CSCI 567 Discussion Linear Algebra and Numpy Review I

(Slides adapted from Nandita Bhaskhar's slides for CS229 at Stanford)

Bhavya Vasudeva and Sampad Mohanty

Aug 25, 2022

Outline

- Basic Concepts and Notation
- Matrix Multiplications
- Operations and Properties
- Matrix Calculus

Basic Concepts and Notation

• By $x \in \mathbb{R}^n$, we denote a vector with *n* entries.

 ${\mathcal X}$

• By $A \in \mathbb{R}^{m \times n}$, we denote a matrix with *m* rows and *n* columns.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =$$

Basic Notation

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} | & | & | \\ a^{1} & a^{2} & \cdots & a^{n} \\ | & | & | \end{bmatrix} = \begin{bmatrix} -\cdots & a_{1}^{T} & -\cdots \\ -\cdots & a_{2}^{T} & -\cdots \\ \vdots \\ \cdots & a_{m}^{T} & -\cdots \end{bmatrix}$$

Identity matrix $I_n \in \mathbb{R}^{n \times n}$

For all $A \in \mathbb{R}^{m \times n}$, $AI_n = A = I_m A$.

Special Matrices

Diagonal matrix $D = diag(d_1, d_2, ..., d_n)$

Clearly, I = diag(1, 1, ..., 1).

Matrix Multiplication

Vector-Vector Product

Intuition

 $x^T y = (\text{Length of projected } x) \cdot (\text{Length of } y)$

Inner Product or Dot Product

Vector-Vector Product

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}$$

Outer Product

Matrix-Vector Product

View 1: Write A by rows

Set of inner products with each row vector

Matrix-Vector Product

View 2: Write A by columns

Linear combination of column vectors

Vector-Matrix Product

View 1: Write A by columns

Set of inner products with each column vector

Linear combination of row vectors

Vector-Matrix Product

View 2: Write A by rows

View 1: Set of inner products

View 2: Sum of outer products

View 3: Set of matrix-vector products

View 4: Set of vector-matrix products

• Associative: (AB)C = A(BC).

• Distributive: A(B + C) = AB + AC.

• In general, **not** commutative; it can be the case that $AB \neq BA$.

Properties

Exercise

n-th row is $\mathbf{x}_n^{\mathsf{T}}$. Then which of the following identities are correct?

A.
$$X^{\mathsf{T}}X = \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}}$$

B.
$$X^{\mathsf{T}}X = \sum_{n=1}^{N} \mathbf{x}_n^{\mathsf{T}}\mathbf{x}_n$$

C.
$$XX^{\mathsf{T}} = \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}}$$

D.
$$XX^{\mathsf{T}} = \sum_{n=1}^{N} \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_n$$

• Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are all *D*-dimensional vectors, and $X \in \mathbb{R}^{N \times D}$ is a matrix where the

Operations and Properties

Transpose

The transpose of a matrix results from 'flipping' the rows and columns.

- Properties:
 - $(A^T)^T = A$.
 - $(AB)^T = B^T A^T$.
 - $(A+B)^T = A^T + B^T$
- If $A = A^T$, then A is a symmetric matrix
- If $A = -A^T$, then A is an anti-symmetric matrix

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- Properties ($A, B, C \in \mathbb{R}^{n \times n}$):
 - $\operatorname{tr} A = \operatorname{tr} A^T$.
 - $\operatorname{tr}(A + B) = \operatorname{tr}A + \operatorname{tr}B$.
 - tr(tA) = t trA
 - trAB = trBA
 - trABC = trBCA = trCAB, and so on.

