
CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 6, Sep 29

Administrivia

• Quiz 1 next week during lecture hours (5pm-7:20pm)
• In-person. Please go to your respective room as follows:

Last name from A-L: THH 201
Last name from M-Z: SGM 123

• Quiz will be closed-book.
• Based on material covered till last time (so up to and including SVMs).

• HW1 grades will be released on Monday.

• HW3 will be released a few days after Quiz 1.

Multiclass
classification

1.1 Setup

Recall the setup:

• input (feature vector): x ∈ Rd

• output (label): y ∈ [C] = {1, 2, · · · ,C}

• goal: learn a mapping f : Rd → [C]

Examples:

• recognizing digits (C = 10) or letters (C = 26 or 52)

• predicting weather: sunny, cloudy, rainy, etc

• predicting image category: ImageNet dataset (C ≈ 20K)

1.2 Linear models: Binary to multiclass
Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {−1,+1} to {1, 2})

f(x) =

{

1 if wT
x ≥ 0

2 if wT
x < 0

can be written as

f(x) =

{

1 if wT
1x ≥ w

T
2x

2 if wT
2x > w

T
1x

= argmax
k∈{1,2}

w
T
kx

for any w1,w2 s.t. w = w1 −w2

Think of wT
kx as a score for class k.

Linear models: Binary to multiclass

Linear models: Binary to multiclass

Linear models: Binary to multiclass

1.3 Function class: Linear models for multiclass classification

F =

{

f(x) = argmax
k∈[C]

w
T
kx | w1, . . . ,wC ∈ R

d

}

=

{

f(x) = argmax
k∈[C]

(Wx)k | W ∈ R
C×d

}

Next, lets try to generalize the loss functions. Focus on the logistic loss today.

1.4 Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 −w2:

Pr(y = 1 | x;w) = σ(wT
x) =

1

1 + e−w
T
x
=

ew
T
1
x

ew
T
1
x + ew

T
2
x

∝ ew
T
1
x

Naturally, for multiclass:

Pr(y = k | x;W) =
ew

T
k
x

∑
k∈[C] e

w
T
k
x

∝ ew
T
k
x

This is called the softmax function.

1.5 Let’s find the MLE
Maximize probability of seeing labels y1, . . . , yn given x1, . . . ,xn

P (W) =
n
∏

i=1

Pr(yi | xi;W) =
n
∏

i=1

ew
T
yi

xi

∑

k∈[C] e
w

T
k
xi

By taking negative log, this is equivalent to minimizing

F (W) =
n
∑

i=1

ln

(
∑

k∈[C] e
w

T
kxi

ew
T
yi

xi

)

=
n
∑

i=1

ln



1 +
∑

k "=yi

e(wk−wyi
)T
xi





This is the multiclass logistic loss. It is an upper-bound on the 0-1 misclassification loss:

I[f(x) != y] ≤ log2



1 +
∑

k "=y

e(wk−wy)
T
x





When C = 2, multiclass logistic loss is the same as binary logistic loss (let’s verify).

Relating binary and multiclass logistic loss

1.6 Next, optimization
Apply SGD: what is the gradient of

F (W) = ln



1 +
∑

k !=yi

e(wk−wyi
)T
xi



?

It’s a C× d matrix. Let’s focus on the k-th row:

If k "= yi:

∇
w

T
k
F (W) =

e(wk−wyi
)T
xi

1 +
∑

k !=yi
e(wk−wyi

)T
xi

x
T
i =

ew
T
kxi

ew
T
yi

xi +
∑

k !=yi
ew

T
k
xi

x
T
i = Pr(y = k | xi;W)xT

i

else:

∇
w

T
k
F (W) =

−
(

∑

k !=yi
e(wk−wyi

)T
xi

)

1 +
∑

k !=yi
e(wk−wyi

)T
xi

x
T
i =

−
(

∑

k !=yi
ew

T
kxi

)

ew
T
yi

xi +
∑

k !=yi
ew

T
k
xi

x
T
i = (Pr(y = yi | xi;W)− 1)xT

i

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1. pick i ∈ [n] uniformly at random

2. update the parameters

W ←W − η

















Pr(y = 1 | xi;W)
...

