
CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 7, Oct 20

Administrivia
• Quiz 1 grades will be released soon.
• Linear algebra tip: Whenever you see or write a matrix-matrix or matrix-

vector product, double check to make sure the dimensions match.

Make sure none of your linear-algebra operations are caught by the “matrix police”...

Administrivia

• Quiz 1 grades will be released soon.
• Linear algebra tip: Whenever you see or write a matrix-matrix or matrix-

vector product, double check to make sure the dimensions match.

• Project details will be released in 1-2 weeks (Kaggle competition).
• Groups of 4 (start forming groups)

• Today’s plan:
• Convolutional neural networks
• Sequential prediction, Markov models and (a bit of) recurrent neural

networks

Convolutional
Neural Networks

Not much math in this part, but there’ll be empirical intuition (and cat pictures J)

The materials in this part borrow heavily from the following sources:

• Stanford’s CS231n: http://cs231n.stanford.edu/

• Deep learning book by Goodfellow, Bengio and Courville: http://deeplearningbook.org

Both website provides a lot of useful resources: notes, demos, videos, etc.

Acknowledgements

http://cs231n.stanford.edu/
http://deeplearningbook.org/

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

,PDJH�&ODVVLILFDWLRQ��$�FRUH�WDVN�LQ�&RPSXWHU�9LVLRQ

�

FDW

�DVVXPH�JLYHQ�VHW�RI�GLVFUHWH�ODEHOV�
^GRJ��FDW��WUXFN��SODQH�����`

7KLV�LPDJH�E\�1LNLWD�LV�
OLFHQVHG�XQGHU�&&�%<����

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

7KLV�LPDJH�E\�1LNLWD�LV�
OLFHQVHG�XQGHU�&&�%<����

7KH�3UREOHP��6HPDQWLF�*DS

�

:KDW�WKH�FRPSXWHU�VHHV

$Q�LPDJH�LV�MXVW�D�ELJ�JULG�RI�
QXPEHUV�EHWZHHQ�>������@�

H�J������[�����[��
���FKDQQHOV�5*%�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

&KDOOHQJHV��9LHZSRLQW�YDULDWLRQ

�

$OO�SL[HOV�FKDQJH�ZKHQ�
WKH�FDPHUD�PRYHV�

7KLV�LPDJH�E\�1LNLWD�LV�
OLFHQVHG�XQGHU�&&�%<����

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

&KDOOHQJHV��,OOXPLQDWLRQ

�

7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ 7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ 7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ 7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

&KDOOHQJHV��'HIRUPDWLRQ

��

7KLV�LPDJH�E\�8PEHUWR�6DOYDJQLQ�
LV�OLFHQVHG�XQGHU�&&�%<����

7KLV�LPDJH�E\�7RP�7KDL�LV�
OLFHQVHG�XQGHU�&&�%<�����

7KLV�LPDJH�E\�VDUH�EHDU�LV�
OLFHQVHG�XQGHU�&&�%<����

7KLV�LPDJH�E\�8PEHUWR�6DOYDJQLQ�
LV�OLFHQVHG�XQGHU�&&�%<����

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

&KDOOHQJHV��2FFOXVLRQ

��

7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ 7KLV�LPDJH�E\�MRQVVRQ�LV�OLFHQVHG�
XQGHU�&&�%<����7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO����������

7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ

&KDOOHQJHV��%DFNJURXQG�&OXWWHU

7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

&KDOOHQJHV��,QWUDFODVV�YDULDWLRQ

��

7KLV�LPDJH�LV�&&������SXEOLF�GRPDLQ

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

$Q�LPDJH�FODVVLILHU

��

8QOLNH�H�J��VRUWLQJ�D�OLVW�RI�QXPEHUV�
�
QR�REYLRXV�ZD\�WR�KDUG�FRGH�WKH�DOJRULWKP�IRU�
UHFRJQL]LQJ�D�FDW��RU�RWKHU�FODVVHV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

$WWHPSWV�KDYH�EHHQ�PDGH

��

-RKQ�&DQQ\��³$�&RPSXWDWLRQDO�$SSURDFK�WR�(GJH�'HWHFWLRQ´��,(((�73$0,�����

)LQG�HGJHV)LQG�FRUQHUV

"

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO��������

'DWD�'ULYHQ�$SSURDFK

��

�� &ROOHFW�D�GDWDVHW�RI�LPDJHV�DQG�ODEHOV
�� 8VH�0DFKLQH�/HDUQLQJ�WR�WUDLQ�D�FODVVLILHU
�� (YDOXDWH�WKH�FODVVLILHU�RQ�QHZ�LPDJHV

([DPSOH�WUDLQLQJ�VHW

How do we train a model that can do well despite all these variations?

