CSCI 567 Discussion Linear Algebra and Numpy Review I

(Slides adapted from Nandita Bhaskhar's slides for CS229 at Stanford)

Bhavya Vasudeva and Sampad Mohanty

Outline

- Basic Concepts and Notation
- Matrix Multiplications
- Operations and Properties
- Matrix Calculus

Basic Concepts and Notation

Basic Notation

- By $x \in \mathbb{R}^{n}$, we denote a vector with n entries.

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- By $A \in \mathbb{R}^{m \times n}$, we denote a matrix with m rows and n columns.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a^{1} & a^{2} & \cdots & a^{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\cdots-- & a_{1}^{T} & -- \\
\cdots- & a_{2}^{T} & -- \\
& \vdots & \\
--- & a_{m}^{T} & --
\end{array}\right]
$$

Special Matrices

$$
\begin{array}{cc}
\begin{array}{c}
\text { Identity matrix } \\
I_{n} \in \mathbb{R}^{n \times n}
\end{array} & \begin{array}{c}
\text { Diagonal matrix } \\
D
\end{array} \\
{\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right] \quad} & {\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \ddots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & d_{n}
\end{array}\right]}
\end{array}
$$

For all $A \in \mathbb{R}^{m \times n}, A I_{n}=A=I_{m} A$.
Clearly, $I=\operatorname{diag}(1,1, \ldots, 1)$.

Matrix Multiplication

Vector-Vector Product

Inner Product or Dot Product

$$
\begin{gathered}
\left.x^{T} y \in \mathbb{R}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & \left.x_{n}\right]
\end{array}\right]=\begin{array}{c}
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right]}
\end{array}\right]=x_{1} \underline{y}_{1}+x_{2} \underline{x}_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i} . \\
\text { Intuition } \\
x^{T} y=(\text { Length of projected } x) \cdot(\text { Length of } y) \\
\end{gathered}
$$

Vector-Vector Product

Outer Product

$$
\begin{array}{cc}
x y^{T} \in \mathbb{R}^{m \times n}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right] \\
{\left[\begin{array}{ccccc}
x_{1} & x_{1} & \cdots & x_{1} \\
y_{1} & y_{2} & \ddots & y_{n} \\
x_{m} & x_{m} & \cdots & x_{m}
\end{array}\right]} & {\left[\begin{array}{cccc}
x_{1}(\cdots & y^{T} & \cdots) \\
x_{2}(\cdots & y^{T} & \cdots) \\
\vdots & \vdots & \vdots & \vdots \\
x_{m}(\cdots & y^{T} & \cdots)
\end{array}\right]}
\end{array}
$$

Matrix-Vector Product

View 1: Write A by rows

$$
y=A x=\left[\begin{array}{ccc}
--- & a_{1}^{T} & --- \\
--- & a_{2}^{T} & --- \\
& \vdots & \\
--- & a_{m}^{T} & ---
\end{array}\right] x=\left[\begin{array}{c}
a_{1}^{T} x \\
a_{2}^{T} x \\
\vdots \\
a_{m}^{T} x
\end{array}\right]
$$

Set of inner products with each row vector

Matrix-Vector Product

View 2: Write A by columns

Linear combination of column vectors

Vector-Matrix Product

View 1: Write A by columns

$$
y^{T}=x^{T} A=\underline{x}^{T}\left[\begin{array}{cccc}
1 & \mid & & \mid \\
a^{1} & a^{2} & \cdots & a^{n} \\
1 & \mid & & \mid
\end{array}\right]=\left[\begin{array}{llll}
x^{T} a^{1} & x^{T} a^{2} & \cdots & x^{T} a^{n}
\end{array}\right]
$$

Set of inner products with each column vector

Vector-Matrix Product

View 2: Write A by rows

$$
\begin{aligned}
y^{T} & =x^{T} A=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]\left[\begin{array}{ccc}
--- & a_{1}^{T} & --- \\
--- & a_{2}^{T} & --- \\
\vdots & \\
--- & a_{m}^{T} & ---
\end{array}\right] \\
& =x_{1}\left[\begin{array}{lll}
--- & a_{1}^{T} & ---
\end{array}\right]+x_{2}\left[\begin{array}{lll}
--- & a_{2}^{T} & ---
\end{array}\right]+\ldots+x_{m}\left[\begin{array}{lll}
--- & a_{m}^{T} & ---
\end{array}\right]
\end{aligned}
$$