Pr(y = yi | xi;W)− 1
...

Pr(y = C | xi;W)

















x
T
i

Think about why the algorithm makes sense intuitively.

1.7 Probabilities -> Prediction

Having learned W , we can either

• make a deterministic prediction argmaxk∈[C] wT
k
x

• make a randomized prediction according to Pr(y = k | x;W) ∝ ew
T
k
x

1.8 Beyond linear models

Suppose we have any model f (not necessary linear) which gives some score fk(x) for
the datapoint x having the k-th label.

How can we convert this score to probabilities? Use the softmax function!

f̃k(x) = Pr(y = k | x; f) =
efk(x)

∑
k′∈[C] e

fk′ (x)
∝ efk(x)

Once we have probability estimates, what is suitable loss function to train the model?
Use the log loss. Also known as the cross-entropy loss.

Log Loss/Cross-entropy loss: Binary case
Let’s start with binary classification again. Consider a model which predicts f̃(x) as
the probability of label being 1 for labelled datapoint (x, y). The log loss is defined as,

LogLoss = 1(y = 1) ln

(

1

f̃(x)

)

+ 1(y = −1) ln

(

1

1− f̃(x)

)

= −1(y = 1) ln(f̃(x))− 1(y = −1) ln((1− f̃(x))).

When the model is linear, this reduces to the logistic regression loss we defined before!

This generalizes easily to the multiclass case. For datapoint (x, y), if f̃k(x) is the
predicted probability of label k,

LogLoss =
C
∑

k=1

1(y = k) ln

(

1

f̃k(x)

)

= −

C
∑

k=1

1(y = k) ln
(

f̃k(x)
)

).

When the model is linear, this also reduces to the multiclass logistic regression loss we
defined earlier today.

Log Loss/Cross-entropy loss: Multiclass case

By combining the softmax and the log-loss, we have a general loss !(f(x), y) which
we can use to train a multi-class classification model which assigns scores fk(x) to the
k-th class. (These scores fk(x) are sometimes referred to as logits).

!(f(x), y) = −

C
∑

k=1

1(y = k) ln
(

f̃k(x)
)

= ln

(
∑

k∈[C] e
fk(x)

efy(x)

)

=
n
∑

i=1

ln



1 +
∑

k "=y

efk(x)−fy(x)



 .

Log Loss/Cross-entropy loss: Multiclass case

Multiclass logistic loss: Another view

Cross-entropy is the most popular, but there are other black-box techniques to convert
multiclass classification to binary classification.

• one-versus-all (one-versus-rest, one-against-all, etc.)

• one-versus-one (all-versus-all, etc.)

• Error-Correcting Output Codes (ECOC)

• tree-based reduction

1.8 Other techniques for multiclass classification

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k ∈ [C],

• relabel examples with class k as +1, and all others as −1

• train a binary classifier hk using this new dataset

1.9 One-versus-all

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Prediction: for a new example x

• ask each hk: does this belong to class k? (i.e. hk(x))

• randomly pick among all k’s s.t. hk(x) = +1.

Issue: will (probably) make a mistake as long as one of hk errs.

1.9 One-versus-all

Idea: train
(

C

2

)

binary classifiers to learn “is class k or k′?”.

Training: for each pair (k, k′),

• relabel examples with class k as +1 and examples with class k′ as −1

• discard all other examples

• train a binary classifier h(k,k′) using this new dataset

1.10 One-versus-one

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf

Idea: train
(

C

2

)

binary classifiers to learn “is class k or k′?”.

Prediction: for a new example x

• ask each classifier h(k,k′) to vote for either class k or k′

• predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Other techniques such as tree-based methods and error-correcting codes can achieve
intermediate tradeoffs.