The ingredients:

• A lot of data (so that these variations are observed).
• Huge models with the capacity to consume and learn from all this data (and the

computational infrastructure to enable training)

What helps:

• Models with the right properties which makes the process easier (goes back to our
discussion of choosing the function class).

The challenge

The problem with standard NN for image inputs

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

����
�

)XOO\�&RQQHFWHG�/D\HU
��[��[��LPDJH��!�VWUHWFK�WR������[���

���[������
ZHLJKWV

DFWLYDWLRQLQSXW

��QXPEHU��
WKH�UHVXOW�RI�WDNLQJ�D�GRW�SURGXFW�
EHWZHHQ�D�URZ�RI�:�DQG�WKH�LQSXW�
�D������GLPHQVLRQDO�GRW�SURGXFW�

�
��

A shuffling/ permutation
of the pixels

The task is as easy, or rather as difficult, for a fully-
connected network even if I shuffle the pixels.
Is this okay?

Solution: Convolutional Neural Net (ConvNet/CNN)

Figure from https://blog.floydhub.com/building-your-first-convnet/

A special case of fully connected neural nets.

Usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers

Key idea: learning from low-level to high-level features

2-D Convolution

Figures from PML

3-D Convolution

Figure from PML

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU
��[��[��LPDJH��!�SUHVHUYH�VSDWLDO�VWUXFWXUH

ZLGWK

KHLJKW

GHSWK

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU

�[�[��ILOWHU

��[��[��LPDJH

&RQYROYH�WKH�ILOWHU�ZLWK�WKH�LPDJH
L�H��³VOLGH�RYHU�WKH�LPDJH�VSDWLDOO\��
FRPSXWLQJ�GRW�SURGXFWV´

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU

�[�[��ILOWHU

��[��[��LPDJH

&RQYROYH�WKH�ILOWHU�ZLWK�WKH�LPDJH
L�H��³VOLGH�RYHU�WKH�LPDJH�VSDWLDOO\��
FRPSXWLQJ�GRW�SURGXFWV´

)LOWHUV�DOZD\V�H[WHQG�WKH�IXOO�
GHSWK�RI�WKH�LQSXW�YROXPH

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU
��[��[��LPDJH
�[�[��ILOWHU

��QXPEHU��
WKH�UHVXOW�RI�WDNLQJ�D�GRW�SURGXFW�EHWZHHQ�WKH�
ILOWHU�DQG�D�VPDOO��[�[��FKXQN�RI�WKH�LPDJH
�L�H���
�
�� ����GLPHQVLRQDO�GRW�SURGXFW���ELDV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU
��[��[��LPDJH
�[�[��ILOWHU

FRQYROYH��VOLGH��RYHU�DOO�
VSDWLDO�ORFDWLRQV

DFWLYDWLRQ�PDS

�

��

��

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU
��[��[��LPDJH
�[�[��ILOWHU

