CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 6, Sep 29

Sylzz

=T
_—

USCUniversity of

Southern California

Administrivia

Quiz 1 next week during lecture hours (5pm-7:20pm)
In-person. Please go to your respective room as follows:
Last name from A-L: THH 201
Last name from M-Z: SGM 123
Quiz will be closed-book.
Based on material covered till last time (so up to and including SVMs).

HW1 grades will be released on Monday.

HW3 will be released a few days after Quiz 1.

Multiclass
classification

1.1 Setup

Recall the setup:
e input (feature vector): & € R?
e output (label): y € [C] ={1,2,--- ,C}

e goal: learn a mapping f : R? — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
e predicting weather: sunny, cloudy, rainy, etc

e predicting image category: ImageNet dataset (C ~ 20K)

1.2 Linear models: Binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

1 ifwle >0
€Xr) =
/(@) {2 ifwlx <0
can be written as

f(z) 1 ifwlx > wlx
€Xr) =
2 ifwlz>wix

— argmax w,x
ke{1,2}

for any wi, ws s.t. w = w; — wo

Think of w, .« as a score for class k.

Linear models: Binary to multiclass

|
P
[\WI[JV)
O =
N

@ Blue class:
{z:w'z >0}

1t @ Orange class:

{z:wlz <0}

Linear models: Binary to multiclass

w:(%,%) = W] —w3
1
1f wl:(i 3l
wa— (-5}

°l < j @ Blue class:

{z : 1 = argmax;, w} =}
1} 1 @ Orange class:
{z : 2 = argmax;, w} =}

1 0 1 -t
___/jw}:wwwz,

vy

Yy

Linear models: Binary to multiclass

w1 = (1, —%)
ws = (],
w3 = (Oa 1)

® Blue class:

{z: 1 = argmax, wx}
@ Orange class:

{z : 2 = argmax;, w x}
® Green class:

{z : 3 = argmax, wlz}

1.3 Function class: Linear models for multiclass classification

N
|

f(x) = argmax w,x | wy,..., wc € R
kel[C]

\

7\

f(x) = argmax (Wz);, | W € R<*¢
kelC]

\

Next, lets try to generalize the loss functions. Focus on the logistic loss today.

d
/_/;_W
=W
- W
C W/ : 1 . |[PPWi
/j J‘_s\”¢\'

1.4 Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w; — wa:

T 1 e

Pry=1]zmw) = o(w'e) = ;o = o o e
(4= 2l 2,6 @™ ®
Naturally, for multiclass:
ewia: T
Pry=Fk|x;W) = — ox eVk®
2 kelc) €K
This 1s called the softmax function.
¢
(ovverks scwd w, ¥ P (|7; et
v < kR LS - b }3 - 1,W - &
=
e/w,, A

£¢'€Yc3

1.5 Let’s find the MILE

Maximize probability of seeing labels y1,...,y, given 1, ..., T,

w! x;
e Vi

= [Pryi [z W) =]] :
i=1 i=1 Zk:e[C] ek

By taking negative log, this is equivalent to minimizing

Zl <Zk€g} wzk z) Zln 1+Z (wy,—w,y,)"z

k#y;

This 1s the multiclass logistic loss. 1t 1s an upper-bound on the 0-1 misclassification loss:

'032_,('“'61)2)

]I[f(a:) ?é y] S log2 1+ Ze('wk—'wy)Tw (:f 7(,2 >

k#y

When C = 2, multiclass logistic loss is the same as binary logistic loss (let’s verify).

Relating binary and multiclass logistic loss
n W] T
W)z 2 W (4 = Coe-) t'>

(A L_(—vi

lonsiden any @ € [al

T_ .
R N N G U S) 1'7
for Y= 2, L”‘(\ + ¢ QU(AW)TK;)

P wWe Wi-w, , amd harspuing - lobels g d1,2} = {0,

Tar -
P . S M (& e'\}‘w’h)

A

1.6 Next, optimization

Apply SGD: what is the gradient of

FW)=In|1+ Z e(wk—wy,) @i | 9
k#y:

It’s a C x d matrix. Let’s focus on the k-th row:

Ik # i o VIS row Ved®) hew vedan
-7 /
& - 6('wk—wyi Vi, T ewzwi .
Ty, e w A] el whaw:
k#:yi € —|— Zk;éyz €
else
- (Zk - e(wk_wyi)%i> - (Zk - ewzwi)
Vup F(W) = a ;= il x;

1 ('wk_'wy-)Tmi mi - w! xT; wlx;
- Zk#% ¢ ' e Vit + Zk#yi err

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1. pick ¢ € [n]| uniformly at random

2. update the parameters

W« W —n

(

Pr(y=1|a;; W)

Pr(y=vy; |xz;; W) —1

Think about why the algorithm makes sense intuitively.

