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Administrivia
* Project details are out
 Make groups (of 4) by Nov 11, minimum team size is 3.

* Q5 on HW4 will help you get started on it.
 WEe'll give an overview of the project and general tips in today’s discussion.

e HW4 is due in about two weeks (Nov 16 at 2pm).
 WEe'll release another question on PCA tomorrow.

 Today’s plan:
* Finish ensemble methods
 Unsupervised learning:
e PCA
e C(Clustering



X.1 <0.395 Xx.1 <0.555 x.2 <0.205

1 0 0 1
1 0 0

Ensemble methods:
x.2 < 0.285 RQSCé p x4 <-1.36



Ensemble methods

* Bagging



Bagging

Collect T" subsets each of some fixed size (say m) by sampling with replacement from
training data.

Let f;(x) be the classifier (such as a decision tree) obtained by training on the subset
t € {1,...,T}. Then the aggregrated classifier f,,,(x) is given by:

fage(x) = % Z’Tzl fi(z) for regression,
o sign (% S ft(a;)> — Majority Vote{ f;(x)}._, for classification.

Reduces overfitting (i.e., variance)

Can work with any type of classifier (here focus on trees)

Easy to parallelize (can train multiple trees in parallel)

But loses on interpretability to single decision tree (true for all ensemble methods..)



Ensemble methods

e Random forests



Random forests

Random forests: When growing a tree on a bootstrapped (i.e. subsampled) dataset,
before each split select k < d of the d input variables at random as candidates for

splitting.

When k = d — same as Bagging
When k < d — Random forests

k is a hyperparameter, tuned via cross-validation



Ensemble methods

* Boosting: Basics



Boosting: Idea

The boosted predictor is of the form fy,0s: () = sign(h(x)), where,

T
h(z) =) Bifi(z)for f; > 0and f, € F.
t=1

The goal is to minimize ¢(h(x), y) for some loss function /.

Q: We know how to find the best predictor in F on some data, but how do we find the best weighted
combination h(x)?

A: Minimize the loss by a greedy approach, i.e. find B;, fi(x) one by one fort =1,...,T.
Specifically, let b () = " _, B, f-(x). Suppose we have found h;_; (), how do we find 5y, fi(x)?
Find the f3;, f;(x) which minimizes the loss ¢(h(x), y).

Different loss function ¢ give different boosting algorithms.

(h(x) —y)?>  — Least squares boosting,
exp(—h(x)y) — AdaBoost.



Ensemble methods

e Adaboost



AdaBoost: Full algorithm

Given a training set S and a base algorithm .4, initialize D to be uniform

Fort=1,...,T
e obtain a weak classifier f;(x) < A(S, D;)

e calculate the weight 5; of fi(x) as

1 1—
5t:§ln( GEt) (5t>0(:>et<0.5)
t

where €, = >, ¢ )4, Di(i) is the weighted error of f;(x).

e update distributions

Dt(i)€_6t if ft(:c@) = Y;

D ) oc Ds(i 6_5tyift(33i) _
t+1(0) (0) Dt(i)eﬁt else

Output the final classifier fyo05¢ = SgN (Zle By ft(zc))



Adaboost: Example

Put more weight on difficult to classify instances and less on those already handled well
New weak learners are added sequentially that focus their training on the more difficult patterns

10 data points in R?

The size of + or - indicates the weight, which starts from uniform D,

Base algorithm is decision stump: _

331>91 X, >02

Go through the calculations in the example to make sure you understand the algorithm




Ensemble methods:
“Gradient boosting



Ensemble methods

e Gradient boosting



Gradient Boosting

Recall hi(x) = S.'_, B, f(x). For Adaboost (exponential loss), given h; (), we
found what f;(a) should be.

