CSCI 567: Machine Learning

Vatsal Sharan
Fall 2022

Lecture 7, Oct 20

Administrivia

- Quiz 1 grades will be released soon.
- Linear algebra tip: Whenever you see or write a matrix-matrix or matrixvector product, double check to make sure the dimensions match.

Make sure none of your linear-algebra operations are caught by the "matrix police"...

Administrivia

- Quiz 1 grades will be released soon.
- Linear algebra tip: Whenever you see or write a matrix-matrix or matrixvector product, double check to make sure the dimensions match.
- Project details will be released in 1-2 weeks (Kaggle competition).
- Groups of 4 (start forming groups)
- Today's plan:
- Convolutional neural networks
- Sequential prediction, Markov models and (a bit of) recurrent neural networks

Acknowledgements

Not much math in this part, but there'll be empirical intuition (and cat pictures ©) $_{\text {) }}$

The materials in this part borrow heavily from the following sources:

- Stanford's CS231n: http://cs231n.stanford.edu/
- Deep learning book by Goodfellow, Bengio and Courville: http://deeplearningbook.org

Both website provides a lot of useful resources: notes, demos, videos, etc.

Image Classification: A core task in Computer Vision

(assume given set of discrete labels) \{dog, cat, truck, plane,
multiclass elassification problem cat
$\underbrace{\text { leoned inder cobr } 20}_{\text {input: How is this represented? }}$

The Problem: Semantic Gap

$\left[\begin{array}{cccccccccccccccc}{[105} & 112 & 108 & 111 & 104 & 99 & 106 & 99 & 96 & 103 & 112 & 119 & 104 & 97 & 93 & 87 \\ {[} & 91 & 98 & 102 & 106 & 104 & 79 & 98 & 103 & 99 & 105 & 123 & 136 & 110 & 105 & 94 \\ 7 & 76 & 5 & 105\end{array}\right]$

What the computer sees

An image is just a big grid of numbers between [0, 255]:
e.g. $800 \times 600 \times 3$
(3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

Challenges: Illumination

This image is CCO 1.0 public domain

This image is CCO 1.0 public domain

This image is CCO 1.0 public domain

Challenges: Deformation

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by sare bear is

This image by Tom Thai is

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

Challenges: Background Clutter

This image is $\underline{\text { CCO }} 1.0$ public domain

This image is $\underline{\text { CCO } 1.0 \text { public domain }}$

Challenges: Intraclass variation

This image is CCO 1.0 public domain

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,
no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Find corners

?

Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier 3. Evaluate the classifier on new images

Example training set

```
def train(images, labels):
    # Machine learning!
    return model
def predict(model, test_images):
```


The challenge

How do we train a model that can do well despite all these variations?

The ingredients:

- A lot of data (so that these variations are observed).
- Huge models with the capacity to consume and learn from all this data (and the computational infrastructure to enable training)

What helps:

- Models with the right properties which makes the process easier (goes back to our discussion of choosing the function class).

The problem with standard NN for image inputs

Fully Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 5-27 April 18, 2017
Completely loses out on spatial structure

The task is as easy, or rather as difficult, for a fullyconnected network even if I shuffle the pixels. Is this okay?

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets.

Usually consist of convolution layers, ReLU layers, pooling layers, and regular fully connected layers
Key idea: learning from low-level to high-level features

Figure from https://blog.floydhub.com/building-your-first-convnet/

2-D Convolution
$0.0+1.1+3.2+4$.
3

0	1	2
3	4	5
6	7	8

this operation is convolution

Figure 14.5: Illustration of Wd cross correlation. Generated by conv2d_jax.ipynb. Adapted from Figure 6.2.1 of [Zha+20].

Figure 14.6: Convolving a Ld image (left) with a 3×3 filter (middle) produces a $2 d$ response map (right). The bright spots of the response map correspond to locations in the image which contain diagonal lines sloping down and to the right. From Figure 5.3 of [Cho17]. Used with kind permission of Francois Chollet.

