CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 7, Oct 20

Sylzz

=T
_—

USCUniversity of

Southern California

Administrivia

 Quiz 1 grades will be released soon.
 Linear algebra tip: Whenever you see or write a matrix-matrix or matrix-
vector product, double check to make sure the dimensions match.

Make sure none of your linear-algebra operations are caught by the “matrix police”...

Administrivia

Quiz 1 grades will be released soon.
* Linear algebra tip: Whenever you see or write a matrix-matrix or matrix-
vector product, double check to make sure the dimensions match.

Project details will be released in 1-2 weeks (Kaggle competition).
Groups of 4 (start forming groups)

Today’s plan:

 Convolutional neural networks

 Sequential prediction, Markov models and (a bit of) recurrent neural
networks

Convolutional
Neural Networks

Acknowledgements

Not much math in this part, but there’ll be empirical intuition (and cat pictures ©)

The materials in this part borrow heavily from the following sources:

e Stanford’s CS231n: http://cs231n.stanford.edu/

* Deep learning book by Goodfellow, Bengio and Courville: http://deeplearningbook.org

Both website provides a lot of useful resources: notes, demos, videos, etc.

http://cs231n.stanford.edu/
http://deeplearningbook.org/

Image Classification: A core task in Computer Vision

(assume given set of discrete labels)

{dog, cat, truck, plane, ...

> cat

This image by Nikita is
licensed under CC-BY 2.0

wpod ¢ How 5 thig }Qp)\agevivc(?_

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 6 April 6, 2017

The Problem: Semantic Gap —_—

[91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85]
[76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85]
[99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 94]
[166 91 61 64 69 91 88 85 101 107 189 98 75 B84 96 95]
[114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91]
[133 137 147 103 65 81 8@ 65 52 54 74 84 102 93 85 82]
E [128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]

= A [125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98]
3 [127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
P [115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
: [89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80]
o [63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]

R [62 65 82 89 78 71 80 101 124 126 119 101 107 114 131 119]
[63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118]
[87 65 71 87 186 95 69 45 76 130 126 107 92 94 105 112]
[118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]
[164 146 112 80 82 120 124 104 76 48 45 66 88 101 102 109]
[157 170 157 120 93 86 114 132 112 97 69 55 70 82 99 94]
[130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]
[128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]
[123 107 96 86 83 112 153 149 122 109 104 75 8@ 107 112 99]
[122 121 102 80 82 86 94 117 145 148 153 102 58 78 92 107]
[122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84]]

What the computer sees

8 - An image is just a big grid of
G (numbers between [0, 255]:
|

306 (e.g. 800 x 600 x 3
(3 channels RGB)

This image by Nikita is

licensed under CC-BY 2.0)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 7 April 6, 2017

Challenges: Viewpoint variation

i . e [(105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]

2 [91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85]
3 [76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85]
= d [99 81 81 93120 131 127 100 95 98 162 99 96 93 101 94]
(106 91 61 64 69 91 88 B85 101 107 109 98 75 84 96 95]
[114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91]
(133 137 147 103 65 81 80 65 52 54 74 84 102 93 85 82]
[128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]
[125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98]
[127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
[115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 8]
[63 77 86 81 77 79 162 123 117 115 117 125 125 130 115 87]
131 119]
110 118]
105 112]
102 107]
102 109]
99 94]
69 86]
72 79]
112 99]
92 107]
69 84]]

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 8 April 6, 2017

Challenges: lllumination

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 9 April 6, 2017

Challenges: Deformation

This image by Umberto Salvagnin This image by Umberto Salvagnin This image by sare bear is ‘T_h\S imzquengéjggw_;\f{lazw ig
is licensed under CC-BY 2.0 is licensed under CC-BY 2.0 licensed under CC-BY 2.0 icense

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 10 April 6, 2017

Challenges: Occlusion

This image by jonsson is licensed

This image is CCO 1.0 public domain This image is CCO 1.0 public domain under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 11 April 6, 2017

Challenges: Background Clutter

This image is CCO 1.0 public domain This image is CCO 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 12 April 6, 2017

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 13 April 6, 2017

An image classifier

def classify_image(image):
Some magic here?