Linear combination of row vectors

Matrix-Matrix Multiplication

View 1: Set of inner products

$$
C=A B=\left[\begin{array}{ccc}
--- & a_{1}^{T} & --- \\
\cdots-- & a_{2}^{T} & -- \\
\vdots & \vdots \\
--- & a_{m}^{T} & ---
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & & 1 \\
b^{1} & b^{2} & \cdots & b^{n} \\
1 & 1 & & 1
\end{array}\right]=\left[\begin{array}{cccc}
a_{1}^{T} b^{T} & a_{1}^{T} b^{2} & \cdots & a_{1}^{T} b^{n} \\
a_{1}^{T} b^{T} & a_{2}^{T} & \cdots & a_{2}^{T} b^{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m}^{T} b^{T} & a_{m}^{T} b^{2} & \cdots & a_{m}^{T} b^{n}
\end{array}\right]
$$

Matrix-Matrix Multiplication

View 2: Sum of outer products

$$
C=A B=\left[\begin{array}{cccc}
\mid & 1 & & 1 \\
a^{1} & a^{2} & \cdots & a^{n} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{ccc}
--- & b_{1}^{T} & -- \\
--- & b_{2}^{T} & --- \\
& \vdots & \\
--- & b_{n}^{T} & ---
\end{array}\right]=a a^{1} b_{1}^{T}+a^{2} b_{2}^{T}+\cdots a^{n} b_{n}^{T}=\sum_{i=1}^{n} a^{i} b_{i}^{T}
$$

Matrix-Matrix Multiplication

View 3: Set of matrix-vector products

$$
C=A B=A\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b^{1} & b^{2} & \cdots & b^{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A b^{1} & A b^{2} & \cdots & A b^{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Matrix-Matrix Multiplication

View 4: Set of vector-matrix products

$$
C=A B=\left[\begin{array}{ccc}
--- & a_{1}^{T} & --- \\
--- & a_{2}^{T} & --- \\
& \vdots & \\
--- & a_{m}^{T} & ---
\end{array}\right] B=\left[\begin{array}{ccc}
--- & a_{1}^{T} B & --- \\
--- & a_{2}^{T} B & --- \\
& \vdots & \\
--- & a_{m}^{T} B & ---
\end{array}\right]
$$

Matrix-Matrix Multiplication

Properties

- Associative: $(A B) C=A(B C)$.
- Distributive: $A(B+C)=A B+A C$.
- In general, not commutative; it can be the case that $A B \neq B A$.

Exercise

- Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are all D-dimensional vectors, and $X \in \mathbb{R}^{N \times D}$ is a matrix where the n-th row is \mathbf{x}_{n}^{\top}. Then which of the following identities are correct?
A. $X^{\top} X=\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}$
B. $X^{\top} X=\sum_{n=1}^{N} \mathbf{x}_{n}^{\top} \mathbf{x}_{n}$
C. $X X^{\top}=\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}$
D. $X X^{\top}=\sum_{n=1}^{N} \mathbf{x}_{n}^{\top} \mathbf{x}_{n}$

mat (mendel 2
Vied

$\begin{aligned} & \text { mat.mul. } \\ & \text { view } 1\end{aligned} \Rightarrow X X^{\top}=\left[\begin{array}{ccc}x_{1}^{\top} x_{1} & \cdots & \bar{x}_{1} x_{N} \\ \vdots & & \\ x_{N} x_{1} & \cdots & x_{N}^{\top} x_{N}\end{array}\right]$

Operations and Properties

Transpose

The transpose of a matrix results from 'flipping' the rows and columns.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
$$

- Properties:
- $\left(A^{T}\right)^{T}=A$.
- $(A B)^{T}=B^{T} A^{T}$.
- $(A+B)^{T}=A^{T}+B^{T}$
- If $A=A^{T}$, then A is a symmetric matrix
- If $A=-A^{T}$, then A is an anti-symmetric matrix

Trace

The trace of a square matrix is the sum of its diagonal elements

$$
\operatorname{tr} A=\sum_{i=1}^{n} A_{i i}
$$

- Properties $\left(A, B, C \in \mathbb{R}^{n \times n}\right)$:
- $\operatorname{tr} A=\operatorname{tr} A^{T}$.
- $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$.
- $\operatorname{tr}(t A)=t \operatorname{tr} A$
- $\operatorname{tr} A B=\operatorname{tr} B A$
- $\operatorname{tr} \underbrace{}_{\boldsymbol{r}}=\operatorname{tr} B C A_{\boldsymbol{r}}=\operatorname{tr} C A B$, and so on.