3-D Convolution

Input
Kernel
Input
Kernel
Output

The input

$$
\begin{aligned}
& \text { The input } \\
& \text { is } 3+3+2 \\
& (2 \text { channels })
\end{aligned} \begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline 3 & 4 & 5 \\
\hline 6 & 7 & 8 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline 0 & 1 \\
\hline 2 & 3 \\
\hline
\end{array}=
$$

Figure 14.9: Illustration of $2 d$ convolution applied to an input with 2 channels. Gen/rated by conv2d_jax.ipynb. Adapted from Figure 6.4.1 of [Zha+20].
add up the result for the two channels

Convolution Layer

$32 \times 32 \times 3$ image -> preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image

 $5 \times 5 \times 3$ filter

 Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

activation maps

For example, if we had 65×5 filters, we'll get 6 separate activation maps:
activation maps

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Fei-Fei Li \& Justin Johnson \& Serena Yeung

Understanding spatial dimensions of Conv layer

A closer look at spatial dimensions:

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume $3 x 3$ filter

=> 5×5 output

A closer look at spatial dimensions:

7

A closer look at spatial dimensions:

7x7 input (spatially) assume $3 x 3$ filter applied with stride 2

A closer look at spatial dimensions:

7×7 input (spatially)
assume 3×3 filter
applied with stride 2
$=>3 \times 3$ output!

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter applied with stride 3 ?

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter applied with stride 3 ?

doesn't fit!

cannot apply 3×3 filter on 7×7 input with stride 3 .

N

			F			
F						

Output size:
 (N - F) / stride + 1

e.g. $N=7, F=3$:
stride $1=>(7-3) / 1+1=5$
stride $2=>(7-3) / 2+1=3$
stride 3 => $(7-3) / 3+1=2.33: 1$

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)

($\mathrm{N}-\mathrm{F}$) / stride +1

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

egg. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
7×7 output!

$$
\begin{aligned}
& (N-F+1) \\
& (9-3+1=6)
\end{aligned}
$$

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)
e.g. $F=3=>$ zero pad with $1(N+2 P-F) /$ stride +1
$\mathrm{F}=5=>$ zero pad with 2
$\mathrm{N}-\mathrm{I}+\mathrm{I}=\mathrm{N}$
F = 7 => zero pad with 3

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1 , pad 2

Output volume size: ?

Examples time:

Input volume: $32 \times 32 \times 3$ 105×5 filters with stride 1 , pad 2

Output volume size: $(N+2 P-F)$ Istride +1
$(32+2 * 2-5) / 1+1=32$ spatially, so
32x32x10

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has $5 * 5 * 3+1=76$ params (+1 for bias) => 76*10 = 760

Summary for convolutional layer

Input: a volume of size $W_{1} \times H_{1} \times D_{1}$

Hyperparameters:

- K filters of size $F \times F$
- stride S
- amount of zero padding P (for one side)

Output: a volume of size $W_{2} \times H_{2} \times D_{2}$ where

- $W_{2}=\left(W_{1}+2 P-F\right) / S+1$
- $H_{2}=\left(H_{1}+2 P-F\right) / S+1$
- $D_{2}=K$
\#parameters: $\left(F \times F \times D_{1}+1\right) \times K$ weights
Common setting: $F=3, S=P=1$

Demo time

What is a Convolutional Neural Network?
https://poloclub.github.io/cnn-explainer/

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection

Local Receptive Field Leads to Sparse Connectivity (affects less)

Sparse connections due to small convolution kernel

Dense connections

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection

Sparse connectivity: being affected by less

Sparse connections due to small convolution kernel

Figure 9.3

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection and parameter sharing

Parameter Sharing

Figure 9.5

Connection to fully connected networks

A convolutional layer is a special case of a fully connected layer:
filter = weights with sparse connection and parameter sharing
Much fewer parameters! Example (ignoring bias terms):

FC layer: $(32 \times 32 \times 3) \times(28 \times 28) \approx 2.4 \mathrm{M}$ Conv layer: $5 \times 5 \times 3=75$

Another element: Pooling

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Another element: Pooling

Similar to a filter, except

- depth is always 1
- different operations: average, L2-norm, max
- no parameters to be learned

Max pooling with 2×2 filter and stride 2 is very common

Input
$3+3$

Output

4	5
7	8

Figure 14.12: Illustration of maxpooling with a $2 x 2$ filter and a stride of 1. Adapted from Figure 6.5 .1 of [Zha+20].

Finishing things up...