Gradient boosting provides an iterative approach for general (any) loss function £(h(x), y):

how thewd pr e Nowy,
d/\am9e v’b‘(&dv . "o ﬂaelu{

e For all training datapoints (x;, y;) find the gradient
(occ ?
i)=h¢—1(x;) =

;= { z(h(wz)ayz)]
h e i et shw(:(

e Use the weak learner to find f; which fits (:L'Z as well as possible:  be colclod To b v los §

down .

fo = arfgé?_-in ;(Tz - f(w@& (W woled  to %

e Update hi(x) = hi—1(x) + nfi(x), for some step size 7.
AN
oad model  vhida tmpreves  loss (Madb’



Gradient Boosting

Usually we add some regularization term to prevent overfitting (penalize the size of the tree etc.)
Gradient boosting is extremely successful!!

A variant XGBoost is one of the most popular algorithms for structured data (tables etc. with
numbers and categories where each feature typically has some meaning, unlike images or text).

(for e.g. during Kaggle competitions back in 2015, 17 out of 29 winning solutions used XGBoost)



Unsupervised
learning: PCA



A simplistic taxonomy of ML

Unsupervised
learning:
Aim to discover

hidden patterns and

explore data

Supervised learning:
Aim to predict
outputs of future
datapoints

Reinforcement
learning:
Aim to make
sequential decisions



Principal Component Analysis (PCA)

* |ntroduction



Acknowledgement & further reading

Our presentation is closely based on Gregory Valiant’s
notes for CS168 at Stanford.

https://web.stanford.edu/class/cs168/1/17.pdf
https://web.stanford.edu/class/cs168/1/18.pdf

You can refer to these notes for further reading.
Also review our Linear algebra Colab notebooks:

Part 1
Part 2


https://web.stanford.edu/class/cs168/l/l7.pdf
https://web.stanford.edu/class/cs168/l/l8.pdf
https://colab.research.google.com/drive/1Wo6pC6ybebfIV8Nz06aHAVa1amjYDGQO?usp=sharing
https://colab.research.google.com/drive/1Wo6pC6ybebfIV8Nz06aHAVa1amjYDGQO?usp=sharing

Dimensionality reduction & PCA

We’ll start with a simple and fundamental unsupervised learning problem: dimensionality reduction.

Goal: reduce the dimensionality of a dataset so that
e it is easier to visualize and discover patterns
e it takes less time and space to process for any downstream application (classification, regression, etc)

e noise i1s reduced

There are many approaches, we focus on a linear method: Principal Component Analysis (PCA).



PCA: Motivation

England N Ireland Scotland Wales

Alcoholic drinks 375 135 458 475

Consider the following dataset: Beverages 57 47 53 73
Carcase meat 245 267 242 227

Cereals 1472 1494 1462 1582

e 17 features, each represents the average consump- Cheass 08 o 103 103
tion of some food Confectionery 54 41 62 64

Fats and oils 193 209 184 235

Fish 147 93 122 160

e 4 data points, each represents some country. Fresh fruit 102 674 957 m
Fresh potatoes 720 1033 566 874

What can you tell? Fresh Veg 253 143 171 265
Other meat 685 586 750 803

. . Other Veg 488 355 418 570

Hard to say anything looking at all these 17 features. Processed potatoes o .. 220 203
Processed Veg 360 334 337 365

Soft drinks 1374 1506 1572 1256

Sugars 156 139 147 175

Picture from here
See this for more details


http://setosa.io/ev/principal-component-analysis/
https://people.duke.edu/~hpgavin/SystemID/References/Richardson-PCA-2009.pdf

PCA: Motivation

PCA can help us! The projection of the data onto its first principal component:

pcl o I » Fr// I ‘bﬁ

| | | |
-300 -200 -100 O 100 200 300 400 500

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!



PCA: Motivation

PCA can help us! The projection of the data onto its first principal component (PC1):

Wales  England Scotland N Ireland
pcl e | » 9/ | I I I I x—I
-300 -200 -100 0 100 200 300 400 500

i.e. we reduce the dimensionality from 17 to just 1.
Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland,
the only country not on the island of Great Britain out of the 4 samples.

Can also interpret components: PC1 tells us that the Northern Irish eat more grams of fresh
potatoes and fewer of fresh fruits and alcoholic drinks.



