*}y_{i}k(\boldsymbol{x}_{i},\boldsymbol{x}) + b^{*}\right)$$

٠

SVMs: Understanding them further

3.1 Understanding support vectors

Support vectors are $\phi(\boldsymbol{x}_i)$ such that $\alpha_i^* > 0$.

They are the set of points which satisfy one of the following:(1) they are tight with respect to the large margin contraint,(2) they do not satisfy the large margin contraint,(3) they are misclassified.

- when $\xi_i^* = 0$, $y_i(\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}_i) + b^*) = 1$, and thus the point is $1/\|\boldsymbol{w}^*\|_2$ away from the hyperplane.
- when ξ^{*}_i < 1, the point is classified correctly but does not satisfy the large margin constraint.
- when $\xi_i^* > 1$, the point is misclassified.

Support vectors (circled with the orange line) are the only points that matter!

3.1 Understanding support vectors

One potential drawback of kernel methods: **non-parametric**, need to potentially keep all the training points.

$$\operatorname{sign}\left(\boldsymbol{w}^{*T}\phi(\boldsymbol{x}) - b^{*}\right) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i}^{*}y_{i}k(\boldsymbol{x}_{i}, \boldsymbol{x}) - b^{*}\right).$$

For SVM though, very often #support vectors $= |\{i : \alpha_i^* > 0\}| \ll n$.

3.2 Examining the effect of kernels

Data may become linearly separable when lifted to the high-dimensional feature space!

Polynomial kernel: example

Switch to Colab

Gaussian kernel: example

Gaussian kernel or Radial basis function (RBF) kernel

$$k(x, x') = \exp\left(-\frac{\|x - x'\|_2^2}{2\sigma^2}\right)$$

for some $\sigma > 0$. This is also parameterized as,

$$k(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\gamma \|\boldsymbol{x} - \boldsymbol{x}'\|_2^2\right)$$

for some $\gamma > 0$.

What does the decision boundary look like? What is the effect of γ ?

Note that the prediction is of the form

$$\operatorname{sign}\left(\boldsymbol{w}^{*T}\phi(\boldsymbol{x})+b^{*}\right)=\operatorname{sign}\left(\sum_{i:\alpha_{i}^{*}>0}\alpha_{i}^{*}y_{i}k(\boldsymbol{x}_{i},\boldsymbol{x})+b^{*}\right).$$

true decision boundary \mathbf{x}_2 X_1

Switch to Colab

SVM: Summary of mathematical forms

SVM: max-margin linear classifier

Primal (equivalent to minimizing ℓ_2 regularized hinge loss):

$$\begin{split} \min_{\boldsymbol{w}, b, \{\xi_i\}} & C\sum_i \xi_i + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) + b) \geq 1 - \xi_i, \quad \forall \ i \in [n] \\ & \xi_i \geq 0, \quad \forall \ i \in [n]. \end{split}$$

Dual (kernelizable, reveals what training points are support vectors):

$$\begin{array}{ll} \max_{\{\alpha_i\}} & \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}_j) \\ \text{s.t.} & \sum_i \alpha_i y_i = 0 \quad \text{and} \quad 0 \leq \alpha_i \leq C, \quad \forall \ i \in [n]. \end{array}$$