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Basic Concepts and Notation



Basic Notation

® By x € R", we denote a vector with n entries.

e By A € R™", we denote a matrix with m rows and n columns.

ayjp dp et 4, o | T

a a cooe a ——
A = .21 .22 . 2n = |a! a* - a*| =
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Special Matrices

[dentity matrix Diagonal matrix
I € R™" D = diag(d,,d,, ...,d,)
1 0 - 0 d 0 - 0
O 1 ., O O d2 ., O
o - 0 1 () e 0 d

n

ForallA € R™" Al =A=1A. Clearly, I = diag(1,1,...,1).



Matrix Multiplication



Vector-Vector Product

Inner Product or Dot Product

Y1

y n
X'yeR=[X X - X ;2 =N TR T T, = inyi°

; i=1

Yn

Intuition

x'y = (Length of projected x)-(Length of )




Vector-Vector Product

Outer Product

A1 AV XY ot XYy
X X~V X e X
xy! € R™" = :2 Vi Yo o0 Y] = Z.y “ 2:}}2 , 2.}7 "
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Xy, (o0 Y )



Matrix-Vector Product

View 1: Write A by rows

-—- q; =-- a; x
T T

y = Ax = ) X = o &
T T

-—- o, ==- a, x

Set of inner products with each row vector



Matrix-Vector Product

View 2: Write A by columns

X
| | : | |
X2
az oo an : — al xl+ az x2-|- vee T
| ] | | |

Linear combination of column vectors

d

|

X, .



Vector-Matrix Product

View 1: Write A by columns

- |
yT — XTA — xT |a1 612 an

Set of inner products with each column vector



Vector-Matrix Product

View 2: Write A by rows

- - al - .-

T T aa ClzT mTT
y =x"A=% % X ] |

— a,Z,; —

~

= X [--- a; ---] + X5 [--- a, ---] +...1TX, [--- a, ---]

Linear combination of row vectors



Matrix-Matrix Multiplication

View 1: Set of inner products

-—- qi =-- @gbv' @b - @b"

- a4y - |b1 b2 ... b’”‘] _ @b @bt e @b

I ___ T3 112 . I'1,n
" a, b’ a,b a,b



al 42 ... g" 2 = a1b1T+a2b2T+ -a"b) = ZalbiT

Matrix-Matrix Multiplication

View 2: Sum of outer products

=1



Matrix-Matrix Multiplication

View 3: Set of matrix-vector products

. | | | |
C=AB=A |b1 B2 ... pr| = |AR! ABZ ... A"



Matrix-Matrix Multiplication

View 4: Set of vector-matrix products

— af - - @B ---

T
— -—- a'B ---



Matrix-Matrix Multiplication

Properties

® Associative: (AB)C = A(BQO).
® Distributive: A(B+ C) =AB + AC.

® |n general, not commutative; it can be the case that AB # BA.



Exercise

® Suppose X, ..., Xy are all D-dimensional vectors, and X € R"*” is a matrix where the

n-th row is X' . Then which of the following identities are correct?

: R
A X'X = anxg YR =¥ '
n=1 \ \ — AN

B XTX=iXTX )J K
n= vn
ot - o A% - |




Operations and Properties



Iranspose

The transpose of a matrix results from 'flipping’
the rows and columns.

dyp dyp ot dyy dyy dopp 0 Ay

dyy g =+ dip oy - Uyp
A= | : : = Al = |& : : :

aml am2 amn aln a2n amn

® Properties:
o (ANH!I =A.
e (AB) =BTA'.
e A+B)! =AT+B"
o [fA=A! then A isa symmetric matrix

e [fA=—A' then A is an anti-symmetric matrix



Trace

The trace of a square matrix is the
sum of its diagonal elements

n
=1
® Properties (A, B, C € R™"):

o trA =1trA’.

o tr(A+ B) =trA + trB.
o (r(tA) =1 trA

o trAB = trBA

o (tABC. = trBCA = trC{XB‘, and so on.



Norms

® [nformally, norm of a vector measures the ‘length’ of the vector.

® Formally, any function f: R" — R that satisfies 4 properties for x,y € R":

® Non-negativity: f(x) > 0

® Definiteness: (x) =0iffx =0

® Homogeneity: f(tx) = | ]| f(x)

® T[riangle inequality: f(x +y) < f(x) +f(y)




Examples of Norms

® Fuclidean or £,—norm:

1N
N

X7 = \/xTx

Ixll, =1 Y x
V5

® / —norm:

n

X

Ixll; = ). 1x] !
=1

® /__—norm:

¥l oo = max; | x;| X




fp—Norms

® Family of £,—norms, parameterized by a real number p > 1

. 1/p

—_ P
Ixll, ={ D Ixl

=1

® Forp > 2:




Matrix Norms

® [robenius norm:

m n

\=g=

m
2
=1/ 2 llaillz =
=

— \/ tr(ATA)




Linear Combinations and Span

® The span of a set of vectors {x,x,, ...x,} is the set of all vectors that can be
expressed as a linear combination of {x,...,x,}. That s,

n
span({xy,...x,}) =4 V:v = Z ax;, a, € R
i=1

® The span of column vectors of a matrix is known as the column space.

® Similarly, the span of row vectors is known as the row space.



Linear Combinations and Span

Visualization

Source: 3Blue1Brown via YouTube: https://tinyurl.com/2p9e3waa



https://tinyurl.com/2p9e3waa

Linear Independence

® A set of vectors {x;,x,,...x,} CR"is said to be (linearly) dependent it one vector

belonging to the set can be represented as a linear combination of the remaining
vectors: thatis, it

n—1
Xn = Z A
i=1

for some scalar values a, ...,a, ; € R.