1.10 One-versus-one

Neural Networks

Linear models aren’t always enough. As we discussed, we can use a nonlinear mapping
and learn a linear model in the feature space:

φ(x) : x ∈ R
d
→ z ∈ R

M

But what kind of nonlinear mapping φ should be used?

Can we just learn the nonlinear mapping itself?

Linear -> Fixed non-linear -> Learned non-linear map

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

2.1 Loss function
For model which makes predictions f(x) on labelled datapoint (x, y), we can use the
following losses.

Regression:

!(f(x), y) = (f(x)− y)2 .

Classification:

!(f(x), y) = ln

(
∑

k∈[C] e
fk(x)

efy(x)

)

=
n
∑

i=1

ln



1 +
∑

k "=y

efk(x)−fy(x)



 .

There maybe other, more suitable options for the problem at hand, but these are the
most popular for supervised problems.

To create non-linearity, can use some nonlinear (differentiable) function:

• Rectified Linear Unit (ReLU): h(a) = max{0, a}

• Sigmoid function: h(a) = 1

1+e
−a

• Tanh: h(a) = e
a
−e

−a

e
a+e

−a

• many more

2.2 Representation: Defining neural networks

For a linear model, h(a) = a.

Linear model as a one-layer neural network:

Figure 13.2 from PML

W ∈ R4×3, h : R4
→ R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear mapping: φ(x) = h(Wx)

Adding a layer

We now have a network:

• each node is called a neuron

• h is called the activation function

• can use h(a) = 1 for one neuron in each layer to
incorporate bias term

• output neuron can use h(a) = a

• #layers refers to #hidden layers (plus 1 or 2 for input/output
layers)

• deep neural nets can have many layers and millions of
parameters

• this is a feedforward, fully connected neural net, there
are many variants (convolutional nets, residual nets, re-
current nets, etc.)

Putting things together: a neural network

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W 1x))) .

Define

• W ! ∈ Rd!×d!−1 is the weights between layer !− 1 and !

• d0 = d, d1, . . . , dL are numbers of neurons at each layer

• a! ∈ Rd! is input to layer !

• o! ∈ Rd! is output of layer !

• h! : Rd! → Rd! is activation functions at layer !

Now, for a given input x, we have recursive relations:

o0 = x,a! = W !o!−1,o! = h!(a!), (! = 1, . . . , L).

Neural network: Definition

2.3 Optimization

Our optimization problem is to minimize,

F (W 1, . . . ,W L) =
1

n

n
∑

i=1

Fi(W 1, . . . ,W L)

where

Fi(W 1, . . . ,W L) =

{

‖f(xi)− yi‖
2
2 for regression

ln
(

1 +
∑

k !=yi
efk(xi)−fyi (xi)

)

for classification

How to solve this? Apply SGD!

To compute the gradient efficiently, we use backpropogation. More on this soon.

2.4 Generalization

Overfitting is a concern for such a complex model, but there are ways to handle it.

For example, we can add !2 regularization.

!2 regularization: minimize

G(W 1, . . . ,W L) = F (W 1, . . . ,W L) + λ
∑

all weights w
in network

w2

http://playground.tensorflow.org/

Demo

http://playground.tensorflow.org/

Neural Networks:
Diving deeper

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous

function.

It might need a huge number of neurons though, and depth helps!

Choosing the network architecture is important.

• for feedforward network, need to decide number of hidden layers, number of
neurons at each layer, activation functions, etc.

Designing the architecture can be complicated, though various standard choices exist.

3.1 Representation: Very powerful function class!

3.2 Optimization: Computing gradients efficiently using Backprop

To run SGD, need gradients of Fi(W 1, . . . ,W L) with respect to all the weights in all
the layers. How do we get the gradient?