Typical architecture for CNNs:

Input $\rightarrow\left[[\mathrm{Conv} \rightarrow \mathrm{ReLU}]^{*} \mathrm{~N} \rightarrow \text { Pool? }\right]^{*} \mathrm{M} \rightarrow[\mathrm{FC} \rightarrow \mathrm{ReLU}]^{*} \mathrm{Q} \rightarrow \mathrm{FC}$
Common choices: $\mathrm{N} \leq 5, \mathrm{Q} \leq 2, \mathrm{M}$ is large
\rightarrow parametery here is very large
How do we learn the filters/weights?
Essentially the same as fully connected NNs: apply SGD/backpropagation

Demo time

What is a Convolutional Neural Network?
https://poloclub.github.io/cnn-explainer/

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca
Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca
Geoffrey E. Hinton
University of Toronto hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000 -way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

A breakthrough result

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528 -dimensional, and the number of neurons in the network's remaining layers is given by $253,440-186,624-64,896-64,896-43,264-$ 4096-4096-1000.
outputs
(optional)

hidden states

Sequence prediction and recurrent neural networks

Acknowledgements

A bit more math, and fewer cat pictures now $*$

We borrow heavily from:

- Stanford's CS224n: https://web.stanford.edu/class/cs224n/

Sequential prediction

Examples:

$$
\rightarrow \text { the input can be of tifferent burghs }
$$

- text or speech data
- stock market data
- weather data
- ...

In this lecture, we will mostly focus on text data (language modelling).

Language modelling

Language modelling is the task of predicting what word comes next:

More formally, let X_{i} be the random variable for the i-th word in the sentence, and let x_{i} be the value taken by the random variable. Then the goal is to compute

$$
P\left(X_{t+1} \mid X_{t}=x_{t}, \ldots, X_{1}=x_{1}\right)
$$

A system that does this is known as a Language Model.

Language modelling

We can also think of a Language Model as a system that assigns a probability to a piece of text.
For example, if we have some text x_{1}, \ldots, x_{T}, then the probability of this text (according to the Language Model) is:

$$
\begin{aligned}
P\left(X_{1}=x_{1}, \ldots, X_{T}=x_{T}\right) & =P\left(X_{1}=x_{1}\right) \times P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \\
& \times \cdots \times P\left(X_{T}=x_{T} \mid X_{T-1}=x_{T-1}, \ldots, X_{1}=x_{1}\right) \\
& =\Pi_{t=1}^{T} P\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}, \ldots, X_{1}=x_{1}\right) .
\end{aligned}
$$

You use Language Models every day!

You use Language Models every day!

Google

```
what is the |
Y
what is the weather
what is the meaning of life
what is the dark web
what is the xfl
what is the doomsday clock
what is the weather today
what is the keto diet
what is the american dream
what is the speed of light
what is the bill of rights
```


n-gram Language Models

the students opened their \qquad

- Question: How to learn a Language Model?
- Answer (pre- Deep Learning): learn an n-gram Language Model!
- Definition: An n-gram is a chunk of n consecutive words.
- unigrams: "the", "students", "opened", "their"
- bigrams: "the students", "students opened", "opened their"
- trigrams: "the students opened", "students opened their"
- four-grams: "the students opened their"
- Idea: Collect statistics about how frequent different n -grams are and use these to predict next word.

n-gram language model: A type of Markov model

A Markov model or Markov chain is a sequence of random variables with the Markov property: a sequence of random variables X_{1}, X_{2}, \cdots s.t.

$$
P\left(X_{t+1} \mid X_{1: t}\right)=P\left(X_{t+1} \mid X_{t}\right) \quad \text { (Markov property) }
$$

i.e. the current state only depends on the most recent state (notation $X_{1: t}$ denotes the sequence X_{1}, \ldots, X_{t}). This is a bigram model.

We will consider the following setting:

- All X_{t} 's take value from the same discrete set $\{1, \ldots .5\}$

- $P\left(X_{t+1}=s^{\prime} \mid X_{t}=s\right)=a_{s, s^{\prime}}$, known as transition probability
- $P\left(X_{1}=s\right)=\pi_{s} \rightarrow$ initial probability
- $\left(\left\{\pi_{s}\right\},\left\{a_{s, s^{\prime}}\right\}\right)=(\boldsymbol{\pi}, \boldsymbol{A})$ are parameters of the model. $\left(\boldsymbol{A} \in \mathbb{R}^{S \times S}\right.$ is the matrix where the entry corresponding to s, s^{\prime} is $a_{s, s \prime}$.)