Trace

The trace of a square matrix is the sum of its diagonal elements

- Informally, norm of a vector measures the 'length' of the vector.
- Formally, any function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies 4 properties for $x, y \in \mathbb{R}^n$:
 - Non-negativity: $f(x) \ge 0$
 - Definiteness: f(x) = 0 iff x = 0
 - Homogeneity: f(tx) = |t| f(x)
 - Triangle inequality: $f(x + y) \le f(x) + f(y)$

Norms

Examples of Norms

• Euclidean or ℓ_2 -norm:

• ℓ_{∞} -norm:

 $\|x\|_{\infty} = \max_{i} |x_{i}|$

• Family of ℓ_p -norms, parameterized by a real number $p \ge 1$:

• For $p \ge 2$:

$\ell_p - Norms$

Matrix Norms

• Frobenius norm:

Linear Combinations and Span

• The span of a set of vectors $\{x_1, x_2, ..., x_n\}$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, ..., x_n\}$. That is,

$$\operatorname{span}(\{x_1, \dots, x_n\}) = \left\{ v : v = \sum_{i=1}^n \alpha_i x_i, \ \alpha_i \in \mathbb{R} \right\}$$

- The span of column vectors of a matrix is known as the column space.
- Similarly, the span of row vectors is known as the row space.

Linear Combinations and Span

,		

Source: 3Blue1Brown via YouTube: <u>https://tinyurl.com/2p9e3waa</u>

Visualization

Linear Independence

vectors; that is, if

 $x_n =$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$.

• Otherwise, the vectors are (linearly) independent.

• A set of vectors $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^m$ is said to be (linearly) dependent if one vector belonging to the set can be represented as a linear combination of the remaining

$$= \sum_{i=1}^{n-1} \alpha_i x_i$$

Rank

- Column rank: largest number of columns that constitute a linearly independent set.
- Row rank: largest number of rows that constitute a linearly independent set.
- Column rank of any matrix is equal to its row rank.
- Both quantities collectively referred to as the rank of the matrix.
- Properties ($A \in \mathbb{R}^{m \times n}$):
 - $rank(A) \le min(m, n)$. If rank(A) = min(m, n), A is said to be full rank.
 - $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.
 - For $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
 - For $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted A^{-1} , is the unique matrix such that $A^{-1}A = I_n = AA^{-1}$.
- A must be full rank for its inverse to exist.

- Properties ($A, B \in \mathbb{R}^{n \times n}$ are non-singular):
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$, denoted by A^{-T}

Inverse of a Square Matrix

• A is invertible or non-singular if A^{-1} exists and non-invertible or singular otherwise.

Determinant

• Let $A \in \mathbb{R}^{n \times n}$, a_i^T denotes its *i*th row; consider the set of points $S \subset \mathbb{R}^n$: $S = \{ v \in \mathbb{R}^n : v = \sum^n \alpha_i$ *i*=1

• The absolute value of the determinant of A gives the 'volume' of the set S

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$
$$a_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad a_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Intuition

$$\{a_i a_i \ (0 \le \alpha_i \le 1; \ i = 1, ..., n)\}$$

Determinant

(Recursive) Formula

• Let $A \in \mathbb{R}^{n \times n}$, $A_{i,i} \in \mathbb{R}^{(n-1) \times (n-1)}$ be the matrix that results from deleting the *i*th row and *j*th column from A

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{i,i,j}| \quad (\forall j \in 1,...,n)$$
$$= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |A_{i,i,j}| \quad (\forall i \in 1,...,n)$$

• Equations for small matrices: $|[a_{11}]| = a_{11}$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Determinant

• Properties ($A, B \in \mathbb{R}^{n \times n}$):

$$\bullet |A| = |A^T|$$

- $\bullet |AB| = |A||B|$
- |A| = 0 iff A is singular
- For non-singular A, $|A^{-1}| = 1/|A|$

Properties

inverses exist and multiplications are legal.

A.
$$(AB)^{-1} = B^{-1}A^{-1}$$

B.
$$(I+A)^{-1} = I - A$$

C. tr(AB) = tr(BA)

D. $(AB)^{\mathsf{T}} = A^{\mathsf{T}}B^{\mathsf{T}}$

Exercise

• Which identities are **NOT** correct for real-valued matrices A, B, and C? Assume that

```
(T-A)(T+A) \neq I
(AB)^{T} = B^{T}A^{T}
```

Exercise

• Consider some vector $x \in \mathbb{R}^n$. What is the rank of the matrix xx^T ?