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 14 April 6, 2017

Attempts have been made

Find corners

-\ <ND

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 15 April 6, 2017

Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):
Use model to predict labels
return test_labels

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 16 April 6, 2017

The challenge

How do we train a model that can do well despite all these variations?
The ingredients:
* A lot of data (so that these variations are observed).

* Huge models with the capacity to consume and learn from all this data (and the
computational infrastructure to enable training)

What helps:

* Models with the right properties which makes the process easier (goes back to our
discussion of choosing the function class).

The problem with standard NN for image inputs

Fully Connected Layer
P— ->
32x32x3 image -> stretch to 3072 x 1
input activation
) Wz)
1] U—>10 ao7e > 1[0)
3072 X /4 10
weights
1 number:
i \A) , the result of taking a dot product
— ¢ between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-27 April 18, 2017

Completedy loses oul on spabial chrudune

The task is as easy, or rather as difficult, for a fully-
connected network even if | shuffle the pixels.
Is this okay?

A shuffling/ permutation
of the pixels

>

Solution: Convolutional Neural Net (ConvNet/CNN)
A special case of fully connected neural nets.

Usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers
Key idea: learning from low-level to high-level features

7

g — TRUCK

— VAN

— P —

=T

.’\ i D I:] — BICYCLE

o

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN e SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure from https://blog.floydhub.com/building-your-first-convnet/

2-D Convolution 09+l ¥32+43

tis opoober s convalulion]
Ol 1] 2 ” O + 2.
Q\;k i . (O _ 19 25'%4’42’(’:.5
W —
2| 3 37|43
1,
\'4*\ 6|78 _
\‘kl{‘a "

Figure 14.5: Illustration of 2d cross correlation. Generated by conv2d jaz.ipynb. Adapted from Figure 6.2.1
of [Zha+20].

Single
filter

Figure 14.6: Convolving a 2d image (left) with a 3 x 3 filter (middle) produces a 2d response map (right).
The bright spots of the response map correspond to locations in the image which contain diagonal lines sloping
down and to the right. From Figure 5.8 of [Chol7]. Used with kind permission of Francois Chollet.

Figures from PML

3-D Convolution

Input Kernel Input Kernel Output
1121 3 e
4 | 5|6 | *
‘\V"("‘t 1T 3|4
e o|1]2 ; 71809 56 | 72
3|14 |5
‘g 2t gkh [> | 3 B 104 (120
" 678
(1 JroV 3[a]|5]=*
6|78

Figure 14.9: Illustration of 2d convolution applied to an input with 2 channels. Ge
Adapted from Figure 6.4.1 of [Zha+20).

rated by conv2d_ jax.ipynb.

add wp the result
‘\705’ H\Q ﬁue (Jnomhe)(é

Figure from PML

Convolution Layer

32x32x3 iImage -> preserve spatial structure

32 height

3 depth

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-28 April 18, 2017

Convolution Layer

32x32x3 Image

ox5x3 filter
32 L/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-29 April 18, 2017

COnVOI UtIOn I—ayer Filters always extend the full
_——— depthoftheinput volume

32x32x3 Image /
ox5x3 filter
32 L/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-30 April 18, 2017

Convolution Layer
__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~~ 1 number:

April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 31

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-32 April 18, 2017

Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
=
@>@ 78

convolve (slide) over all

spatial locations
32 / 28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-33 April 18, 2017

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

A

28

We stack these up to get a “new image” of size 28x28x0!

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 -34 April 18, 2017

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6
oX5x3
filters

32 28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-35 April 18, 2017

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
oX5x3
filters

28

28

CONYV,
RelLU
e.g. 10
oX5X6
filters

24

CONV,
RelLU

24

10

Lecture 5 - 36 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Visualization of VGG-16 by Lane Mclntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

Preview [Zeiler and Fergus 2013]

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

&

VGG-16 Conv1_

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-37 April 18, 2017

Understanding spatial dimensions of Conv layer

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 -42 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-43 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-44 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-45 April 18, 2017

A closer look at spatial dimensions:

N

O®G@IE) 7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-46 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)

assume 3x3 filter

applied with stride 2
-

Sh\p \ P‘.IJ W Mw&,\/\

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-47 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-48 April 18, 2017

A closer look at spatial dimensions:

14
/X7 input (spatially)
@ @ 2) assume 3x3 filter
applied with stride 2
=> 3x3 output!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-49 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-50 April 18, 2017