Markov model: examples

- Example 1 (Language model)

States $[S]$ represent a dictionary of words,

$$
a_{\text {ice }, \text { cream }}=P\left(X_{t+1}=\text { cream } \mid X_{t}=\text { ice }\right)
$$

is an example of the transition probability.

- Example 2 (Weather)

States $[S]$ represent weather at each day

$$
a_{\text {sunny,rainy }}=P\left(X_{t+1}=\text { rainy } \mid X_{t}=\text { sunny }\right)
$$

Markov model: Graphical representation

A Markov model is nicely represented as a directed graph

if tody is Rainy, tomorrow will be $\left\{\begin{array}{l}\text { Rainy, } 70 \% \text { prob. } \\ \text { Sunny, } 30 \% \text { prob }\end{array}\right.$

Learning Markov models

Now suppose we have observed n sequences of examples:

- $x_{1,1}, \ldots, x_{1, T}$
- . .
- $x_{i, 1}, \ldots, x_{i, T}$

(sunny, guncy, ... Suncy)
- ..
- $x_{n, 1}, \ldots, x_{n, T}$
where
- for simplicity we assume each sequence has the same length T
- lower case $x_{i, t}$ represents the value of the random variable $X_{i, t}$

From these observations how do we learn the model parameters $(\boldsymbol{\pi}, \boldsymbol{A})$?

Learning Markov models: MLE

Same story, find the MLE. The log-likelihood of a sequence x_{1}, \ldots, x_{T} is

$$
\begin{aligned}
& \ln P\left(X_{1: T}=x_{1: T}\right) \\
& =\sum_{t=1}^{T} \ln P\left(X_{t}=x_{t} \mid X_{1: t-1}=x_{1: t-1}\right) \\
& =\sum_{t=1}^{T} \ln P\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}\right)
\end{aligned}
$$

(always true)
(Markov property)

This is over one sequerce. can sum oud dill.

Learning Markov models: MLE

So MLE is

$$
\begin{gathered}
\text { if this is large } \Rightarrow \text { this should } \\
\text { for some s } \\
\underset{\pi, \boldsymbol{A}}{\operatorname{argmax}} \sum_{s}(\# \text { \#initial states with value } s) \ln \left(\pi_{s}\right) \\
+\sum_{s, s^{\prime}}(\# \text { transe for that }
\end{gathered}
$$

This is an optimization problem, and can be solved by hand (though we'll skip in class). The solution is:

$$
\begin{aligned}
\pi_{s} & =\frac{\text { \#initial states with value } s}{\text { \#initial states }} \\
a_{s, s^{\prime}} & =\frac{\text { \#transitions from } s \text { to } s^{\prime}}{\# \text { transitions from } s \text { to any state }}
\end{aligned}
$$

Learning Markov models: Another perspective

Let's first look at the transition probabilities. By the Markov assumption,

$$
P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{1}=x_{1}\right)=P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)
$$

Using the definition of conditional probability,

$$
P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)=\frac{P\left(X_{t+1}=x_{t+1}, X_{t}=x_{t}\right)}{P\left(X_{t}=x_{t}\right)}
$$

We can estimate this using data,

$$
\frac{P\left(X_{t+1}=x_{t+1}, X_{t}=x_{t}\right)}{P\left(X_{t}=x_{t}\right)} \approx \frac{\text { \#times }\left(x_{t}, x_{t+1}\right) \text { appears }}{\# \text { times }\left(x_{t}\right) \text { appears }(\text { and is not the last state })}
$$

The initial state distribution follows similarly,
Just like estimating

$$
P\left(X_{1}=s\right) \approx \frac{\text { \#times } s \text { is first state }}{\# \text { sequences }}
$$

bias of a coin/dice.

Learning Markov models: Example

Suppose we observed the following 2 sequences of length 5

- sunny, sunny, rainy, rainy, rainy
- rainy, sunny, sunny, sanny, yainy

Higher-order Markov models

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.
Higher order Markov chains make it a bit more reasonable, e.g.

$$
P\left(X_{t+1} \mid X_{t}, \ldots, X_{1}\right)=P\left(X_{t+1} \mid X_{t}, X_{t-1}\right)
$$

(second-order Markov assumption)

i.e. the current word only depends on the last two words. This is a trigram model, since we need statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a $(n+1)$-gram model):

$$
P\left(X_{t+1} \mid X_{t}, \ldots, X_{1}\right)=P\left(X_{t+1} \mid X_{t}, X_{t-1}, \ldots, X_{t-n+1}\right) \quad(n \text {-th order Markov assumption) }
$$