® Otherwise, the vectors are (linearly) independent.



Rank

Column rank: largest number of columns that constitute a linearly independent set.
Row rank: largest number of rows that constitute a linearly independent set.
Column rank of any matrix is equal to its row rank.

Both quantities collectively referred to as the rank of the matrix.

Properties (A € R"™):

e rank(A) < min(m,n). If rank(A) = min(m, n), A is said to be full rank.
e rank(A) = rank(A7).

e ForA € R™P, B e RP", rank(AB) < min(rank(A), rank(B)).

e ForA,B e R™" rank(A + B) < rank(A) + rank(B).



Inverse of a Square Matrix

The inverse of a square matrix A € R, denoted A~ is the unique matrix such that
ATIA=1 =AA"T

A must be full rank for its inverse to exist.

A is invertible or non-singular if A~! exists and non-invertible or singular otherwise.

Properties (A, B € R™" are non-singular ):
e A™H'=A

e AB)'=B"1A"1

e A HI' =A™ denoted by A~T



Determinant

Intuition

® [etA € R™" al.T denotes its ith row; consider the set of points § C R™:
n

S=veR":v= Zaial- OLa<l i=1,..,n)}
=1

® The absolute value of the determinant of A gives the 'volume’ of the set §

(0,0)



Determinant

(Recursive) Formula

® letA € R™" A\i,\j e R~Dx(n=1) ha the matrix that results from deleting the ith

row and jth column from A

Al =) (=D¥a;|Ay\;| (V€ L. n)
=1

— Z (—1)l+]alj‘A\l,\]‘ (V | € 1,...,”)
j=1

® Equations for small matrices:

B ayp dipp||
a1 ]| = ay, — d11Uyy — Aoy

dr1 dpy




Determinant

Properties

® Properties (A,B € R™"):
o |A]=]A"
* |[AB|=|A]|B]
 |A|=0iff Aissingular
® Fornon-singularA, |[A~!| = 1/|A]|



Exercise

® \Which identities are NOT correct for real-valued matrices A, B, and C? Assume that

inverses exist and multiplications are legal.

T-A(TtA) #1
(AB)'= ITAT

A. (AB)"' = B4}
B. I[+A)'=1-A

C. tr(AB) = tr(BA)

D. (AB)! =A'B'



Exercise

C

. |
xR = | KR ~-~ P X

\ \
a Ronk=\



Matrix Calculus



Gradient

® Suppose f: R™" — R is a scalar function that takes as input a matrix A € R"*"

® The gradient of f with respect to A is the (m X n) matrix ot partial derivatives:

oA oA A
oAy 0A oAy,
oA o) A
V,fA) = | oAy oAy oAy,

ofia) o4 Ifl4)
0A 0A 0A

ml m2 mn



Gradient

® |f the input is just a vector x € R”,
9f(x)

0X1
of(x)
V. f) = | o

of(x)
0x

® Properties of partial derivatives extend here:

* V.(f(x) +gkx) =V, f(x)+ V, gXx).
e Fort€R, V. (1 f(x) =tV f(x).



fo(X) —

of(x)

ox 1

of(x)

0X2

Gradient

Visual Example

T 40
T 35
T 30
T 25
T 20
T 15
T 10




Hessian

® Suppose f: R" = R is a scalar function that takes as input a vector x € R"

® The Hessian of f with respect to x is the (n X n) matrix ot partial derivatives:

flx)  Ifx) - 0%f(x)

ax 12 ax 1 dXz dx 1 axn
’flx)  O°flx) 0°f(x)
Vyzc fx) RAXNT — | gx,0%; 0x? 0x,0x,

flx)  Ofx) - 0%f(x)

ox,0%;  0X,0%, ox2

® |tis symmetric (provided the second partial derivatives are continuous).



Jacobian

® Suppose f: R" = R" is a vector function that takes as input a vector x € R”"

® The Jacobian of fwith respect to x is the (m X n) matrix of partial derivatives:

i@ A® 0 @

V}{ fl( X) 0x, 0X, 0x,,
ofhx)  Ifh(x) df>(x)
ofx)  of() of(x) VI £(x)
V. fx) = o Tor - X : — | oy 0%, 0x,,
Vi fu) K KO %W

0X1 0X, 0x,,



Gradient of a Linear Function

e Forx € R”, let f(x) = b'x (= x'b) for some known vector b € R". Then,

n
J(x) = Z b;x;

=1

® This gives:
6f(x) 0
bx =0b
axk Z X
Vbix=>b
. . d (ax)

e Analogous to single variable calculus, where =a

ox



Jacobian of a Linear Function

e Forx € R”, let f(x) = Ax for some known matrix A € R™". Then,

f(X)=a'x Yi=1,--,m

® This gives:

fo(X) —



Gradient of a Quadratic Function

® Forx € R”, let f(x) = x! Ax for some known matrix A € R™". Then,
n n
f(x) = Z Z Aljxixj
i=1 j=1
® Using previous slides, product rule for f(x) = g(x)! x, with g(x) = Al x, we get:

V_ f(x) = V){g(x)x + V){xg(x)
= AN 'x+1'ATx
= (A+ADx

® This gives the Hessian:

Vofx)y =A+AT



Exercise

e A function f: R™! - R is defined as f(x) = x'Ax + b'x for some b € R™! and

0
A € R™" What is the derivative 6_f (also called the gradient V£(x))?
X

Ant: (A*Aq) X *Db



Exercise

e A function f: R™! - R is defined as f(A) = x' Ax for some x € R™!, What is the

of

derivative —7 - N —r
0A —j(A)= Z‘ZA'LJ Lj

A J'zl

3;?_ I xj
“oAtj

M_; XXT

%A



Questions?

Next Week: Probability Review