)

\ Pry=ClasW) |

<.

1.7 Probabilities -> Prediction

Having learned W, we can either

e make a deterministic prediction argmaxy¢c; Wy

e make a randomized prediction according to Pr(y = k | ; W) eWh®

1.8 Beyond linear models

Suppose we have any model f (not necessary linear) which gives some score fx(x) for
the datapoint & having the k-th label.

Forn linean wmmodl | Fe ()5 W, o

How can we convert this score to probabilities? Use the softmax function!
efk (:13)

S e Or @

Once we have probability estimates, what is suitable loss function to train the model?
Use the log loss. Also known as the cross-entropy loss.

o ef* (@)

fu(@) =Prly =k |z f) =

Log Loss/Cross-entropy loss: Binary case

Let’s start with binary classification again. Consider a model which predicts f (x) as
the probability of label being 1 for labelled datapoint (x, y). The log loss is defined as,

Logloss =1(y =1)In (~

—1(y =

1

f(z)

) +1(y =
1) In(f(z)) — 1(y =

“1)In (%f(@)

\Uha, 7.
f = , Want b

(1 fa)). | Tt EEO))
{25 n 'w(up(ﬂ\ = *'V(Nﬂ)

When the model is linear, this reduces to the logistic regression loss we defined before!

L'meom W\O‘Lw()

F('ﬂ c(w 7D

(4 e:w A S -6 (W) =5 Cw'

LO;LLoss: fjba;h om(@,cnu'er’W . 1&(7:’“ QMQU\' ewfix-(>

»
-

h((+e '7‘”&)

(\0(‘;?5%(‘31!3 Pesmony Lmrv)\

Log Loss/Cross-entropy loss: Multiclass case

This generalizes easily to the multiclass case. For datapoint (x,y), if fi(x) is the
predicted probability of label &,

st - 310 (72

k=1
= EC: 1(y = k)In (ﬁ(w)))-
k=1

When the model is linear, this also reduces to the multiclass logistic regression loss we
defined earlier today.

faoniise |

Log Loss/Cross-entropy loss: Multiclass case

By combining the softmax and the log-loss, we have a general loss £(f(x),y) which
we can use to train a multi-class classification model which assigns scores fi(x) to the
k-th class. (These scores fi(ax) are sometimes referred to as logits).

e EC: 1(y = k)In (fk:())
o

efy(w)

ﬁln 1_|_Z€fk(33>_fy(w)
i k#y

= In

Multiclass logistic loss: Another view

ecal bt We can predid wsive,
St A Fz(x\

QL‘P@D'?\ = b (% Lo (‘FL(X\\\\ - (Qﬂ’(‘fa(‘lﬂ\\
7 (zi 2ep 1‘9—(1\\\ - T (XW
QML%M@(‘FD—(,‘L\\\ O Mok fo(X)

ke

Ve * Yha 9 <
by oy fr0 £ %Litcw(hcm\ < o et + [C

’.‘ L(fr(‘lw\\)j & mal -FP_(—O - (c‘oCxW (N@'t(‘Hf\ai' \7
L

1.8 Other techniques for multiclass classification

Cross-entropy is the most popular, but there are other black-box techniques to convert
multiclass classification to binary classification.

e one-versus-all (one-versus-rest, one-against-all, etc.)
e one-versus-one (all-versus-all, etc.)
e Error-Correcting Output Codes (ECOC)

e tree-based reduction

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k € [C],

1.9 One-versus-all

e relabel examples with class £ as 41, and all others as —1

e train a binary classifier hy using this new dataset

] i B
X1 X1 X1 X1 X1
X2 X2 X2 X2 X2
X3 X3 X3 X3 X3
X4 X4 X4 X4 X4
X5 X5 X5 X5 X5
Y Y Y Y
hy ho h3 hy

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf

1.9 One-versus-all

Idea: train C binary classifiers to learn “is class & or not?” for each k.