Learning higher order Markov chains is similar, but more expensive.

$$
\begin{aligned}
P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{1}=x_{1}\right) & =P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{t-n+1}=x_{t-n+1}\right) \\
& =\frac{P\left(X_{t+1}=x_{t+1}, X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{t-n+1}=x_{t-n+1}\right)}{P\left(X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{t-n+1}=x_{t-n+1}\right)} \\
& \approx \frac{\operatorname{count}\left(x_{t-n+1}, \ldots, x_{t-1}, x_{t}, x_{t+1}\right) \text { in the data }}{\operatorname{count}\left(x_{t-n+1}, \ldots, x_{t-1}, x_{t}\right) \text { in the data }}
\end{aligned}
$$

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

$$
P(\boldsymbol{w} \mid \text { students opened their })=\frac{\operatorname{count}(\text { students opened their } \boldsymbol{w})}{\text { count(students opened their) }}
$$

For example, suppose that in the corpus:

- "students opened their" occurred 1000 times
- "students opened their books" occurred 400 times
- \rightarrow P(books | students opened their) $=0.4$

Should we have discarded

- "students opened their exams" occurred 100 times
- $\rightarrow \mathrm{P}$ (exams | students opened their) $=0.1$

n-gram Language Models in practice

- You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop
today the \qquad

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

Generating text with a n-gram Language Model

How to build a neural Language Model? Charging notation, $x^{(1)}$

is overloadel to refer to

- Recall the Language Modeling task:
both rev. \& its value
- Input: sequence of words $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(t)}$
- Output: prob dist of the next word $P\left(\boldsymbol{x}^{(t+1)} \mid \boldsymbol{x}^{(t)}, \ldots, \boldsymbol{x}^{(1)}\right)$
- How about a window-based neural model?

A fixed-window neural Language Model

Use a fixed window of previous words, and train a vanilla fully-connected neural network to predict the next word? \rightarrow This is a standard supervised loaning task

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding
suppose vocabulary is of size S
'the' $=[1,0, \ldots .0] \rightarrow s$ dim. vector
'students': $[0,1, \ldots$ oJ $\rightarrow S$ dim. vector

Approach 2: word embeddings/word vectors
(1) high dimensional
(2) each representation is orthogonal, even similar words hove representations which are for away.

Slide adapted from CS224n by Chris Manning (Lecture 5)

Word embeddings/vectors

A word embedding is a (dense) mapping from words, to vector representations of the words.
Ideally, this mapping has the property that words similar in meaning have representations which are close to each other in the vector space.
need help
You'll see a simple way to construct these in HW4.

A fixed-window neural Language Model
same texture as
network in $\begin{aligned} & \mathrm{HW} \mathrm{H} \\ & \text { output distribution }\end{aligned}$

$$
\hat{\boldsymbol{y}}=\underbrace{\operatorname{softmax}}\left(\boldsymbol{U} \boldsymbol{h}+\boldsymbol{b}_{2}\right) \in \mathbb{R}^{|V|}
$$

using softmax to get distribution
hidden layer

$$
\boldsymbol{h}=f\left(\boldsymbol{W} \boldsymbol{e}+\boldsymbol{b}_{1}\right)
$$

f : non-linearity (Rel) concatenated word embeddings

$$
e=\underbrace{\left[e^{(1)}\right.}_{\text {suppose each is } 10 \text {-dimensional }} ; e^{(2)} ; e^{(3)} ; e^{(4)}]
$$

words / one-hot vectors

$$
\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}, \boldsymbol{x}^{(4)}
$$

Slide adapted from CS224n by Chris Manning (Lecture 5)

The problem with this architecture

- Uses a fixed window, which can be too small.
- Enlarging this window will enlarge the size of the weight matrix \boldsymbol{W}.
- The inputs $x^{(\mathbf{1)}}$ and $x^{(2)}$ are multiplied by completely different weights in \boldsymbol{W}.
No symmetry in how inputs are processed!

As with CNNs for images before, we need an architecture which has similar symmetries as the data.

In this case, can we have an architecture that can process any input length?

Recurrent Neural Networks (RNN)

A family of neural architectures

It's okay if you don't fully understand the next few slides on RNNs, but you should get the main ideas...