FRQYROYH��VOLGH��RYHU�DOO�
VSDWLDO�ORFDWLRQV

DFWLYDWLRQ�PDSV

�

��

��

FRQVLGHU�D�VHFRQG��JUHHQ�ILOWHU

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

��

��

�

&RQYROXWLRQ�/D\HU

DFWLYDWLRQ�PDSV

�

��

��

)RU�H[DPSOH��LI�ZH�KDG����[��ILOWHUV��ZH¶OO�JHW���VHSDUDWH�DFWLYDWLRQ�PDSV�

:H�VWDFN�WKHVH�XS�WR�JHW�D�³QHZ�LPDJH´�RI�VL]H���[��[��

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

3UHYLHZ��&RQY1HW�LV�D�VHTXHQFH�RI�&RQYROXWLRQ�/D\HUV��LQWHUVSHUVHG�ZLWK�
DFWLYDWLRQ�IXQFWLRQV

��

��

�

��

��

�

&219�
5H/8
H�J����
�[�[��
ILOWHUV

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

3UHYLHZ��&RQY1HW�LV�D�VHTXHQFH�RI�&RQYROXWLRQDO�/D\HUV��LQWHUVSHUVHG�ZLWK�
DFWLYDWLRQ�IXQFWLRQV

��

��

�

&219�
5H/8
H�J����
�[�[��
ILOWHUV ��

��

�

&219�
5H/8
H�J�����
�[�[��
ILOWHUV

&219�
5H/8

«�

��

��

��

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

3UHYLHZ >=HLOHU�DQG�)HUJXV�����@ 6Qhk<YQv<jQ][�]N�6���ÂÇ�Ds� <[I�!E�[j]hP��6���ÂÇ�

<gEPQjIEjkgI�Ng]Z�§/QZ][s<[�<[G�;QhhIgZ<[�ÃÁÂÅ¨�

Understanding spatial dimensions of Conv layer

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU

 !��[��RXWSXW

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU
DSSOLHG�ZLWK�VWULGH��

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU
DSSOLHG�ZLWK�VWULGH��

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU
DSSOLHG�ZLWK�VWULGH��
 !��[��RXWSXW�

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU
DSSOLHG�ZLWK�VWULGH��"

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

�[��LQSXW��VSDWLDOO\�
DVVXPH��[��ILOWHU
DSSOLHG�ZLWK�VWULGH��"

�

�

$�FORVHU�ORRN�DW�VSDWLDO�GLPHQVLRQV�

GRHVQ¶W�ILW��
FDQQRW�DSSO\��[��ILOWHU�RQ�
�[��LQSXW�ZLWK�VWULGH���

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

1

1)

)

2XWSXW�VL]H�
�1���)����VWULGH����

H�J��1� ����)� ���
VWULGH��� !��������������� ��
VWULGH��� !��������������� ��
VWULGH��� !��������������� �������?

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

,Q�SUDFWLFH��&RPPRQ�WR�]HUR�SDG�WKH�ERUGHU
� � � � � �

�

�

�

�

H�J��LQSXW��[�
�[��ILOWHU��DSSOLHG�ZLWK�VWULGH���
SDG�ZLWK���SL[HO�ERUGHU� !�ZKDW�LV�WKH�RXWSXW"

�UHFDOO��
�1���)����VWULGH����

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

,Q�SUDFWLFH��&RPPRQ�WR�]HUR�SDG�WKH�ERUGHU

H�J��LQSXW��[�
�[��ILOWHU��DSSOLHG�ZLWK�VWULGH���
SDG�ZLWK���SL[HO�ERUGHU� !�ZKDW�LV�WKH�RXWSXW"

�[��RXWSXW�

� � � � � �

�

�

�

�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

,Q�SUDFWLFH��&RPPRQ�WR�]HUR�SDG�WKH�ERUGHU

H�J��LQSXW��[�
�[��ILOWHU��DSSOLHG�ZLWK�VWULGH���
SDG�ZLWK���SL[HO�ERUGHU� !�ZKDW�LV�WKH�RXWSXW"

�[��RXWSXW�
LQ�JHQHUDO��FRPPRQ�WR�VHH�&219�OD\HUV�ZLWK�
VWULGH����ILOWHUV�RI�VL]H�)[)��DQG�]HUR�SDGGLQJ�ZLWK�
�)��������ZLOO�SUHVHUYH�VL]H�VSDWLDOO\�
H�J��)� ��� !�]HUR�SDG�ZLWK��
�������)� ��� !�]HUR�SDG�ZLWK��
�������)� ��� !�]HUR�SDG�ZLWK��

� � � � � �

�

�

�

�

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

([DPSOHV�WLPH�

,QSXW�YROXPH����[��[�
����[��ILOWHUV�ZLWK�VWULGH����SDG��

2XWSXW�YROXPH�VL]H��"