Prediction: for a new example x
e ask each hy: does this belong to class k? (i.e. hi(x))

e randomly pick among all k’s s.t. hy(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

Idea: train ((2:) binary classifiers to learn “is class k& or k£'?”.

Training: for each pair (k, k'),

e relabel examples with class k£ as +1 and examples with class k' as —1

e discard all other examples

1.10 One-versus-one

e train a binary classifier /i, ;/) using this new dataset

W vs. Mvs. B Hvs. B | Nvs. Mvs. B | Hvs
X1 X1 X1 X1
X2 X2 X3 Xo -
X3 X3 X | X3
X4 X4 X4 X4
X5 Xs + | X5 + X5

Y Y Y Y U U
”'(1-‘2) h 3) h(z 4 h42) }1'(1.4) h‘(3.2)

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf

1.10 One-versus-one

Idea: train (g) binary classifiers to learn “is class k or k'?”.

Prediction: for a new example @
e ask each classifier 1, ;) to vote for either class £ or k'

e predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Other techniques such as tree-based methods and error-correcting codes can achieve
intermediate tradeoffs.

Neural Networks

Linear -> Fixed non-linear -> Learned non-linear map

|

[] [
{,\\h © 0

Linear models aren’t always enough. As we discussed, we can use a nonlinear mapping
and learn a linear model in the feature space:

d(x):xcRY— 2z e RM
But what kind of nonlinear mapping ¢ should be used?

Can we just learn the nonlinear mapping itself?

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

2.1 Loss function

For model which makes predictions f(a) on labelled datapoint (x,y), we can use the
following losses.

Regression:

Classification:

In |1+ Z efk(®)—=fy(2)
k#y

Jr ()
((f(z),y) =In <Ekif(i) > =

There maybe other, more suitable options for the problem at hand, but these are the
most popular for supervised problems.

2.2 Representation: Defining neural networks

Linear model as a one-layer neural network: L,(aO = W

"= g
2

For a linear model, h(a) = a.

Activation functions

To create non-linearity, can use some nonlinear (differentiable) function:

Rectified Linear Unit (ReLU): h(a) = max{0, a}

e Sigmoid function: h(a) = —=

14e—@ ' // —— Sigmoid
L’ === Tanh
) ed_e— @ —10fmmmmm =T —-= RelU
e Tanh: h(a) = St

-4 -2 0 2 4

o
many more Figure 13.2 from PML

Adding a layer

2
T
l =
X2 o=h(Wx) “ w
x3

W

W e R4X3’ h . R4 — R4 SO h(a) r— (hl(al), h2(a/2)7 h3(a’3)7 h4<a’4))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)

hio) : Ui:h, WeD), hGy) k(oﬂ)

“Wl‘a.""‘g funcllon Fuvbam
Yo tLadn (1/\1’*5.

("

Putting things together: a neural network

We now have a network:

each node is called a neuron
h is called the activation function

e can use h(a) = 1 for one neuron in each layer to
incorporate bias term

e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output
layers)

deep neural nets can have many layers and millions of
parameters

this is a feedforward, fully connected neural net, there
are many variants (convolutional nets, residual nets, re-
current nets, etc.)

input layer

hidden layer 1

hidden layer 2

output layer

Neural network: Definition

An L-layer neural net can be written as

f(ac) = h|_ (WLhL—l (WL—l s h1 (WliL‘))) . (
Wt sulpd of prev (ogo,
/ Mukf ;V‘fu\t 9-6 neg¢t

o W, € R¥>*di-1 ig the weights between layer £ — 1 and ¢

Define

e dy =d,dy,...,d_are numbers of neurons at each layer
e a; € R is input to layer ¢

e 0, € R% is output of layer ¢

e h,:R% — R% is activation functions at layer ¢

input layer hidden layer 1 hidden layer 2 output layer

Now, for a given input @, we have recursive relations:

00:ZB,ae:WgOg_l,Og:hg(ag), (621,...,L).

2.3 Optimization

Our optimization problem is to minimize,
1 n
FWq,..., W)= — FEWq,..., W
(W L) = ; (W L)

where
1f (i) —yll3 for regression

In (1 + Zk#y, efr(@i)—fy; (‘”i)) for classification

(2

F,L'(Wl, .. .,WL) — {
How to solve this? Apply SGD!