PCA: Motivation

We can find the second (and more) principal components of the data too:

400

300 - Wales

200 —

N lreland
England ./

pcZ 0= ./
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PCA: Motivation

And the components themselves are interpretable too:

htoes

05} .Fresh pot;
N o o
g ol Fresh fruit o+ Othég VedGer |
3 o Other mezg§
= Alcoholic drinks S

-0.5} . i
Soft drinks
_1 1 1 1 1 1 1
0.8 -0.6 0.4 -0.2 0 0.2 0.4 0

effect(PC1)

6

See this for more details


https://people.duke.edu/~hpgavin/SystemID/References/Richardson-PCA-2009.pdf

Principal Component Analysis (PCA)

* Formalizing the problem
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High-level goal

Suppose we have a dataset of n datapoints €, xo, ..., x, € R%

for some coefficients «;; € R.



Preprocessing the data

» Before we apply PCA, we usually preprocess the data to center it
~

det x=z L g 4
V’ X

Fhen Sot ;ZI: - ¢+
AS%W“G daut AS LQV\Q’Wc( ( £« :c)

* In many applications, it is also important to scale each coordinate properly. This is especially true if
the coordinates are in different units or scales.

for LU 3 €la),) Luide fun ccalingy o tats pond %\V%'*‘a‘k
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Figure 3: Scaling the z-axis yields a different best-fit line.

Figure from CS168 notes



Objective function for PCA

Key difference from supervised learning problems:
No labels given, which means no ground-truth to measure the quality of the answer!

However, we can still write an optimization problem based on our high-level goal.
For clarity, we first discuss the special case of k = 1.

Optimization problem for finding the 1% principal component v:

- - L
V.= ovgmin S (( disfince Lefwean 47 K line ngvmeo( b, V\)

N \\\,uz:\ (=R



Figure 4: The geometry of the inner product with a unit length vector, w.
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Figure from CS168 notes
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An example:

“bad” line

“good” line

Figure 5: For the good line, the projection of the points onto the line keeps the two clusters
separated, while the projection onto the bad line merges the two clusters.



Objective function for larger values of k

The generalization of the original formulation for general & is to find a k-dimensional subspace S
such that the points are as close to it as possible:

n

S = argmin E (distance between x; and subspace S)?
k-dim subspaces S i—1

By the same reasoning as for k = 1, this is equivalent to,

n

S = argmax Z(length of ;’s projection on §)? = @

k-dim subspaces S i—1

It is useful to think of the subspace S as the span of k orthonormal vectors v+, ..., v € R%.
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Example,
e k =1, span is line through the origin.

e k= 2,if v, vy are linearly independent, the span is a plane through the origin, and so on.
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Formal problem solved by PCA:

Given x1,...,x, € R? and a parameter £ > 1, compute orthonormal vectors v, ..., v, € R? to maximize,
n k
Z Z 2
<$l‘, (Y j> .
i=1 j=1
Equivalent view:
e Pick v to be the variance maximizing direction.
e Pick v, to be the variance maximizing direction, orthogonal to v;.

e Pick w3 to be the variance maximizing direction, orthogonal to v; and vs, and so on.



Principal Component Analysis (PCA)

* How to use PCA, and examples



Using PCA for data compression and visualization

Input: n datapoints 1, s, . .., T, € RY, #components k we want
Step 1 Perform PCA to get top k principal components v+, ..., v € R%.

Step 2 For each datapoint x;, define its “v;-coordinate” as (x;, v1), its “vs-coordinate” as (x;, v2).
Therefore we associate k coordinates to each datapoint a;, where the j-th coordinate denotes the
extent to which x; points in the direction of v ;.

Step 3 We now have a new “compressed” dataset where each datapoint is k£-dimensional. For visu-
alization, we can plot the point x; in R as the point ({x;, v1), (x;, va2), ..., (xT;, Vi)).

ke
9=\



Visualization example: Do Genomes Encode Geography?

Dataset: genomes of 1,387 Europeans (each individual’s genotype at 200,000 locations in the genome)

n =1387,d = 200,000
Project the datapoints onto top 2 PCs

Plot shown below; looks remarkably like the map of Europe!
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From paper

: "Genes mirror geography within Europe” Novembre et al., Nature’08



Compression example: Eigenfaces

Dataset: 256x256 (~65K pixels) dimensional images
of about 2500 faces, all framed similarly
n = 2500,d = 65,000

We can represent each image with high accuracy
using only 100-150 principal components!