= Rank=1

Matrix Calculus

Gradient

- The gradient of f with respect to A is the $(m \times n)$ matrix of partial derivatives:

• Suppose $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a scalar function that takes as input a matrix $A \in \mathbb{R}^{m \times n}$

I)	$\partial f(A)$		$\partial f(A)$
1	∂A_{12}		∂A_{1n}
1)	$\partial f(A)$		$\partial f(A)$
21	∂A_{22}		∂A_{2n}
	• •	••••	• • •
I)	$\partial f(A)$		$\partial f(A)$
<i>ı</i> 1	∂A_{m2}		∂A_{mn}

- For $t \in \mathbb{R}$, $\nabla_x(t f(x)) = t \nabla_x f(x)$.
- $\nabla_x(f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x).$
- Properties of partial derivatives extend here:

• If the input is just a vector $x \in \mathbb{R}^n$,

Gradient

 $\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix}$

Gradient

Visual Example

Hessian

- Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a scalar function that takes as input a vector $x \in \mathbb{R}^n$
- The Hessian of f with respect to x is the $(n \times n)$ matrix of partial derivatives:

• It is symmetric (provided the second partial derivatives are continuous).

Jacobian

- Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is a vector function that takes as input a vector $x \in \mathbb{R}^n$
- The Jacobian of f with respect to x is the $(m \times n)$ matrix of partial derivatives:

$$\nabla_{x} f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f(x)}{\partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix} =$$

• For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ ($= x^T b$) for some known vector $b \in \mathbb{R}^n$. Then,

f(x)

 $\frac{\partial f(x)}{\partial x_k} =$

Analogous to single variable calculus,

Gradient of a Linear Function

$$=\sum_{i=1}^{n}b_{i}x_{i}$$

$$= \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k$$

 $\nabla_{x}b^{T}x = b$

where
$$\frac{\partial (ax)}{\partial x} = a$$

Jacobian of a Linear Function

• For $x \in \mathbb{R}^n$, let f(x) = Ax for some known matrix $A \in \mathbb{R}^{m \times n}$. Then,

 $f_i(x) = a_i^T x \ \forall i = 1, \cdots, m$

 $\nabla_x f_i(x) = a_i$

Gradient of a Quadratic Function

- For $x \in \mathbb{R}^n$, let $f(x) = x^T A x$ for some known matrix $A \in \mathbb{R}^{n \times n}$. Then,
 - f(x) =
- Using previous slides, product rule for $f(x) = g(x)^T x$, with $g(x) = A^T x$, we get: $\nabla_x f(x) = \nabla_x^T$ $= (A^T)^T x$ = (A
- This gives the Hessian:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

$$\int_{x}^{T} g(x)x + \nabla_{x}^{T} x g(x)$$

$$(T)^T x + I^T A^T x$$

$$(+A^T)x$$

$\nabla_x^2 f(x) = A + A^T$

Exercise

 $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the derivative $\frac{\partial f}{\partial \mathbf{x}}$ (also called the gradient $\nabla f(\mathbf{x})$)?

- A function $f : \mathbb{R}^{n \times 1} \to \mathbb{R}$ is defined as $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x}$ for some $\mathbf{b} \in \mathbb{R}^{n \times 1}$ and

$A_{nJ}: (A + A^7) \times + b$

Exercise

• A function $f: \mathbb{R}^{n \times 1} \to \mathbb{R}$ is defined as $f(\mathbf{A}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$. What is the derivative $\frac{\partial f}{\partial \mathbf{A}}$?

$$(A) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} A_{ij} X_{i} X_{j}$$

$$\frac{\partial f}{\partial A_{ij}} = X_{i} X_{j}$$

$$\frac{\partial f}{\partial A} = X_{i} X^{T}$$

Next Week: Probability Review

Questions?