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Administrivia

o HW2 due in about a week.
o Quiz 1in 2 weeks.



Recap



Regularized least squares

We looked at regularized least squares with non-linear basis:

w* = argmin F(w)
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This solution operates in the space R* and M could be huge (and even infinite).
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Regularized least squares solution: Another look

We realized that we can write,
n
w*=d"a = Zoziqb(mi)
i=1

Thus the least square solution is a linear combination of features of the datapoints!

We calculated what o« should be,
a=(K+X) 'y

where K = ®®' ¢ R"*" is the kernel matrix.



Kernel trick

The prediction of w* on a new example « is
wp(x) =) aig(x:) p()
i=1

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly comput-
ing ¢. The exact form of ¢ is inessential; all we need to do is know the inner products

P(x) p(x').



The kernel trick: Example 1

Consider the following polynomial basis ¢ : R? — R3:

What is the inner product between ¢(x) and ¢(x')?
()" p(x') = 125, + 2wy 207 2y + x5,

— CIZ1$U,—|—CC2£I?’ 2: $T$/2
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Therefore, the inner product in the new space is simply a function of the inner product
in the original space.



Kernel functions

Definition: a function k& : R? x R? — R is called a kernel function if there exists a
function ¢ : R% — RM g0 that for any x,x’ € R<,

k(x,z') = p(x) $(z)
Popular kernels:

1. Polynomial kernel
k(z,z) = (272 + )M

for ¢ > 0 and M is a positive integer.

2. Gaussian kernel or Radial basis function (RBF) kernel

le — '[|3

k(z,z') = exp (— 52
o

) for some o > 0.



Prediction with kernels

Aslongasw* = >"" | a;¢(x;), prediction on a new example x becomes

w p(x) = Z aip(xi) d(x) = Z aik(x;, ).

This is known as a non-parametric method. Informally speaking, this means that
there is no fixed set of parameters that the model is trying to learn (remember w™
could be infinite). Nearest-neighbors is another non-parametric method we have seen.



Classification with kernels

Input Space Feature Space

Similar ideas extend to the classification case, and we can predict using sign(w? ¢()).
Data may become linearly separable in the feature space!

We’ll see this today.



Support vector
machines (SVMs)



1.1 Why study SVM?

One of the most commonly used classification algorithms

Allows us to explore the concept of margins in classification

Works well with the kernel trick

Strong theoretical guarantees
We focus on binary classification here.

The function class for SVMs is a linear function on a feature map ¢ applied to the
datapoints: sign(wT¢(x) + b). Note, the bias term b is taken separately for SVMs,
you’ll see why.



1.2 Margins: separable case, geometric intuition

When data is linearly separable, there are infinitely many hyperplanes with

zero tralnlng error: \‘ s
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Which one should we choose?



1.2 Margins: separable case, geometric intuition

The further away the separating hyperplane is from the datapoints, the better.
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1.2 Formalizing geometric intuition: Distance to hyperplane

What is the distance from a point z to a hyperplane {x : w'x +b = 0}?

Assume the projection is ' = = — Bm, then

T
b
0=w" (az—ﬁi) +hb=w'z - flw|+b = B:u.
lll2 [wl]2
< T -
Therefore the distance is | — ©'||s = |5] = hﬁiﬁ;b'. Signlw'x "'D Y

y('wTa:—i—b)

For a hyperplane that correctly classifies (x, y), the distance becomes Tl



1.2 Margins: functional motivation
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1.3 Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

yi (W' (x;) + b) E lata
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1.3 Maximizing margin, rescaling

Note: rescaling (w, b) by multiplying both by some scalar does not change the hyper-
plane.
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We can thus always scale (w, b) s.t. min; y; (wTo(x;) +b) = 1

The margin then becomes
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1.4 SVM for separable data: “Primal” formulation

For a separable training set, we aim to solve

1

max —— s.t. miny;(w'¢(x;) +b) =1
wb [lwl| @ .
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SVM is thus also called max-margin classifier. The constraints above are called hard-

margin constraints.