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

([DPSOHV�WLPH�

,QSXW�YROXPH����[��[�
����[��ILOWHUV�ZLWK�VWULGH����SDG��

2XWSXW�YROXPH�VL]H��
�����
��������� ����VSDWLDOO\��VR
��[��[��

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

([DPSOHV�WLPH�

,QSXW�YROXPH����[��[�
����[��ILOWHUV�ZLWK�VWULGH����SDG��

1XPEHU�RI�SDUDPHWHUV�LQ�WKLV�OD\HU"
HDFK�ILOWHU�KDV��
�
������ ����SDUDPV����������IRU�ELDV�
 !���
��� ����

Input: a volume of size W1 ×H1 ×D1

Hyperparameters:

• K filters of size F × F

• stride S

• amount of zero padding P (for one side)

Output: a volume of size W2 ×H2 ×D2 where

• W2 = (W1 + 2P − F)/S + 1

• H2 = (H1 + 2P − F)/S + 1

• D2 = K

#parameters: (F × F ×D1 + 1)×K weights

Common setting: F = 3, S = P = 1

Summary for convolutional layer

https://poloclub.github.io/cnn-explainer/

Demo time

https://poloclub.github.io/cnn-explainer/

Connection to fully connected networks

Figure from Goodfellow’16

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection

(Goodfellow 2016)

Local Receptive Field Leads to
Sparse Connectivity (affects less)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

Connection to fully connected networks

Figure from Goodfellow’16(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse connectivity: being
affected by less

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection

Connection to fully connected networks

Figure from Goodfellow’16
(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution
shares the same

parameters
across all spatial

locations

Traditional
matrix

multiplication
does not share
any parameters

Figure 9.5

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection and parameter sharing

Connection to fully connected networks
A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection and parameter sharing

Much fewer parameters! Example (ignoring bias terms):

FC layer: (32 × 32 × 3) × (28 × 28) ≈ 2.4M
Conv layer: 5 × 5 × 3 = 75

Another element: Pooling

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ $SULO���������/HFWXUH����)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

3RROLQJ�OD\HU
� PDNHV�WKH�UHSUHVHQWDWLRQV�VPDOOHU�DQG�PRUH�PDQDJHDEOH�
� RSHUDWHV�RYHU�HDFK�DFWLYDWLRQ�PDS�LQGHSHQGHQWO\�

Another element: Pooling

Similar to a filter, except
• depth is always 1
• different operations: average, L2-norm, max
• no parameters to be learned

Max pooling with 2 × 2 filter and stride 2 is very common

Figure from PML

Finishing things up…

How do we learn the filters/weights?

Essentially the same as fully connected NNs: apply SGD/backpropagation

Typical architecture for CNNs:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*Q → FC

Common choices: N ≤ 5, Q ≤ 2, M is large

https://poloclub.github.io/cnn-explainer/

Demo time

https://poloclub.github.io/cnn-explainer/

A breakthrough result

A breakthrough result

Figure from Krizhevsky et al.’12

Sequence prediction
and recurrent neural networks

A bit more math, and fewer cat pictures now L

We borrow heavily from:

• Stanford’s CS224n: https://web.stanford.edu/class/cs224n/

Acknowledgements

https://web.stanford.edu/class/cs224n/

Sequential prediction

Given observations !!, !", … , !#$! what is !#?

Examples:

• text or speech data
• stock market data
• weather data
• …

In this lecture, we will mostly focus on text data (language modelling).

Language modelling
Language modelling is the task of predicting what word comes next:

More formally, let Xi be the random variable for the i-th word in the sentence, and let
xi be the value taken by the random variable. Then the goal is to compute

P (Xt+1|Xt = xt, . . . , X1 = x1).

A system that does this is known as a Language Model.

Slide adapted from CS224n by Chris Manning (Lecture 5)

Language modelling

We can also think of a Language Model as a system that assigns a probability to a piece of text.

For example, if we have some text x1, . . . , xT , then the probability of this text (according to the
Language Model) is:

P (X1 = x1, . . . , XT = xT) = P (X1 = x1)× P (X2 = x2|X1 = x1)

× · · ·× P (XT = xT |XT−1 = xT−1, . . . , X1 = x1)

= ΠT

t=1P (Xt = xt|Xt−1 = xt−1, . . . , X1 = x1).