To compute the gradient efficiently, we use backpropogation. More on this soon.

2.4 Generalization

Overfitting is a concern for such a complex model, but there are ways to handle it.
For example, we can add /5 regularization.
/5 regularization: minimize

GWy,. .., W) =FWy,..., W) +X > v

all weights w
in network

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
e

Noise: 0

e

Batch size: 10
—

REGENERATE

Epoch

000,066

FEATURES

Which properties do
you want to feed in?

X

sin(X;)

sin(X;)

Learning rate

0.03

+

Demo

Activation Regularization Regularization rate Problem type
RelLU v L2 - 0.001 v Classification -
— 2 HIDDEN LAYERS OUTPUT

1 Test loss 0.013

Training loss 0.006

5

ﬂ
-
p, .

This is the output

from one neuron.

Hover to see it
larger.

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

Colors shows

data, neuron and

weight values.

[Showtestdata [] Discretize output

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Neural Networks:
Diving deeper

3.1 Representation: Very powerful function class!

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous
function.

It might need a huge number of neurons though, and depth helps!

Choosing the network architecture is important.

e for feedforward network, need to decide number of hidden layers, number of
neurons at each layer, activation functions, etc.

Designing the architecture can be complicated, though various standard choices exist.

3.2 Optimization: Computing gradients efficiently using Backprop

To run SGD, need gradients of F;(W,..., W) with respect to all the weights in all
the layers. How do we get the gradient?

Here’s a naive way to compute gradients. For some function F'(w) of a univariate
parameter w,

dF(w) — lim Flw+e¢€) — F(w—e¢)
dw e—0 2e

If sun wetwenk WZWes m \L/dj/\f“s, this scoles XY O(—"\W '

Chhis Te shll waepd (91 graliend chechivy'

Backprop

Backpropogation: A very efficient way to compute gradients of neural networks using
an application of the chain rule (similar to dynamic programming).

Chain rule:

e for a composite function f(g(w))

af 0Of 9g
ow Og Ow
e for a composite function f(g1(w), ..., gq(w))

df 0g;
Z dg; Ow

the simplest example f(g1(w), g2(w)) = g1(w)ga(w)

?/f B S TR 2 = ge 92 Cw) g,:‘u) \'j'l\ﬂtﬁ,‘(uh

2 39, ow }71« 2w

Backprop: Intuition

Nave * ogply driin e fov tach weiyn

BOJLVW(P ' hewse WPM@M]B? &"’83\}\\!\(3 7-@&(eds wad
\IV\?\AI B tedn laaﬁ\ (Qa

Backprop: Derivation

Drop the subscript £ for layer for simplicity. For this derivation, refer to the loss
function as F;,, (instead of F};) for convenience. .. -
@ mpui' of heworn 4
Find the derivative of I, w.r.t. to w;;
6Fm . 3Fm 8az~ . 8Fm 8(wijoj) o 8Fm
8’(1]7;]' N aai 8wij N 8ai 8wz~j B 60@

aFm 80@' o 6F 8ak /
80@' (9@@ B (Zk: 8ak 802> (Z 8ak wkzz) h CLZ)

lila %A&v\\"\a 2
slore

0j

Qe = Wwhia;

Backprop: Derivation

Adding the subscript for layer:

OF,, OF,,
dag;
) k:

For the last layer, for square loss

OFy _ O(hii(ar:) = ym)® /
— 2 ? —— 2 h i i) — m h ; i
0aL,i aa'L,i (L, (04_7) Y) L, (a’L,)

Exercise: try to do it for logistic loss yourself.

Backprop: Derivation A-alT
Aijz ity
Using matrix notation greatly simplifies presentation and implementation:

OF, OFm o —

— c Rd@ Xdp_1 N
oW, day 1

OFn _ {(W}Ha%z«l) ohl(a;) ifl<L

day 2(hi(aL) 4 ym) o hi(ar) else
where v, 0 vy = (V11V21, "+ , V14V24) 145 the element-wise product (a.k.a. Hadamard
product). et +4Q N/,

Verify yourself!