Here’s a naive way to compute gradients. For some function F (w) of a univariate
parameter w,

dF (w)

dw
= lim

ε→0

F (w + ε)− F (w − ε)

2ε

Backpropogation: A very efficient way to compute gradients of neural networks using
an application of the chain rule (similar to dynamic programming).

Chain rule:

• for a composite function f(g(w))

∂f

∂w
=

∂f

∂g

∂g

∂w

• for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑

i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

Backprop

Backprop: Intuition

Drop the subscript ! for layer for simplicity. For this derivation, refer to the loss
function as Fm (instead of Fi) for convenience.

Find the derivative of Fm w.r.t. to wij

∂Fm

∂wij
=

∂Fm

∂ai

∂ai

∂wij
=

∂Fm

∂ai

∂(wijoj)

∂wij
=

∂Fm

∂ai
oj

∂Fm

∂ai
=

∂Fm

∂oi

∂oi

∂ai
=

(

∑

k

∂Fm

∂ak

∂ak

∂oi

)

h
′

i(ai) =

(

∑

k

∂Fm

∂ak
wki

)

h
′

i(ai)

Backprop: Derivation

Adding the subscript for layer:

∂Fm

∂w!,ij
=

∂Fm

∂a!,i
o!−1,j

∂Fm

∂a!,i
=

(

∑

k

∂Fm

∂a!+1,k
w!+1,ki

)

h′

!,i(a!,i)

For the last layer, for square loss

∂Fm

∂aL,i
=

∂(hL,i(aL,i)− ym)2

∂aL,i
= 2(hL,i(aL,i)− ym)h′

L,i(aL,i)

Exercise: try to do it for logistic loss yourself.

Backprop: Derivation

Using matrix notation greatly simplifies presentation and implementation:

∂Fm

∂W !

=
∂Fm

∂a!

o
T
!−1 ∈ R

d!×d!−1

∂Fm

∂a!

=

{

(

W
T
!+1

∂Fm

∂a!+1

)

◦ h
′

!(a!) if " < L

2(hL(aL)− ym) ◦ h′

L(aL) else

where v1 ◦ v2 = (v11v21, · · · , v1dv2d) is the element-wise product (a.k.a. Hadamard
product).

Verify yourself!

Backprop: Derivation

Initialize W 1, . . . ,W L randomly. Repeat:

1. randomly pick one data point i ∈ [n]

2. forward propagation: for each layer ! = 1, . . . , L

• compute a! = W !o!−1 and o! = h!(a!) (o0 = xi)

3. backward propagation: for each ! = L, . . . , 1

• compute

∂Fi

∂a!

=

{

(

W
T
!+1

∂Fi

∂a!+1

)

◦ h
′

!(a!) if ! < L

2(hL(aL)− yi) ◦ h
′

L(aL) else

• update weights

W ! ←W ! − η
∂Fi

∂W !

= W ! − η
∂Fi

∂a!

o
T
!−1

(Important: should W ! be overwritten immediately in the last step?)

The backpropagation algorithm (Backprop)

Non-saturating activation functions

Figure 13.2 from PML

Modern networks are huge, and training can take time

From https://openai.com/blog/ai-and-compute/

..since 2012, the amount of compute used in the largest AI training runs has been increasing
exponentially with a 3.4-month doubling time (by comparison, Moore’s Law had a 2-year
doubling period). Since 2012, this metric has grown by more than 300,000x (a 2-year doubling
period would yield only a 7x increase).

Y-axis: Petaflop/s-day (pfs-day)
consists of performing 1015 neural net
operations per second for one day,
or a total of about 1020 operations.

https://openai.com/blog/ai-and-compute/

Modern networks are huge, and training can take time

https://huggingface.co/blog/large-language-models Scaling Laws for Neural Language Models [Kaplan et al.’20]

https://huggingface.co/blog/large-language-models

Optimization: Variants on SGD

• mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

Mini-batch

Consider F (w) =
∑n

i=1
Fi(w), where Fi(w) is the loss function for the i-th datapoint.