Slide adapted from CS224n by Chris Manning (Lecture 5)

You use Language Models every day!

21 Slide adapted from CS224n by Chris Manning (Lecture 5)

You use Language Models every day!

22 Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram Language Models

the students opened their ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

23 Slide adapted from CS224n by Chris Manning (Lecture 5)

A Markov model or Markov chain is a sequence of random variables with the Markov

property: a sequence of random variables X1, X2, · · · s.t.

P (Xt+1 | X1:t) = P (Xt+1 | Xt) (Markov property)

i.e. the current state only depends on the most recent state (notation X1:t denotes the
sequence X1, . . . , Xt). This is a bigram model.

We will consider the following setting:

• All Xt’s take value from the same discrete set {1, . . . , S}

• P (Xt+1 = s′ | Xt = s) = as,s′ , known as transition probability

• P (X1 = s) = πs

• ({πs}, {as,s′}) = (π,A) are parameters of the model. (A ∈ RS×S is the matrix
where the entry corresponding to s, s′ is as,s′ .)

!-gram language model: A type of Markov model

• Example 1 (Language model)
States [S] represent a dictionary of words,

aice,cream = P (Xt+1 = cream | Xt = ice)

is an example of the transition probability.

• Example 2 (Weather)
States [S] represent weather at each day

asunny,rainy = P (Xt+1 = rainy | Xt = sunny)

Markov model: examples

Markov model: Graphical representation

A Markov model is nicely represented as a directed graph

Now suppose we have observed n sequences of examples:

• x1,1, . . . , x1,T

• · · ·

• xi,1, . . . , xi,T

• · · ·

• xn,1, . . . , xn,T

where

• for simplicity we assume each sequence has the same length T

• lower case xi,t represents the value of the random variable Xi,t

From these observations how do we learn the model parameters (π,A)?

Learning Markov models

Same story, find the MLE. The log-likelihood of a sequence x1, . . . , xT is

lnP (X1:T = x1:T)

=
T
∑

t=1

lnP (Xt = xt | X1:t−1 = x1:t−1) (always true)

=
T
∑

t=1

lnP (Xt = xt | Xt−1 = xt−1) (Markov property)

= lnπx1
+

T
∑

t=2

ln axt−1,xt

=
∑

s

I[x1 = s] lnπs +
∑

s,s′

(

T
∑

t=2

I[xt−1 = s, xt = s′]

)

ln as,s′

Learning Markov models: MLE

So MLE is

argmax
π,A

∑

s

(#initial states with value s) lnπs

+
∑

s,s′

(#transitions from s to s
′) ln as,s′

This is an optimization problem, and can be solved by hand (though we’ll skip in class).
The solution is:

πs =
#initial states with value s

#initial states

as,s′ =
#transitions from s to s

′

#transitions from s to any state

Learning Markov models: MLE

Let’s first look at the transition probabilities. By the Markov assumption,

P (Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) = P (Xt+1 = xt+1 | Xt = xt)

Using the definition of conditional probability,

P (Xt+1 = xt+1 | Xt = xt) =
P (Xt+1 = xt+1, Xt = xt)

P (Xt = xt)

We can estimate this using data,

P (Xt+1 = xt+1, Xt = xt)

P (Xt = xt)
≈

#times (xt, xt+1) appears

times (xt) appears (and is not the last state)

The initial state distribution follows similarly,

P (X1 = s) ≈
#times s is first state

#sequences

Learning Markov models: Another perspective

Suppose we observed the following 2 sequences of length 5

• sunny, sunny, rainy, rainy, rainy
• rainy, sunny, sunny, sunny, rainy

Learning Markov models: Example

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.

Higher order Markov chains make it a bit more reasonable, e.g.

P (Xt+1 | Xt, . . . , X1) = P (Xt+1 | Xt, Xt−1) (second-order Markov assumption)

i.e. the current word only depends on the last two words. This is a trigram model, since we need
statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a
(n+ 1)-gram model):

P (Xt+1 | Xt, . . . , X1) = P (Xt+1 | Xt, Xt−1, . . . , Xt−n+1) (n-th order Markov assumption)

Learning higher order Markov chains is similar, but more expensive.