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

I doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 51 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Output size:
(N - F) / stride + 1

eg.N=7F=3:

stride 1 =>(7-3)/[1+1=

stride 2=>(7-3)/2+1=

stride 3=>(7-3)/3+1 =233\

Lecture 5 - 52 April 18, 2017

In practice: Common to zero pad the border

00

0

0

0

0

Fei-Fei Li & Justin Johnson & Serena Yeung

e.g. input 7x7
3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Lecture 5 -53

April 18, 2017

In practice: Common to zero pad the border

0/(0(0]0|0]O0

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
7T outputl (N _f 4 >
0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-54 April 18, 2017

In practice: Common to zero pad the border

0/(0(0]0|0]O0

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0

7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 =>zero pad with 1 (+42f -) [ctnide 4)
F =5 => zero pad with 2 m\ -
F =7 => zero pad with 3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-55 April 18, 2017

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
<

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-57 April 18, 2017

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2 _/

Output volume size:

32x32x10

4

A
I4

R

(NE2P-F)[stride t|
(32+272-5)/1+1 = 32 spatially, so

Lecture 5 - 58

April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> /610 =760

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-60 April 18, 2017

Summary for convolutional layer

Input: a volume of size Wy x Hy X D,

Hyperparameters:
e K filters of size F' X F'
e stride S

e amount of zero padding P (for one side)

Output: a volume of size W5 x Hy X Dy where
e Wo=W1+2P—-F)/S+1
e Hy=(H,+2P—-F)/S+1
e Dy =K

#parameters: (F' x F' x D; + 1) x K weights
Common setting: ' =3, S =P =1

Demo time

CNN EXPLAINER Learn Convolutional Neural Network (CNNJ in your browser!

z © show detail Unit v

input conv.1.1 relu11 conv1_2 relul2 max_pool 1 conv.21 relu_2.1 comv.2.2 relu_2.2 max_pool_2 output
b F . lifeb:
ifeboat
v » t4 ta2 4 —
a é » > - ladybug
- . - [|
P < -
Red channel
2 2 5 5 e bell pepper

school bus
— |
Green Y Y & 1 koala
|
espresso

red panda

™~

N

W
>l |

E ‘ E . P

= - - - sport car

&£ &« -
p— p— o p— " | — — p— | — P—
0005 1.0 14 0.00 1.49 221 0.00 22 4.66 0.00 a 8 0.00 5.85 00 08

What is a Convolutional Neural Network?

https://poloclub.github.io/cnn-explainer/

https://poloclub.github.io/cnn-explainer/

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection

Local Receptive Field Leads to
Sparse Connectivity (affects less)

corsmrl?eacrzﬁce)ns @ @ = oudpul

due to small
convolution

e () () @ D —

Dense
connections

Figure from Goodfellow’16

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection

Sparse connectivity: being
affected by less

NS ONORONONO

due to small
convolution
kemel (=)) @ @ &)

Dense
connections

Figure 9.3 (Goodlten 201 Figure from Goodfellow’16

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection and parameter sharing

Parameter Sharing

Convolution @
shares the same

parameters
across all spatial

locations

Traditional @ @ @ ‘ @

maitrix

multiplication
does not share @ @ ‘ @
any parameters

Figure 9.5 (Condeton 2016

Figure from Goodfellow’16

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection and parameter sharing

Much fewer parameters! Example (ignoring bias terms):

L 1

'

FC layer: (32 x 32 x 3) x (28 x 28) = 2.4M +

Drt32¢3
Conv layer:5x5x3 =75

32x32x3 image

/ 5x5x3 filter /
2

-

= ”

convolve (slide) over all

spatial locations
A 28

|

Another element: Pooling

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—_—

> o 112
224 downsampling

112
224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-72

April 18, 2017

Another element: Pooling

Similar to a filter, except

* depthisalways 1

* different operations: average, L2-norm, max
* no parameters to be learned

Max pooling with 2 x 2 filter and stride 2 is very common

Input Output
01| 2
415
2 x 2 Max
2+ AR ° Pooling 7 s
678

Figure 14.12: Illustration of mazxpooling with a 2z2 filter and a stride of 1. Adapted from Figure 6.5.1 of
[Zha+20].