Norms

- Informally, norm of a vector measures the 'length' of the vector.
- Formally, any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies 4 properties for $x, y \in \mathbb{R}^{n}$:
- Non-negativity: $f(x) \geq 0$
- Definiteness: $f(x)=0$ iff $x=0$
- Homogeneity: $f(t x)=|t| f(x)$
- Triangle inequality: $f(x+y) \leq f(x)+f(y)$

Examples of Norms

- Euclidean or ℓ_{2}-norm:

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{x^{T} x}
$$

- ℓ_{1}-norm:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

- ℓ_{∞}-norm:

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

$\ell_{p}-$ Norms

- Family of ℓ_{p}-norms, parameterized by a real number $p \geq 1$:

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- For $p \geq 2$:

Matrix Norms

- Frobenius norm:

$$
\begin{aligned}
\|A\|_{F} & =\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}} \\
& =\sqrt{\sum_{i=1}^{m}\left\|a_{i}\right\|_{2}^{2}}=\sqrt{\sum_{j=1}^{n}\left\|a^{j}\right\|_{2}^{2}} \\
& =\sqrt{\operatorname{tr}\left(A^{T} A\right)}
\end{aligned}
$$

Linear Combinations and Span

- The span of a set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is the set of all vectors that can be expressed as a linear combination of $\left\{x_{1}, \ldots, x_{n}\right\}$. That is,

$$
\operatorname{span}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)=\left\{v: v=\sum_{i=1}^{n} \alpha_{i} x_{i}, \alpha_{i} \in \mathbb{R}\right\}
$$

- The span of column vectors of a matrix is known as the column space.
- Similarly, the span of row vectors is known as the row space.

Linear Combinations and Span

Visualization

Linear Independence

- A set of vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \subset \mathbb{R}^{m}$ is said to be (linearly) dependent if one vector belonging to the set can be represented as a linear combination of the remaining vectors; that is, if

$$
x_{n}=\sum_{i=1}^{n-1} \alpha_{i} x_{i}
$$

for some scalar values $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{R}$.

- Otherwise, the vectors are (linearly) independent.

Rank

- Column rank: largest number of columns that constitute a linearly independent set.
- Row rank: largest number of rows that constitute a linearly independent set.
- Column rank of any matrix is equal to its row rank.
- Both quantities collectively referred to as the rank of the matrix.
- Properties $\left(A \in \mathbb{R}^{m \times n}\right)$:
- $\operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n), A$ is said to be full rank.
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- For $A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times n}, \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

Inverse of a Square Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted A^{-1}, is the unique matrix such that $A^{-1} A=I_{n}=A A^{-1}$.
- A must be full rank for its inverse to exist.
- A is invertible or non-singular if A^{-1} exists and non-invertible or singular otherwise.
- Properties ($A, B \in \mathbb{R}^{n \times n}$ are non-singular):
- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$, denoted by A^{-T}

Determinant

Intuition

- Let $A \in \mathbb{R}^{n \times n}, a_{i}^{T}$ denotes its i th row; consider the set of points $S \subset \mathbb{R}^{n}$:

$$
S=\left\{v \in \mathbb{R}^{n}: v=\sum_{i=1}^{n} \alpha_{i} a_{i}\left(0 \leq \alpha_{i} \leq 1 ; i=1, \ldots, n\right)\right\}
$$

- The absolute value of the determinant of A gives the 'volume' of the set S

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right] \\
a_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{gathered}
$$

Determinant

(Recursive) Formula

- Let $A \in \mathbb{R}^{n \times n}, A_{\backslash i, \backslash j} \in \mathbb{R}^{(n-1) \times(n-1)}$ be the matrix that results from deleting the i th row and j th column from A

$$
\begin{aligned}
|A| & =\sum_{i=1}^{n}(-1)^{i+j} a_{i j}\left|A_{\backslash i, \backslash j}\right| \quad(\forall j \in 1, \ldots, n) \\
& =\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{\backslash i, \backslash j}\right| \quad(\forall i \in 1, \ldots, n)
\end{aligned}
$$

- Equations for small matrices:

$$
\left|\left[a_{11}\right]\right|=a_{11} \quad\left|\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Determinant

Properties

- Properties $\left(A, B \in \mathbb{R}^{n \times n}\right)$:
- $|A|=\left|A^{T}\right|$
- $|A B|=|A||B|$
- $|A|=0$ iff A is singular
- For non-singular $A,\left|A^{-1}\right|=1 /|A|$

Exercise

- Which identities are NOT correct for real-valued matrices A, B, and C ? Assume that inverses exist and multiplications are legal.
A. $(A B)^{-1}=B^{-1} A^{-1}$

$$
\begin{aligned}
& (I-A)(I+A) \neq I \\
& (A B)^{\top}=B^{\top} A^{\top}
\end{aligned}
$$

B. $(I+A)^{-1}=I-A$
C. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
D. $(A B)^{\top}=A^{\top} B^{\top}$

Exercise

- Consider some vector $x \in \mathbb{R}^{n}$. What is the rank of the matrix $x x^{T}$?

$$
\begin{aligned}
& x x^{\top}=\left[\begin{array}{ccc}
x_{1} x_{1}^{1} & \ldots & x_{n} x \\
1 & & 1
\end{array}\right] \\
& \Rightarrow \operatorname{Rank}=1
\end{aligned}
$$

Matrix Calculus

Gradient

- Suppose $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is a scalar function that takes as input a matrix $A \in \mathbb{R}^{m \times n}$
- The gradient of f with respect to A is the $(m \times n)$ matrix of partial derivatives:

$$
\nabla_{A} f(A)=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1 n}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

Gradient

- If the input is just a vector $x \in \mathbb{R}^{n}$,

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

- Properties of partial derivatives extend here:
- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$.
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$.

