Linear Algebra and Calculus Exercises: Part I

CSCI 567 Machine Learning

Fall 2022

Instructor: Vatsal Sharan

MULTIPLE-CHOICE QUESTIONS: one or more correct choices for each question.

1 Linear Algebra

Q1 Which identities are NOT correct for real-valued matrices A, B, and C? Assume that inverses exist and multiplications are legal.

- (a) $(AB)^{-1} = B^{-1}A^{-1}$
- (b) $(I+A)^{-1} = I A$
- (c) $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- (d) $(AB)^{\top} = A^{\top}B^{\top}$

Q2 In a *d*-dimensional Euclidean space, what is the shortest distance from a point \mathbf{x}_0 to a hyperplane $\mathcal{H} = \{\mathbf{x} : \mathbf{w}^\top \mathbf{x} = 0\}$? (Notation: $\|\mathbf{w}\|_2 = \sqrt{\sum_i w_i^2}$.)

- (a) $|\mathbf{w}^\top \mathbf{x_0}|$
- (b) $|\mathbf{w}^{\top}\mathbf{x_0}| / \|\mathbf{w}\|_2$
- (c) $|\mathbf{w}^{\top}\mathbf{x_0}|/\sqrt{\|\mathbf{w}\|_2^2 + \|\mathbf{x_0}\|_2^2}$
- (d) $|\mathbf{w}^{\top}\mathbf{x_0}| / \|\mathbf{w}\|_2^2$

Q3 Suppose $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are all *D*-dimensional vectors, and $X \in \mathbb{R}^{N \times D}$ is a matrix where the *n*-th row is \mathbf{x}_n^{\top} . Then which of the following identities are correct?

- (a) $X^{\top}X = \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\top}$
- (b) $X^{\top}X = \sum_{n=1}^{N} \mathbf{x}_n^{\top} \mathbf{x}_n$
- (c) $XX^{\top} = \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\top}$
- (d) $XX^{\top} = \sum_{n=1}^{N} \mathbf{x}_n^{\top} \mathbf{x}_n$

2 Calculus

Q1 Suppose $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is an arbitrary vector. Which one of the following functions is NOT convex:

- (a) $f(\mathbf{x}) = \sum_{i=1}^{n} |x_i|$
- (b) $f(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i$
- (c) $f(\mathbf{x}) = \min_{i \in \{1,...,n\}} a_i x_i$
- (d) $f(\mathbf{x}) = \sum_{i=1}^{n} \exp(x_i)$

Q2 Which of the following are correct chain rules $(g, g_1, \ldots, g_d$ are functions from \mathbb{R} to \mathbb{R})?

- (a) For a composite function f(g(w)), $\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$.
- (b) For a composite function f(g(w)), $\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} + \frac{\partial g}{\partial w}$.
- (c) For a composite function $f(g_1(w), \ldots, g_d(w)), \frac{\partial f}{\partial w} = \left(\frac{\partial f}{\partial g_1} \frac{\partial g_1}{\partial w}, \ldots, \frac{\partial f}{\partial g_d} \frac{\partial g_d}{\partial w}\right).$
- (d) For a composite function $f(g_1(w), \ldots, g_d(w)), \frac{\partial f}{\partial w} = \sum_{i=1}^d \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$

Q3 A function $f : \mathbb{R}^{n \times 1} \to \mathbb{R}$ is defined as $f(\mathbf{x}) = \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{x}$ for some $\mathbf{b} \in \mathbb{R}^{n \times 1}$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the derivative $\frac{\partial f}{\partial \mathbf{x}}$ (also called the gradient $\nabla f(\mathbf{x})$)?

- (a) $(\mathbf{A} + \mathbf{A}^{\top})\mathbf{x} + \mathbf{b}$
- (b) $2\mathbf{A}^{\top}\mathbf{x} + \mathbf{b}$
- (c) $2\mathbf{A}\mathbf{x} + \mathbf{b}$
- (d) $2\mathbf{A}\mathbf{x} + \mathbf{x}$

Q4 A function $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ is defined as $f(\mathbf{A}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$. What is the derivative $\frac{\partial f}{\partial \mathbf{A}}$?

- (a) 2**x**
- (b) $\mathbf{x} + \mathbf{x}^{\top}$
- (c) $\mathbf{x}\mathbf{x}^{\top}$
- (d) $\mathbf{x}^{\top}\mathbf{x}$

Q5 A function $f : \mathbb{R}^{n \times 1} \to \mathbb{R}$ is defined as $f(\mathbf{w}) = \ln(1 + e^{-\mathbf{w}^{\top}\mathbf{x}})$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$. What is the derivative $\frac{\partial f}{\partial \mathbf{w}}$?

- (a) $-\frac{\mathbf{w}}{1+e^{\mathbf{w}^{\top}\mathbf{x}}}$ (b) $-\frac{\mathbf{x}}{1+e^{\mathbf{w}^{\top}\mathbf{x}}}$ (c) $-\frac{\mathbf{w}}{1+e^{-\mathbf{w}^{\top}\mathbf{x}}}$
- (d) $-\frac{\mathbf{x}}{1+e^{-\mathbf{w}^{\top}\mathbf{x}}}$

- **Q6** For a differential function $f : \mathbb{R}^n \to \mathbb{R}$, which of the following statements are correct?
 - (a) If \mathbf{x}^{\star} is a minimizer of f, then $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$.
 - (b) If \mathbf{x}^{\star} is a maximizer of f, then $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$.
 - (c) If $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$, then \mathbf{x}^{\star} is a minimizer of f.
 - (d) If $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$, then \mathbf{x}^{\star} is a maximizer of f.