Figure from PML

Finishing things up...

Typical architecture for CNNs:
Input — [[Conv — ReLU]*N — Pool?]*M — [FC — ReLU]*Q — FC

Common choices: N <5, Q <2, Mis large
\") H pal\qmdM hae (g \101\7 lu)\ge

How do we learn the filters/weights?

Essentially the same as fully connected NNs: apply SGD/backpropagation

Demo time

CNN EXPLAINER Learn Convolutional Neural Network (CNNJ in your browser!

z © show detail Unit v

input conv.1.1 relu11 conv1_2 relul2 max_pool 1 conv.21 relu_2.1 comv.2.2 relu_2.2 max_pool_2 output
b F . lifeb:
ifeboat
v » t4 ta2 4 —
a é » > - ladybug
- . - [|
P < -
Red channel
2 2 5 5 e bell pepper

school bus
— |
Green Y Y & 1 koala
|
espresso

red panda

™~

N

W
>l |

E ‘ E . P

= - - - sport car

&£ &« -
p— p— o p— " | — — p— | — P—
0005 1.0 14 0.00 1.49 221 0.00 22 4.66 0.00 a 8 0.00 5.85 00 08

What is a Convolutional Neural Network?

https://poloclub.github.io/cnn-explainer/

https://poloclub.github.io/cnn-explainer/

A breakthrough result

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

—eeallny)

Stride

P55

“of 4

3

48

A breakthrough result

128

Max
pooling

27

128

EN N
3 [-X S\ M T /
:_\._..-_.__ N ’ 3 el -
2, 155 155 128 2048 2048
AN 13 : 13
N1\
EN c | | "
13 TEE : 13 dense’| |dense
192 192 128 Max | -
" pooling 2048 2048
pooling

dense

1000

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—

4096-4096-1000.

Figure from Krizhevsky et al.”12

Sequence prediction
and recurrent neural networks

Acknowledgements

A bit more math, and fewer cat pictures now ®

We borrow heavily from:

* Stanford’s CS224n: https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Sequential prediction

g suttul

Given observations x4, x5, ..., X;_1 What is x;?
Examples: \\ e wpuld (o be o J.Z“%u\(kw&u\s

* text or speech data
* stock market data
 weather data

In this lecture, we will mostly focus on text data (language modelling).

Language modelling

Language modelling is the task of predicting what word comes next:

books
the students opened their /‘/ laptops
won : \\ exams
. <« ‘dne «,J g
e o ¢ minds
wv\uﬂ\ ngj&/\to(

More formally, let|.X,;) be the random variable for the ¢-th word in the sentence, and let
x; be the value taken by the random variable. Then the goal is to compute

P<Xt-|—1|Xt — Tty - - 7X1 — 371)-
A system that does this is known as a Language Model.

Slide adapted from CS224n by Chris Manning (Lecture 5)

Language modelling

We can also think of a Language Model as a system that assigns a probability to a piece of text.

For example, if we have some text x1,...,xr, then the probability of this text (according to the
Language Model) is:

P(Xlzafl,...,XTzi'T):P(Xl:.fl)XP(XQZQJQ‘Xl:.fl)

X oo X P(XT :ZIZ‘T|XT_1 :ﬂjT_l,...,Xl :xl)
= P(X¢ = 2| X1 = 241, ..., X1 = 21).

Slide adapted from CS224n by Chris Manning (Lecture 5)

You use Language Models every day!

e I'll meet you at the @ >

airport

I 21 Slide adapted from CS224n by Chris Manning (Lecture 5)

You use Language Models every day!

22

Go

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

what is the |

Google Search

gle

-L.

I'm Feeling Lucky

Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram Language Models

the students opened their

* Question: How to learn a Language Model?
e Answer (pre- Deep Learning): learn an n-gram Language Model!

e Definition: An n-gram is a chunk of n consecutive words.
* unigrams: “the”, “students”, “opened”, "their”
* bigrams: “the students”, “students opened”, “opened their”
e trigrams: “the students opened”, “students opened their”
e four-grams: “the students opened their”

e Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

23 Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram language model: A type of Markov model