1.5 General non-separable case

If data is not linearly separable, the previous constraint

1s obviously not feasible. What is the right thing to do?
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1.5 General non-separable case

If data is not linearly separable, the previous constraint y; (w ¢ (x;)+b) > 1, Vi € [n]
is not feasible. And more generally, forcing classifier to always classify all datapoints
correctly may not be the best idea.

To deal with this issue, we relax the constraints to /; norm soft-margin constraints:

yi(wTd(x;) +b) >1 &, Vie[n]
= 1—yi(w'p(x;) +b) <&, Vien

where we introduce slack variables &; > 0.

Recall the hinge 108s: fhinge(2) = max{0,1 — z}. In our case, z = y(w' ¢ (x) + b).



Aside: Why 7, penalization?
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Aside: Why 7, penalization?
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Aside: Why 7, penalization?
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1.5 Back to SVM: General non-separable case

If data is not linearly separable, the constraint y; (w ¢ (x;) +b) > 1, Vi € [n] is not
feasible.

To deal with this issue, we relax the constraints to /; norm soft-margin constraints:
yi(w ¢ (x;) +b) > 1 &, Vic[n]

where we introduce slack variables &; > 0.



1.5 SVM General Primal Formulation

We want &; to be as small as possible. The objective becomes

w,ba{gz}

st. yi(w' p(x;) +b) >1 &, Vieln]
& >0, Vie [n]

A T
min  cfwlf+CY ¢

where (' is a hyperparameter to balance the two goals.



1.6 Understanding the slack conditions

e when & = 0, point is classified correctly and satisfies large margin constraint.
e when &; < 1, point is classified correctly but does not satisfy large margin constraint.

e when & > 1, point is misclassified.



1.7 Primal formulation: Another view

In one sentence: linear model with £, regularized hinge loss. Recall:

2.0

3.5

2 1 0 1 2

o perceptron 10ss perceptron (2) = max{0, —z} — Perceptron
e logistic 108s liogistic (2) = log(1 + exp(—z)) — logistic regression

o hinge 10ss lhinge(2) = max{0,1 — z} = SVM



1.7 Primal formulation: Another view

For a linear model (w, b), this means
w,b

_ A
min Zmax {O, 1 —y;(w'p(x;) + b)} + 5”“’”%

e recall y; € {—1,+1}
e a nonlinear mapping ¢ is applied

e the bias/intercept term b is used explicitly (why is this done?)

What is the relation between this formulation and the one which we just saw before?



1.7 Equivalent forms
The formulation

1 2
min C .+ =|lw
i ;5 5 lwlis

st. 1—yi(w' ¢(x;) +b) <&, Vie[n]
& >0, Ve [Tl]
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1.7 Equivalent forms

: 1
min - C) &+ ollwl3

w7ba{£z}

s.t. max{0,1 —y;(w'¢(z;) +b)} =&, Vi€ [n]
is equivalent to

1
min C’Zmax {O, 1— yi(wT¢($z‘) -+ b)} + 5““’”%

w,b

and
A
mm g max{O 1 —y;(w (.’Bz)—l—b)}—l—§||w||§

with A = 1/C'. This is exactly minimizing {5 regularized hinge loss!



1.8 Optimization

1
min C i + = |lwl|?
in 2;5 > w3

st yi(w @(z) +0)>1 ¢, Vien]
it is a convex (in fact, a quadratic) problem
thus can apply any convex optimization algorithms, e.g. SGD

there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual problem



SVMs:
Dual formulation
& Kernel trick



Recath  SVM  fowulohtr,  {on  Sopanable case
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How did we show this for regularized least squares?

By setting the gradient of F'(w) = ||[®w — y||3 + A||w]||3 to be O:
d'(Pw* —y) + \w* =0

we know

— X<I>T(y Pw™) Ta = ZOMP (x;)

Thus the least square solution is a linear combination of features of the datapoints!




2.1 Kernelizing SVM
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We can also geometrically understand why w* should lie in the span of the data:
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2.2 SVM: Dual form for separable case

With some optimization theory (Lagrange duality, not covered in this class),
we can show this is equivalent to,

i 1
]E{rclyzﬁc ; o — 2 sz: yiyjaiaj(b(a:i)T(b(wj)

s.t. Z%‘yi =0 and «; >0, Vie]n]
i=1



2.2 SVM: Dual form for separable case

Using the kernel function k for the mapping ¢, we can kernelize this!