A}

-
-

\Nix t\ /__}._,.,Clbﬂ
—— P T ”
d -

do

o
> |

The backpropagation algorithm (Backprop)

Initialize W, ..., W randomly. Repeat:
1. randomly pick one data point i € [n)]
2. forward propagation: for each layer / =1,...,L
e compute ay = W,0y_1 and oy, = hy(ay) (0g = x;)
3. backward propagation: foreach/ = L,...,1
e compute

Ay

2(hi(aL) —y;) oh{(a.) else

OF, (W}Ha@i) oh(ay) iff<L
8Cl,g

e update weights

OF; OF;
—navw =W;—n 0}—1

Wg < Wg 8015

(Important: should Wy be overwritten immediately in the last step?)

input layer

hidden layer 1

hidden layer 2

output layer

Non-saturating activation functions

L Sigmoid activation function

/
1.0 fmmmmmmm e Fmmm—mmoooo
/

/

0.8 1
Saturating

0.6

0.4 1
Saturating
0.2 1 7 Linear
/
/
4
l/
/
4
4

0.0

-0.2

(a)

(elicks dopond on Lu,' (“q

Activation functions

1
/
/
-0.5 /
—— Sigmoid
-== Tanh
e L e —-= RelU
2 0 2 '
(b)

T cchvabion fundion sabwales 5 podicd & oo gy

LLLQ(&: Ny (d‘(“

Figure 13.2 from PML

Modern networks are huge,

|)/s-day
1e

Y-axis: Petaflop/s-day (pfs-day)
consists of performing 10%° neural net
operations per second for one day,

or a total of about 10%° operations.

\0&\)\ M\L"U‘a
o 2 GV““R o]
so,cw&

and training

AlphaGoZero ®

Neural Machine 3
Translation
Neural Architecture
Search

®
- TI7 Dota 1vl
Xception

DeepSpeech2
o
1e VGG &
® Seq2Seq ResNets
Visualizing and
Understanding Conv .
1¢
AlexNet Nets GoogleNet
° °
°
1¢ Dropout
5.4-month doubling
1e
« DQON

The total ¢

4 t of
'own, used a lot o

amount of compute, in petaflop/s-day:s 1sed to train selected results that ar latively well

mpute for their time, and gave enough information to estimate the mpute used

can take time

o AlphaZero

..since 2012, the amount of compute used in the largest Al training runs has been increasing
exponentially with a 3.4-month doubling time (by comparison, Moore’s Law had a 2-year
doubling period). Since 2012, this metric has grown by more than 300,000x (a 2-year doubling

period would yield only a 7x increase).

From https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/

Modern

1000

GPT-3 (175B)

Megatron-Turing NLG (530B)

o
=)
]

Megatron-LM (8.3B)
Turing-NLG (17.2B)

[
15

T5(11B)

-

GPT-2 (1.5B)

Model Size (in billions of parameters)

BERT-Large (340M)

(=
e

ELMo (94M)

0.01

2018 2019 2020 2021 2022

https://huggingface.co/blog/large-language-models

Test Loss

networks are huge, and training can take time

4.2
6 —— L=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-1013)70:076
5 3.9 4.8
P G 4.0
R 32
3
3.0
2.4
L = (Cpin/2.3-108)70:050
2 , . " . 2.7
io° 107 10°% 103 107! 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Scaling Laws for Neural Language Models [Kaplan et al.20]

https://huggingface.co/blog/large-language-models

Optimization: Variants on SGD

e mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

Mini-batch

Consider F(w) = Y., F;(w), where F;(w) is the loss function for the i-th datapoint.
Recall that any V F(w) is a stochastic gradient of F(w) if

E[VF(w)] = VF(w).

Mini-batch SGD (also known as mini-batch GD): sample S C {1,...,n} at random, and estimate

the average gradient over these batch of |S| samples:

Z/

jES

Common batch size: 32, 64, 128, etc.
Widha 55(DSWQ

o

Bokr siye st- babeh fs o TGAU memon,

Optimization: Variants on SGD

e mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

e adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across itera-
tions), based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

Adaptive learning rate tuning

“The learning rate is perhaps the most important hyperparameter.
If you have time to tune only one hyperparameter, tune the learning rate.”
-Deep learning (Book by Goodfellow, Bengio, Courville)

We often use a learning rate schedule.

piecewise constant exponential decay polynomial decay
1.00 A 1.0 1.0 1

0.95 4 0.8 1 0.8

0.90 1 064

0.6 4

0.85 4
0.4

0.4
0.80
0.2 1
0.75 1 021
0.0

0 20 40 60 80 1 0 20 40 60 80 1 0 20 40 60 80 100

(a) (b) (c)

Some common learning rate schedules (figure from PML)

Adaptive learning rate methods (Adagrad, RMSProp) scale the learning rate of each parameter based
on some moving average of the magnitude of the gradients.