A Markov model or Markov chain is a sequence of random variables with the Markov

property: a sequence of random variables X, Xo, - -- s.t.
P(Xi41 | X1:4) = P(Xey1 | Xo) (Markov property)
1.e. the current state only depends on the most recent state (notation Xi.; denotes the
sequence X1, ..., X¢). This is a bigram model.
We will consider the following setting: the S\3e o e
e All X;’s take value from the same discrete set {1, .. 5 ;i;’:‘*gw s:i; AL

o P(Xi11=5"] Xy =s5)=as,known as transition probability

e P(X;=5) :@_) ~.h‘«&q‘ol M m@lh‘?
o ({ms},{ass}) = (m, A) are parameters of the model. (A € R5*¥ is the matrix

here the_entr ndin s,8 1S ag o.
P TSP PE RN B R A4D - PO ()

Markov model: examples

e Example 1 (Language model)
States |S] represent a dictionary of words,

Gice cream = L (Xi41 = cream | X = ice)

is an example of the transition probability.

e Example 2 (Weather)
States [.S] represent weather at each day

a P(Xt41 = rainy | X; = sunny)

sunny,rainy —

Markov model: Graphical representation
A Markov model is nicely represented as a directed graph
\st \ .
ola? {zqmg) (o PJ‘E@J

Sty 140 - pand -

Tﬁaw«b TO

—‘Sbh\ﬁ? = 0. l-'

.‘,e ‘{’OL\? ,13 e_qjhg) hmw w]“ (}Q ¢QJ\V‘QJ ’ ?0‘(. fM.
S"”‘"‘a. 307. W

Learning Markov models

Now suppose we have observed n sequences of examples:

® T11,...,T1,T C hainy , Suw\\a yore, howy)

(3(/"\'/“9' qu\\,”, P DUVG?\

® Ti1y---sTi,T

. o o o

® Tnaiy. s Tn,T
where

e for simplicity we assume each sequence has the same length 7'

e lower case x; ; represents the value of the random variable X ;

From these observations how do we learn the model parameters (7w, A)?

Learning Markov models: MLE

Same story, find the MLE. The log-likelihood of a sequence x 1,

& 1S
In P(XlzT — xl:T)
T
= Zln P(Xi=x¢ | X14-1 =T14-1) (always true)
t=1
T
= Z ImP(X; =z | X4o1 =x41) (Markov property)

> k. of trous Bening
JWMM ’I'e'l - j

Learning Markov models: MLE
W s e = Hus shewtd

So MLE is
/’ for seme 5 be loge {81 #ob
argmax Z(#initial states with value s) In s

™, A o

+ Z(#transitions from s to s’) In Qs, s’

s,s’

This 1s an optimization problem, and can be solved by hand (though we’ll skip in class).
The solution is:

B #initial states with value s

#1initial states
#transitions from s to s’

g g/ = L.
#transitions from s to any state

Learning Markov models: Another perspective

Let’s first look at the transition probabilities. By the Markov assumption,
PXip1 =21 | Xe =24y, Xh =21) = P(Xyq1 = 2441 | Xy =)
Using the definition of conditional probability,

P(Xt+1 = Tyq1, Xy = xt)

P(Xt+1 = Tt+1 ‘ Xy = SUt) =

P(Xt = fli't)
We can estimate this using data,
P(Xip1 =m0, Xe = 1) #times (x¢, T4 1) appears
P(X; = xy) "~ # times () appears (and is not the last state)

The initial state distribution follows similarly,

Tust Like
bes of @

#times s 1s first state
P(X1 = S) ~

#sequences

URW‘O\"‘M 9

uu-"lv‘/dice_ .

Learning Markov models: Example

Suppose we observed the following 2 sequences of length 5

Higher-order Markov models

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.
Higher order Markov chains make it a bit more reasonable, e.g.
P(Xiq1 | Xtyoo oy Xh) = P(Xpg1 | X, Xi—1) (second-order Markov assumption)

1.e. the current word only depends on the last two words. This is a frigram model, since we need

statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a
(n + 1)-gram model): Poevibns 1~ obsewvakions
/\/\/—\
P(X1 | Xeyoo o, X1) = P(Xa1 | X4, Xe—1, .-, X4—pny1) (n-th order Markov assumption)

Learning higher order Markov chains is similar, but more expensive.