Recall that any ∇F̃ (w) is a stochastic gradient of F (w) if

E[∇F̃ (w)] = ∇F (w).

Mini-batch SGD (also known as mini-batch GD): sample S ⊂ {1, . . . , n} at random, and estimate

the average gradient over these batch of |S| samples:

∇F̃ (w) =
1

|S|

∑

j∈S

Fj(w).

Common batch size: 32, 64, 128, etc.

• mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

• adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across itera-
tions), based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

Optimization: Variants on SGD

Adaptive learning rate tuning
``The learning rate is perhaps the most important hyperparameter.
If you have time to tune only one hyperparameter, tune the learning rate.”

-Deep learning (Book by Goodfellow, Bengio, Courville)

We often use a learning rate schedule.

Some common learning rate schedules (figure from PML)

Adaptive learning rate methods (Adagrad, RMSProp) scale the learning rate of each parameter based
on some moving average of the magnitude of the gradients.

Optimization: Variants on SGD

• mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

• adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across itera-
tions), based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

• momentum: add a “momentum” term to encourage model to continue along previous gradient direction

Momentum
“move faster along directions that were previously good, and to slow down along directions where
the gradient has suddenly changed, just like a ball rolling downhill.” [PML]

Initialize w0 and (velocity) v = 0

For t = 1, 2, . . .

• estimate a stochastic gradient g
t

• update v ← αv + g
t

for some discount factor α ∈ (0, 1)

• update weight wt ← wt−1 − ηv

Updates for first few rounds:

• w1 = w0 − ηg1

• w2 = w1 − αηg1 − ηg2

• w3 = w2 − α2ηg1 − αηg2 − ηg3

• · · ·

https://distill.pub/2017/momentum/

Momentum

https://distill.pub/2017/momentum/

Optimization: Variants on SGD

• mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64,
128, etc.)

• adaptive learning rate tuning: choose a different learning rate for each parameter (and vary this across itera-
tions), based on the magnitude of previous gradients for that parameter (used in Adagrad, RMSProp)

• momentum: add a “momentum” term to encourage model to continue along previous gradient direction

• Many other variants and tricks such as batch normalization: normalize the inputs of each layer over the mini-
batch (to zero-mean and unit-variance; like we did in HW1)

3.3 Generalization: Preventing Overfitting

Overfitting can be a major concern since neural nets are very powerful.

Methods to overcome overfitting:

• data augmentation

• regularization

• dropout

• early stopping

• · · ·

Preventing overfitting: Data augmentation
The best way to prevent overfitting? Get more samples.
What if you cannot get access to more samples?

Exploit prior knowledge to add more training data:

Preventing overfitting: Regularization & Dropout
We can use regularization techniques such as !2 regularization.
!2 regularization: minimize

G(W 1, . . . ,W L) = F (W 1, . . . ,W L) + λ
∑

all weights w
in network

w2

A very popular technique is Dropout. Here, we independently delete each neuron with
a fixed probability (say 0.1), during each iteration of Backprop (only for training, not
for testing)

Very effective and popular in practice!

Preventing overfitting: Early stopping
Stop training when the performance on validation set stops improvingCHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0.00

0.05

0.10

0.15

0.20

L
os

s
(n

eg
at

iv
e

lo
g-

li
ke

li
h
o
o
d
)

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Early stopping

There are big mysteries about how and why deep learning works

• Why are certain architectures better for certain problems? How should we design architectures?
• Why do gradient-based methods work on these highly-nonconvex problems?
• Why can deep networks generalize well despite having the capacity to so easily overfit?
• What implicit regularization effects do gradient-based methods provide?
• …

Picture credit: NASA/JPL-Caltech

Neural networks: Summary

Deep neural networks

• are hugely popular, achieving best performance on many problems

• do need a lot of data to work well

• can take a lot of time to train (need GPUs for massive parallel computing)

• take some work to select architecture and hyperparameters

• are still not well understood in theory