Optimization: Variants on SGD

mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across itera-
tions), based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

momentum: add a “momentum” term to encourage model to continue along previous gradient direction

Momentum

“move faster along directions that were previously good, and to slow down along directions where
the gradient has suddenly changed, just like a ball rolling downhill.” [PML]

Initialize wq and (velocity) v = 0
Fort=1,2,...
e cstimate a stochastic gradient g,
e update v < av + g, for some discount factor o € (0, 1)

e update weight w; < w;_1 — nv

Updates for first few rounds:
¢ W1 = Wo— N9,

* wy = w1 —ang; —Nng; $: g e Za

o w3 =wy—a’ng; —angs —Ngs 9§, %

Momentum

Why Momentum Really Works

Step-size a = 0.02
 J

Momentum B = 0.99

GABRIEL GOH
UC Davis

April. 4
2017

We often think of Momentum as a means of dampening oscillations
and speeding up the iterations, leading to faster convergence. But it
has other interesting behavior. It allows a larger range of step-sizes
to be used, and creates its own oscillations. What is going on?

Citation:
Goh, 2017

https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Optimization: Variants on SGD

mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across itera-
tions), based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

momentum: add a “momentum” term to encourage model to continue along previous gradient direction

Many other variants and tricks such as batch normalization: normalize the inputs of each layer over the mini-
batch (to zero-mean and unit-variance; like we did in HW1)

3.3 Generalization: Preventing Overfitting

Overfitting can be a major concern since neural nets are very powerful.

Methods to overcome overfitting:
e data augmentation
e regularization

e dropout

early stopping

Preventing overfitting: Data augmentation

The best way to prevent overfitting? Get more samples.
What if you cannot get access to more samples?

Exploit prior knowledge to add more training data:
Affine Elastic

Distortion Noise Deformation

> Horizontal Random
flip Translation

Hue Shift

Preventing overfitting: Regularization & Dropout

We can use regularization techniques such as /5 regularization.
{5 regularization: minimize

GWy,..., W) =FWy,... W) +x Y

all weights w
1n network

A very popular technique is Dropout. Here, we independently delete each neuron with
a fixed probability (say 0.1), during each iteration of Backprop (only for training, not

for testing)
Py ®
\NeZAN,
AN
0 N

AL VAL
WX WK

.».cs;o.« XXX

Y SN ,‘
\' 4\‘) S \' o\.‘s & ’
(ORD ' ORI
£ @
X I\v‘/ﬁi Iw/
J/ \\ l" ‘\\

Very effective and popular in practice!

Preventing overfitting: Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

| I I
e—e 'Training set loss

0.15 —— Validation set loss |-

e
’_\
o

Loss (negative log-likelihood)
o
o
&t

0 50 100 150 200 250
Time (epochs)

,Théré a re big. fnySteri“e-S ab'olu“t howand why dé‘ép -Iea?rf“frﬁi'n'g'.v\.}q_.r'ks :

N s‘.."# 5

Why dorgradlent based methods work on these hlghly-nonconvex prob}ems’-’ ,
Why@n deep networks generallze weII despite havmg the capacnty to SO eaS|Iy overflt? ;
~ What mpllat regﬁlarlzatlon effects do gradlent based meth)d fpmiwde? RhTe
; £ : ol L T "»., o e s 3

"l'-.‘ b \&’/ e .. ? : AR ‘- e« %A o

. e R . : . ' ‘ PR 321 Picture’credit: NASA/QPL-CaItech

Neural networks: Summary

Deep neural networks
e are hugely popular, achieving best performance on many problems
e do need a lot of data to work well
e can take a lot of time to train (need GPUs for massive parallel computing)
e take some work to select architecture and hyperparameters

e are still not well understood in theory