P(Xt+1 = Tt+1 ’ Xt = Tty..- ,Xl = 5131) = P(Xt+1 = Tt+1 ’ Xt = xt,Xt_l = Tt—1y--- 7Xt—n—+—1 = xt_n_|_1)
. P(Xt+1 = X441, Xt = X4, X4o1 = Tp—1, .0, Xpopg1 = CBt—n+1)
N P(Xt =24, X4 1 = Tp—1,. 0o, Xpmpg1 = CUt—n+1)
N count(T¢_p11,- .-, Te—1, T, Tey1) in the data

{

count(T¢_p11,.-.,Tt—1,x¢) in the data

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

-aa-ﬁhe-pfoe#ov-ﬁm%ed-ﬁheebebﬁhestudents opened the/r

discard

condltlon on this

count (students opened their w)
count(students opened their)

P(wlstudents opened their) =

For example, suppose that in the corpus:

e “students opened their” occurred 1000 times

e “students opened their books” occurred 400 times
* > P(books | students opened their) = 0.4 Should we have discarded

e “students opened their exams” occurred 100 times the “proctor” context?

e = P(exams | students opened their) = 0.1)
Slide adapted from CS224n by Chris Manning (Lecture 5)

25

n-gram Language Models in practice

* You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop

Business and financial news

today the

28 Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the
"

Condlthn get probability
on th|5 distribution

company ©.153
bank 9.153

price 0.077

italian ©.039
emirate 0.039

Lampm

29

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price
Cond |t|0n get probability
on this distribution

"o‘c 0.308 sample
for 0.050

it 0.046

to 0.046

is 0.031

30

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of
——
Condltlon get probability

on this distribution
the 0.072
18 9.043
0il 9.043
its 9.036
|gold 0.018 sample

31 Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

Y% &f\l&lfls%gse a Language Model to generate text
)

today the price of gold per ton , while production of shoe
17 lasts and shoe industry , the bank intervened just after it

' considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

L)

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

However, larger n increases model size and requires too much data to learn

32 Slide adapted from CS224n by Chris Manning (Lecture 5)

Umvb:rg y\o'{‘al-ich) 1,(")

s evaloodod b har o

e Recall the Language Modeling task: / bt v b I Vel
e Input: sequence of words =), £, ... z®
e Output: prob dist of the next word Pz | ® . .. &)

How to build a neural Language Model?

e How about a window-based neural model?

Slide adapted from
CS224n by Chris
33

Manning (Lecture 5)

A fixed-window neural Language Model

YS—————tfre———proctor—stortet—tire———cfoclh {he students opened theig

. Y
discard fixed window

Use a fixed window of previous words, and train a vanilla fully-connected
neural network to predict the next word? 5 s s o ctavdand. Sugari ed J(MM? bk,

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding _ _
Suppos & vMo\Mama 8 of btz S Q) h\gl« im ens Grol. |
‘e =L o,.... ©) = S &m. vedsn (3w nepresatobon o
‘cuded1zCo 0, . . 0d > S dim. veuds Shrogomal | wen simlen werds
hoe Geprs enbahons wdindn

Approach 2: word embeddings/word vectors N Lan Wdlewy -,

Slide adapted from CS224n by Chris Manning (Lecture 5)

Word embeddings/vectors

A word embedding is a (dense) mapping from words, to vector representations of the words.

Ideally, this mapping has the property that words similar in meaning have representations which
are close to each other in the vector space.

You’ll see a simple way to construct these in HW4.

(0286)

0.792 | keep
-0.177 make get
-0.107 meet - continue

expect = 0.109
-0.542

think
0.349 o ——
0.271 f\ are
be

_ 0.487 Y, Wergas
o dim. emb Ez%m? Y\‘ecub? warls e .
sl n heonry | peen
opflon ik S s
Slide adapted from CS224n by Chris Manning (Lecture 1) cevd"?‘ds have

oecome

4. e
9""{‘:{ Ug'\k’\.
o}clN

35

on
\\J‘p

A fixed-window neural Language Model

05 books
\(\\» > laptops

output distribution

9y = softmax(Uh + by) € RIV!

e kom O 4 GO al pessible

rg

)R

hidden layer

000000000000
h = f(We + bl) [A]
£ non linewn by (Lell) w
concatenated word embeddings