P (Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) = P (Xt+1 = xt+1 | Xt = xt, Xt−1 = xt−1, . . . , Xt−n+1 = xt−n+1)

=
P (Xt+1 = xt+1, Xt = xt, Xt−1 = xt−1, . . . , Xt−n+1 = xt−n+1)

P (Xt = xt, Xt−1 = xt−1, . . . , Xt−n+1 = xt−n+1)

≈
count(xt−n+1, . . . , xt−1, xt, xt+1) in the data

count(xt−n+1, . . . , xt−1, xt) in the data

Higher-order Markov models

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have discarded
the “proctor” context?

25 Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

Sparsity problem:
not much granularity

in the probability
distribution

Business and financial news

28

Notice that there isn’t that much granularity in the distribution,
because “today the” doesn’t appear too often in corpus.
Most two-grams won’t appear too often.

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

29

You can also use a Language Model to generate text

today the _______

condition
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

sample

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price _______

condition
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability
distribution

sample

30 Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of _______

condition
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability
distribution

sample

31 Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

32

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size…

However, larger ! increases model size and requires too much data to learn

Slide adapted from CS224n by Chris Manning (Lecture 5)

How to build a neural Language Model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 3:

33
in Paris are amazingmuseums

LOCATION

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window

34Slide adapted from CS224n by Chris Manning (Lecture 5)

Use a fixed window of previous words, and train a vanilla fully-connected
neural network to predict the next word?

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding

Approach 2: word embeddings/word vectors

Word embeddings/vectors

Slide adapted from CS224n by Chris Manning (Lecture 1)

A word embedding is a (dense) mapping from words, to vector representations of the words.

Ideally, this mapping has the property that words similar in meaning have representations which
are close to each other in the vector space.

You’ll see a simple way to construct these in HW4.

A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

35 Slide adapted from CS224n by Chris Manning (Lecture 5)

The problem with this architecture

• Uses a fixed window, which can be too small.
• Enlarging this window will enlarge the size of

the weight matrix $.
• The inputs &(&) and &(() are multiplied by

completely different weights in $.
No symmetry in how inputs are processed!

As with CNNs for images before, we need an
architecture which has similar symmetries as the
data.

In this case, can we have an architecture that
can process any input length?

Slide adapted from CS224n by Chris Manning (Lecture 5)

Recurrent Neural Networks (RNN)

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights % repeatedlyA family of neural architectures

37

outputs
(optional)

Slide adapted from CS224n by Chris Manning (Lecture 5)

It’s okay if you don’t fully understand the next few slides on RNNs,
but you should get the main ideas...

Recurrent Neural Networks (RNN)

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights % repeatedlyA family of neural architectures

37

outputs
(optional)

Slide adapted from CS224n by Chris Manning (Lecture 5)

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

38

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

!(") for word "(")

Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

40 Slide adapted from CS224n by Chris Manning (Lecture 5)

Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

41

Predicted
prob dists

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

embedding

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

42

Predicted
prob dists

= negative log prob
of “opened”

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

embedding

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

43

Predicted
prob dists

= negative log prob
of “their”

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

embedding

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

44

Predicted
prob dists

= negative log prob
of “exams”

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

embedding

Training an RNN Language Model

+ + + + … =

the students opened their …exams

…

45

Corpus

Loss

Predicted
prob dists

“Teacher forcing”

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

How to train this?
Backprop + SGD

embedding

Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season is

…

sample

favorite
sample

season
sample

is
sample

spring

spring51

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

embedding

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

52 Slide adapted from CS224n by Chris Manning (Lecture 5)

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

53 Slide adapted from CS224n by Chris Manning (Lecture 5)
Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

More recent models improve drastically on RNNs.
A particularly important model: The Transformer

Why should we care about Language Modeling?

58

• Language Modeling is a benchmark task that helps us
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

• Language Modeling has been extended to cover everything else in NLP: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

Slide adapted from CS224n by Chris Manning (Lecture 5)

Why should we care about Language Modeling?

58

• Language Modeling is a benchmark task that helps us
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

• Language Modeling has been extended to cover everything else in NLP: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

Remember GPT-3 from Lecture 1?