Recurrent Neural Networks (RNN)

A family of neural architectures
Core idea: Apply the same weights W repeatedly
similar to what

A Simple RNN Language Model

$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

books

output distribution

hidden states
$\boldsymbol{h}^{(t)}=\sigma\left(\boldsymbol{W}_{h} \boldsymbol{h}^{(t-1)}+\boldsymbol{W}_{e} \boldsymbol{e}^{(t)}+\boldsymbol{b}_{1}\right)$
$\boldsymbol{h}^{(0)}$ is the initial hidden state
σ : Activation (Relu word embeddings $\boldsymbol{e}^{(t)}$ for word $\boldsymbol{x}^{(t)}$

Slide adapted from CS224n by Chris Manning (Lecture 5)

Training an RNN Language Model

- Get a big corpus of text which is a sequence of words $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(T)}$
- Feed into RNN-LM; compute output distribution $\hat{\boldsymbol{y}}^{(t)}$ for every step t.
- i.e. predict probability dist of every word, given words so far
- Loss function on step t is cross-entropy between predicted probability distribution $\hat{\boldsymbol{y}}^{(t)}$, and the true next word $\boldsymbol{y}^{(t)}$ (one-hot for $\boldsymbol{x}^{(t+1)}$):

$$
J^{(t)}(\theta)=C E\left(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}\right)=-\sum_{w \in V} \boldsymbol{y}_{w}^{(t)} \log \hat{\boldsymbol{y}}_{w}^{(t)}=-\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}
$$

- Average this to get overall loss for entire training set:

$$
J(\theta)=\frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)=\frac{1}{T} \sum_{t=1}^{T}-\log \hat{\boldsymbol{y}}_{x_{t+1}}^{(t)}
$$

Training an RNN Language Model

Slide adapted from CS224n by Chris

Training an RNN Language Model

Slide adapted from CS224n by Chris Manning (Lecture 5)

Training an RNN Language Model

Slide adapted from CS224n by Chris

Training an RNN Language Model

Slide adapted from CS224n by Chris
feed true output as input

Training an RNN Language Model

"Teacher forcing"

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to generate text by repeated sampling. Sampled output becomes next step's input.

Generating text with an RNN Language Model

Let's have some fun!

- You can train an RNN-LM on any kind of text, then generate text in that style.
- RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American people that will share the fact that we created the problem. They were attacked and so that they have to say that all the task of the final days of war that I will not be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let's have some fun!

- You can train an RNN-LM on any kind of text, then generate text in that style.
- RNN-LM trained on Harry Potter:

"Sorry," Harry shouted, panicking-"I'll leave those brooms in London, are they?"
"No idea," said Nearly Headless Nick, casting low close by Cedric, carrying the last bit of treacle Charms, from Harry's shoulder, and to answer him the common room perched upon it, four arms held a shining knob from when the spider hadn't felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

More recent models improve drastically on RNNs. A particularly important model: The Transformer

Attention Is All You Need

Ashish Vaswani*
Google Brain avaswani@google.com

Noam Shazeer* Google Brain oam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com
Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* University of Toronto

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* ${ }^{\ddagger}$
illia.polosukhin@gmail.com

Abstract
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English o-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation tas our model establishes a new single-model state-of-the-art BLEU score of 41.0 after raining for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

Why should we care about Language Modeling?

- Language Modeling is a benchmark task that helps us measure our progress on understanding language
- Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text:
- Predictive typing
- Speech recognition
- Handwriting recognition
- Spelling/grammar correction
- Authorship identification
- Machine translation
- Summarization
- Dialogue
- etc.
- Language Modeling has been extended to cover everything else in NLP

Why should we care about Language Modeling?

- Language M measure ou
- Language M generating

Text generation: GPT-3

I gave the following prompt to a much simpler model:
Today 250 students at the University of Southern California begin their machine learning class. What all will they learn??

Today 250 students at the University of Southern California begin their machine learning class. What all will they learn??

Machine learning is a fascinating subject that has been at the forefront of computer science for quite some time now. We're also seeing some new interest from those within the field. Here is one of our students here who has been working on machine learning for a number of years.

This is Dr. William Smith. He works on machine learning at the University of Southern California. He is a professor in computer science and the founder of the University of Southern California. It's a fantastic position to be part of the research community

At the University of Southern California, you have a wide range of research interests. So, what's the
most interesting research area to you?

- Language M