Q). (@), (). (4) (0000 0000 0000 0000)|
6:[6 ,€eree] < st—JLT\/\ 7Y
sppose Ladhis 10 ~Limens, amad L o .(;mu«:ieao{

words / one-hot vectors the students opened their
2V 22 23 4@ D L@ 3) (@)

Slide adapted from CS224n by Chris Manning (Lecture 5)

The problem with this architecture

books

* Uses a fixed window, which can be too small. laptops
e Enlarging this window will enlarge the size of
the weight matrix W. Mﬂ
« The inputs x(D and x@® are multiplied by : 200
completely different weights in W. U
No symmetry in how inputs are processed! (ee00c0c00000)
As with CNNs for images before, we need an %4

architecture which has similar symmetries as the (0000 0000 0000 ©000)

]

In this case, can we have an architecture that the students opened their
can process any input length?) x?) x®) x®)

Slide adapted from CS224n by Chris Manning (Lecture 5)

Recurrent Neural Networks (RNN)
A family of neural architectures

It’s okay if you don’t fully understand the next few slides on RNNss,
but you should get the main ideas...

37 Slide adapted from CS224n by Chris Manning (Lecture 5)

Recurrent Neural Networks (RNN) Core idea: Apply the same

A family of neural architectures weights W repeatedly
outputs - (3)) ﬂ N "
(optional) { Y Yy L We dy Wit

b(tm "~ Chis

h3) h®)
() ()
hidden states : W > : W >
() ()
input sequence T T
{ e ey

(any length)

37 Slide adapted from CS224n by Chris Manning (Lecture 5)

38

A Simple RNN Language Model

output distribution

g = softmax (Uh(t) + bz) e RIVI
(Neon & 5 u/%i‘wma‘)(
Lo

hidden states
ht — (Whh<t—1> L W.e® 1 b,

hO) s I%éinitial hidden state

S . Abvebon (Relu
word embeddings

e® for word x(®

g = P(x®|the students opened their)

books
laptops
p N 200
U
h_ h) h3) h4)
@ @ @ @
_ | W, |1 ® W 1@ Wi, RK J
1@ | @ 1@ 1@
A . e w
W, W, W, W,
: 7.1 r—.—\ r—.—\
1 2)| © 3) © 4| ©
Vol 7o o] e
% \% T \%

the
2(1)

students opened their
x(?) x®) () Slide adapted from

longer now!

Note: this input sequence could be much

| CS224n by Chris

Manning (Lecture 5)

Training an RNN Language Model

e Get a big corpus of text which is a sequence of words =) ... x(T)
e Feed into RNN-LM; compute output distribution Q(t) for every step t.
* j.e. predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability rulk- oy
distribution §(*), and the true next word y® (one-hot for z(*+1): o
dw\b\‘., cc»lwrv\

JO@) = CE@®,50) == 3 4D log g = —log g

Ti41
weV

e Average this to get overall loss for entire training set:

T

T
1 1 A
=7 RAGE R > —loggl),,

=1

t=1

40 Slide adapted from CS224n by Chris Manning (Lecture 5)

41

Training an RNN Language Model

= negative log prob
of “students”

exams

Loss — [J((9) J2) () J3)(6) J® ()
T T N N
Predicted ?)(1) g(Z) g(3) 37(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
() () () @
Wh\. Win | @ Wh\. Wh\. Wh\
1@ @ | @ | @ :
@ () () @
e N e N
W, W, W, W,
(1) (2) © 3| O 4) ©
ol “le| “le| ° e
© @) @) @)
Te/mbeddingT \T T
Corpus —> the students opened their
2(1) 2(2) (3) %)

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

Training an RNN Language Model

= negative log prob
of “opened”

Loss —— J)(h) J2)(6) J3)(6) J1(6)

T T N N
Predicted ,7)(1) g(z) Q(3) 37(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
@ () @ ()
Wi 1@ W, (@ Wh |@| Wr |@]| Wi
1@ 1@ 1@ 1@ -
@ () @ ()
Y N N Y
W, W, W, W,
(1) 2)| © 3| O 4) ©
e’lo| el “le|l e
© (@ @ o
;1:;nbeddMg¥1rJ “174 \7FJ
. Slide adapted from
Corpus =—> the students opened their exams :
33‘(1) w(2) w(3) $(4) CS224n by Chris