" 1
I{I(llai( g o — 5 E yz’yjaiajk(wi7wj)
1 Z:1

2%}

s.t. Zaiyi =0 and «; >0, Vi€ ]n]
i=1

No need to compute ¢(x). This is also a quadratic program and many efficient
optimization algorithms exist.



2.3 SVM: Dual form for the general case

For the primal for the general (non-separable) case:
1
min C i+ =||wl?
in ;g S w3
st yi(w'(x) +0) >1-&, Vie[n]

The dual is very similar,

“ 1
max ZO% 5 Zyiyjaiajk(wia ;)
! i=1 i,j
s.t. Zaiyizo and 0<a; <C, Vié€][n].

=1



2.4 Prediction using SVM

How do we predict given the solution {«; } to the dual optimization problem?
Remember that,

w* = Za:yz(ﬁ(wz) = Z o yip(x;)

ra; >0

A point with of > 0 is called a “support vector”. Hence the name SVM.

To make a prediction on any datapoint @,

sign (wo(x) +5°) =sign | Y alyid(@) d(@)+ b

i:af >0

—sign | Y ajyik(ei, @) +b°

i:af >0

All we need now is to identify b*.



2.5 Bias term b*

First, let’s consider the separable case:

supperd vedtos

It can be shown (we will not cover in class), that in the separable case the support vectors lie on the margin.
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2.5 Bias term b*

General (non-separable case):

For any support vector ¢(x;) with 0 < o < C, it can be shown that 1 = y; (w*" ¢ (x;) + b*)
(i.e. that support vector lies on the margin). Therefore, as before,

b=y —w (xi) = yi — Y fysk(ag, ).
j=1

In practice, often average over all 7+ with 0 < o < C to stabilize computation.

With a* and b* in hand, we can make a prediction on any datapoint @,

sign (w*Tqb(a:) + b*) = sign Z a;yik(x;, x) +b*

a; >0



SVMs:
Understanding
them further



3.1 Understanding support vectors

Support vectors are ¢(x;) such that o > 0.

They are the set of points which satisfy one of the following:
(1) they are tight with respect to the large margin contraint,
(2) they do not satisfy the large margin contraint,
(3) they are misclassified.

when & = 0, y; (w*" () +b*) = 1,
and thus the point is 1/||w™||2 away from the hyperplane.

when ¢ < 1, the point is classified correctly
but does not satisfy the large margin constraint.

when & > 1, the point is misclassified. Support vectors (circled with the orange
line) are the only points that matter!



3.1 Understanding support vectors

One potential drawback of kernel methods: non-parametric, need to potentially keep
all the training points.

sign (w*Tgb(:n) - b*) = sign (z": afyik(x;, ) — b*).
i=1

For SVM though, very often #support vectors = |{z tag > O}‘ < n.

Training data Support Vectors in the Training data
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3.2 Examining the effect of kernels

Input Space Feature Space

Data may become linearly separable when lifted to the high-dimensional feature space!



Polynomial kernel: example

X true +ve

=151, ©®e ":o e true -ve
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Switch to Colab



Gaussian kernel: example

Gaussian kernel or Radial basis function (RBF) kernel

||m—a:'||%>

202

k(z, ') = exp (

for some o > 0. This is also parameterized as,

k(z, @) = exp (—ylz — 2']3)

X2

for some v > 0.

What does the decision boundary look like?
What is the effect of v?

Note that the prediction is of the form

sign (w*T (x) + b*) = sign ( Z o yik(x;, ) + b*).

i:af >0

Switch to Colab



SVM: Summary of mathematical forms

SVM: max-margin linear classifier

Primal (equivalent to minimizing /- regularized hinge loss):

wabv{gi

st yi(w' o(x;) +b) >1-&, Vieln]
fi >0, Vie [n]

. 1
min CY &+ §||’w||§

Dual (kernelizable, reveals what training points are support vectors):
1
max D ai- 3 > viyjaio; () d(x;)
‘ ? 2%}

s.t. Z%’%ZO and 0<a;<C, Vié€]n].