Gradient

Visual Example

$$
\nabla_{x} f(x)=\left[\begin{array}{l}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}}
\end{array}\right]
$$

Hessian

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar function that takes as input a vector $x \in \mathbb{R}^{n}$
- The Hessian of f with respect to x is the $(n \times n)$ matrix of partial derivatives:

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

- It is symmetric (provided the second partial derivatives are continuous).

Jacobian

- Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a vector function that takes as input a vector $x \in \mathbb{R}^{n}$
- The Jacobian of f with respect to x is the $(m \times n)$ matrix of partial derivatives:

$$
\nabla_{x} f(x)=\left[\begin{array}{lll}
\frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f(x)}{\partial x_{2}} & \cdots \frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\nabla_{x}^{T} f_{1}(x) \\
\nabla{ }_{x}^{T} f_{2}(x) \\
\vdots \\
\nabla_{x}^{T} f_{m}(x)
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{n}} \\
\frac{\partial f_{2}(x)}{\partial x_{1}} & \frac{\partial f_{2}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(x)}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}(x)}{\partial x_{1}} & \frac{\partial f_{m}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{n}}
\end{array}\right]
$$

Gradient of a Linear Function

- For $x \in \mathbb{R}^{n}$, let $f(x)=b^{T} x\left(=x^{T} b\right)$ for some known vector $b \in \mathbb{R}^{n}$. Then,

$$
f(x)=\sum_{i=1}^{n} b_{i} x_{i}
$$

- This gives:

$$
\begin{gathered}
\frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k} \\
\nabla_{x} b^{T} x=b
\end{gathered}
$$

- Analogous to single variable calculus, where $\frac{\partial(a x)}{\partial x}=a$

Jacobian of a Linear Function

- For $x \in \mathbb{R}^{n}$, let $f(x)=A x$ for some known matrix $A \in \mathbb{R}^{m \times n}$. Then,

$$
f_{i}(x)=a_{i}^{T} x \forall i=1, \cdots, m
$$

- This gives:

$$
\begin{gathered}
\nabla_{x} f_{i}(x)=a_{i} \\
\nabla_{x} f(x)=\left[\begin{array}{ccc}
--- & a_{1}^{T} & --- \\
--- & a_{2}^{T} & --- \\
\vdots & \vdots & \\
--- & a_{m}^{T} & ---
\end{array}\right]=A
\end{gathered}
$$

Gradient of a Quadratic Function

- For $x \in \mathbb{R}^{n}$, let $f(x)=x^{T} A x$ for some known matrix $A \in \mathbb{R}^{n \times n}$. Then,

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

- Using previous slides, product rule for $f(x)=g(x)^{T} x$, with $g(x)=A^{T} x$, we get:

$$
\begin{aligned}
\nabla_{x} f(x) & =\nabla_{x}^{T} g(x) x+\nabla_{x}^{T} x g(x) \\
& =\left(A^{T}\right)^{T} x+I^{T} A^{T} x \\
& =\left(A+A^{T}\right) x
\end{aligned}
$$

- This gives the Hessian:

$$
\nabla_{x}^{2} f(x)=A+A^{T}
$$

Exercise

- A function $f: \mathbb{R}^{n \times 1} \rightarrow \mathbb{R}$ is defined as $f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{A x}+\mathbf{b}^{\top} \mathbf{x}$ for some $\mathbf{b} \in \mathbb{R}^{n \times 1}$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the derivative $\frac{\partial f}{\partial \mathbf{x}}$ (also called the gradient $\left.\nabla f(\mathbf{x})\right)$?

Ans: $\left(A+A^{1}\right) x+b$

Exercise

- A function $f: \mathbb{R}^{n \times 1} \rightarrow \mathbb{R}$ is defined as $f(\mathbf{A})=\mathbf{x}^{\top} \mathbf{A x}$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$. What is the derivative $\frac{\partial f}{\partial \mathbf{A}}$?

$$
\begin{aligned}
& f(A)=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& \frac{\partial f}{\partial A_{i j}}=x_{i} x_{j} \\
& \frac{\partial f}{\partial A}=x x^{\top}
\end{aligned}
$$

Questions?

Next Week: Probability Review