42 Manning (Lecture 5)

Training an RNN Language Model

= negative log prob
of “their”

Loss —— J)(h) J2)(6) J3)(6) J1(6)

T T N N
Predicted ,7)(1) g(z) Q(3) 37(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
@ () @ ()
Wi 1@ W, (@ Wh |@| Wr |@]| Wi
1@ 1@ 1@ 1@ -
@ () @ ()
Y N N Y
W, W, W, W,
(1) 2)| © 3| O 4) ©
e’lo| el “le|l e
© (@ @ o
Te/mbeddingT \T T
. Slide adapted from
Corpus =—> the students opened their exams :
33‘(1) w(2) w(3) $(4) CS224n by Chris

43 Manning (Lecture 5)

Training an RNN Language Model

= negative log prob
of “exams”

Loss —— J)(h) J2)(6) J3)(6) J1(6)

T T N N
Predicted ,7)(1) g(z) Q(3) 37(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
@ () @ ()
Wi 1@ W, |@| Wh |@| Wh @ W, _
1@ 1@ | @ | @ -
@ () @ ()
Y N N Y
W, W, W, W,
(1) (2) © 3| O 4) ©
e’lo| el “le|l e
© (@ @ o
Te/mbeddingT \T T
. Slide adapted from
Corpus =—> the students opened their exams :
33‘(1) w(2) w(3) $(4) CS224n by Chris

44 Manning (Lecture 5)

th Qwﬁ?bim“
beed Thw NJM

Teacher forcing”

Training an RNN Language Model

T
Loss —— JW@) + JA@B) + JO®) + JDO) +.. = ZJ“)
T T N N t=1
prob dists A A
U U U U
h(0) hD h(2) h3) h®)
0 P (@ (@ How to train this?
Wi |@| W @ W |@| Wh @ Wh Backprop + SGD
() @ @ @ :
() () @ @
Y N N N
e We We We
(1) (2)| © 3) © 4| ©
ol “le| “le| ° e
@) @) @) @)
\Te/mbeddingT T T
Corpus —> the students opened their exams Slide adapted from
2(1) 2 (2) 2(3) 24 CS224n by Chris

45 Manning (Lecture 5)

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

favorite season is spring
N N N

sample sample sample sample

(4)

S
=

&

>
o000~
=
>
&

of

J%'L

)

o)

Slide adapted from
CS224n by Chris

51 my favorite season is spring Manning (Lecture 5)

(o000

embedding

Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.

e RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal

52 Slide adapted from CS224n by Chris Manning (Lecture 5)

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are

they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
53 Slide adapted from CS224n by Chris Manning (Lecture 5)

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

More recent models improve drastically on RNNs.
A particularly important model: The Transformer

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

Why should we care about Language Modeling?

e Language Modeling is a benchmark task that helps us
measure our progress on understanding language

e Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

* Predictive typing

* Speech recognition

e Handwriting recognition

* Spelling/grammar correction
* Authorship identification

* Machine translation

* Summarization

* Dialogue

* etc.

e Language Modeling has been extended to cover everything else in NLP

58 Slide adapted from CS224n by Chris Manning (Lecture 5)

Why should we care about Language Modeling?

* Language M|
measure ou

Text generation: GPT-3

| gave the following prompt to a much simpler model:
°
La n g ua ge M Today 250 students at the University of Southern California begin

g enera t| N g 1 St o ." - T their machine learning class. What all will they learn??

Today 250 students at the University of Southern
California begin their machine learning class.
What all will they learn??

Machine learning is a fascinating subject that has
been at the forefront of computer science for quite

Meet GPT-3. It Has Learned to
Code (and Blog and Argue).

‘The latest natural-language system generates tweets, pens poetry,
summarizes emails, answers trivia questions, translates
languages and even writes its own computer programs.

some time now. We're also seeing some new interest
from those within the field. Here is one of our
students here who has been working on machine
learning for a number of years.

This is Dr. William Smith. He works on machine
learning at the University of Southern California. He
is a professor in computer science and the founder
of the University of Southern California. It's a
fantastic position to be part of the research
community.

L\

At the University of Southern California, you have a
wide range of research interests. So, what's the
most interesting research area to you?

° La nguage Ml GPT-2-simple response using https://watt-ai.github.io/

cg Remember GPT-3 from Lecture 17