The principal components (called eigenfaces here)
are themselves interpretable too!

Figure 2. Seven of the eigenfaces calculated from the input images
of Figure 1.

From paper: "Eigenfaces for recognition” Turk & Pentland, Journal of Cognitive Neuroscience’91



Principal Component Analysis (PCA)

* Solving the PCA optimization problem



How to solve the PCA optimization problem?
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The diagonal case

Let’s solve argmax , v Aw for the special case where A is a diagonal matrix.

vil|v][2=

Any d x d matrix A can be thought of as a function that maps points in R? back to points in R?:
v — Av.



The matrix <(2) ?) maps (z,y) to (2x,y):

Points on circle {(z,y) : 2% + y?> = 1} are mapped to the ellipse {(z,y) : (%)2 +y? =1}

Figure from CS168 notes



So what direction v should maximize v7 Awv for diagonal A?

It should be the direction of maximum stretch:
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Diagonals in disguise

Consider

q-m{-o*ljg Vade
Y9 us®

A still does nothing other than stretch
out different orthogonal axes, possibly
with these axes being a “rotated
version” of the original ones.

314

The previous figure, rotated 45 degrees.



How do we formalize the concept of a rotation in high dimensions as a matrix operation?

Answer: Orthogonal matrix (also called orthonormal matrix).
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Recall that we want to find v; = argmax,, =, v Av.

Now consider A that can be written as A = QDQ" for an orthogonal matrix @ and diagonal
matrix D with diagonal entries Ay > Ao > A3 > ... \g > 0.

A— S\Ql‘.,Q,f
S

> s
What is the direction which gets stretched the maximum?

(Informal answer) The maximum possible stretch by D is A;. The direction of maximum stretch
under D is e;. Therefore, direction of maximum stretch under DQ" isvst. Qv =e; = v =

(QT)_lel = Qe;.
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General covariance matrices
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When £ = 1, the solution to argmax,,. ||,=1 vT Aw is the first column of Q, where A = X' X =

QDQ" with Q orthogonal and D diagonal with sorted entries.




General values of k

What is the solution to the PCA objective for general values of £?
n k
22 (@i vy)”
i=1 j=1

Solution: Pick the first k& columns of @, where the covariance X' X = QDQ" with Q orthogonal
and D diagonal with sorted entries.

Since @Q is orthogonal, the first £ columns of Q are orthogonal vectors. These are called the top &
principal components (PCs).



Eigenvalues & eigenvectors

How to compute the top k columns of Q in the decomposition X' X = QDQ"?

Solution: Eigenvalue decomposition!
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Eigenvectors: axes of stretch in geometric intuition
Eigenvalues: stretch factors
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PCA boils down to computing the k eigenvectors of the covariance matrix X7 X
that have the largest eigenvalues.




Principal Component Analysis (PCA)

e Conclusion



How many PCs to use?

For visualization, we usually choose k to be small and just pick the first few principal components.

In other applications such as compression, it is a good idea to plot the eigenvalues and see. A lot of
data is close to being low rank, so the eigenvalues may decay and become small.

We can also choose the threshold based on how much variance we want to capture. Suppose we
want to capture 90% of the variance in the data. Then we can pick & such that i.e.

k
Zj:l >‘j

d .

j=1"\J

> 90%

where A\; > --- > A4 are sorted eigenvalues.

Note: C.l: \; = trace(X ' X)), so no need to actually find all eigenvalues.
7=17"
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When and why does PCA fail?

Data is not properly of R RN
scaled/normalized. 4 I
++ * M
+ ot ¥ F
Non-orthogonal structure in data: PCs ot Ll NN
are forced to be orthogonal, and T * P
= 0F T
there may not be too many r * I;
orthogonal components in the data o T i I
*
which are all interpretable. . T
-4 = ++y
. . -*_
Non-linear structure in data. .
R +




