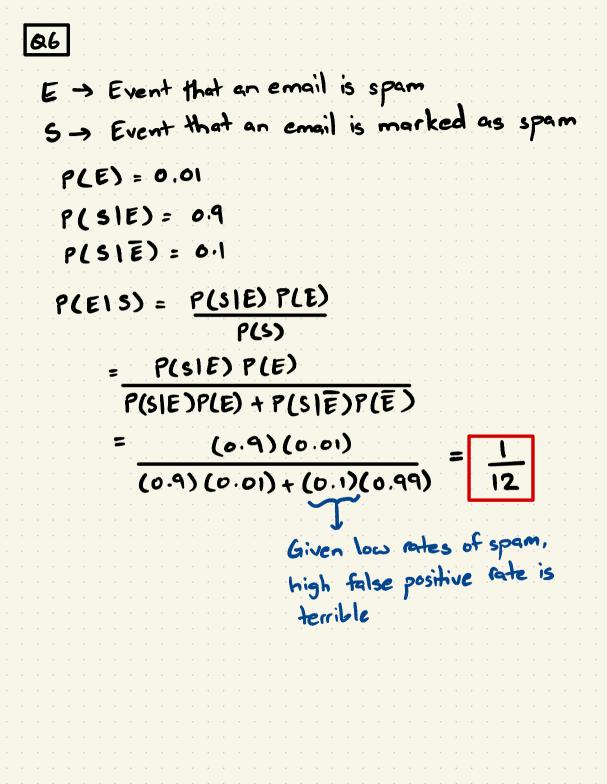
RY > Random Variable A > RV conception color of hall drawn he Alice
A → RV representing color of ball drawn by Alice B → RV representing color of ball drawn by Bob
· · · · · · · · · · · · · · · · · · ·
Alice goes first -> We know P(A)
Bob goes second -> We know P(BIA)
$\mathcal{P}(A=r,B=b) = \mathcal{P}(A=r)\mathcal{P}(B=b A=r)$
$= \int \left(\frac{2}{5}\right) \left[\left(\frac{3}{4}\right)\right]$ 2 red balls $\int \frac{3}{5} = 3$ blue balls of $\int \frac{3}{5} = 3$
2 all a 2 blue bolle of)
2 rea balls to 5 balls the remaining 4
$=\frac{3}{10}$
2) P(A=b B=b) = P(B=b A=b)P(A=b) [Byes
P(B=b)
= P(B=b A=b)P(A=b)
P(B=b A=b)P(A=b) + P(B=b A=r)P(A=r)
= (2/4)(3/5) = 1
(2/4)(3/5)+(3/4)(2/5) 2

a) Inclusion - Exclusion Principle
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
P AnB
b) To prove:
$P(A \cup B) \leq P(A) + P(B) - P(A)P(B)$
i.e. $P(A) + P(B) - P(A \cap B) \leq P(A) + P(B) - P(A)P(B)$
ie. P(A)P(B) & P(A nB)
i.e. $P(A) P(B) \leq P(A) P(B A)$
Not necessary. Proof by counter-example $P(A) = \frac{1}{2}$ $P(B A) = \frac{1}{3}$ $P(B \overline{A}) = \frac{2}{3}$
Not necessary. Proof by counter-example
Not necessary. Proof by counter-example $P(A) = \frac{1}{2}$ $P(B A) = \frac{1}{3}$ $P(B \overline{A}) = \frac{2}{3}$
Not necessary. Proof by counter-example $P(A) = \frac{1}{2}$ $P(B A) = \frac{1}{3}$ $P(B \overline{A}) = \frac{2}{3}$ $P(B) = P(B\cap A) + P(B\cap \overline{A})$

©2 c) True by Law of Total Probability	· · · ·
d) Since (c) is True	
$P(A) = P(A \cap c) + P(A \cap \overline{c})$ $= P(A c)P(c) + P(A \overline{c})P(\overline{c})$)
Q3 a,b,d	
Q4 b,d	· · · ·
Q5 a,b,c,d 5a is non-trivial to prove	
> X+W~ Gaussian if X &W are independent Gaussians	· · · ·
→ X+W~ Gaussian if × & Ware	· · · ·
\rightarrow X-2Y ~ Gaussian by change of variab W \rightarrow -2Y in previous result	le



General Risk of a predictor f(x):
$R(f) = E_{(x,y)\sim D} \left[l(f(x),y) \right]$
Practically: We do not know the distribution D 1. What is the distribution of all images of dogs and cats? 2. What is the distribution over all movie reviews?
Solution : Work with samples from distrib" D Empirical
Risk of a predictor $f(x)$ wrt samples S: $\hat{R}_{s}(f) = \frac{1}{n} \sum_{i=1}^{r} L(f(x_{i}), y_{i})$
where $S = \{(x_1, y_1), (x_2, y_2),, (x_n, y_n)\}$ are n samples drawn i.i.d. from D

1. $\hat{R}_{s}(f)$ is an unbiased estimate of $R(f)$ $\mathbb{E}_{p}[\hat{R}_{s}(f)] = \mathbb{E}_{p}[\frac{1}{p}\sum_{i=1}^{n} L(f(x_{i}), y_{i})]$
$= \frac{1}{n} \sum_{i=1}^{\infty} \mathbb{E}_{p} [l(f(x_{i}), y_{i})]$
$= \prod_{n=1}^{n} \sum_{i=1}^{n} R(f) = \prod_{n=1}^{n} nR(f)$
= R(f)
2. Even n=l is an unbiased estimate, but it has a high variance
$Var \left[\hat{R}_{s}(f) \right] = \mathbb{E} \left[\left(\hat{R}_{s}(f) - R(f) \right)^{2} \right]$ $\propto \bot$
3. Empirical risk only tells us something about true risk if the estimator f
does not depend on the n samples in S
Train/test splits allow: 1. Learn f from training samples to min R _s (f)
2. Estimate R(f) via Ry on unseen test samples

R(f)	$= \hat{R}_{s}(f) +$	$[R(f) - \hat{R}_{s}(f)]$
	Empirical Risk	Generalization Gap
seen H 2. R(f) is approxim	aining data still the true	risk and will be pirical risk on
1. $\hat{R}_{s}(f)$ on fr \hat{R} 2. $R(f)$ of R(f)	edictor will be the aining data $s(f) = \frac{1}{n} \sum_{(xi)}^{2}$ an be estimated	zero house-price loss from predicting O $L(O, y_i)$ $y_i)$ ~ train ed from test data $\frac{1}{2} \sum_{(x_i, y_i)} test L(O, y_i)$

Assuming train & test are drawn iid from D 1. Rs(f) on train will be large 2. $R(f) - \hat{R}_{s}(f) \approx \hat{R}_{test}(f) - \hat{R}_{s}(f)$ $\approx D$ Case: The SERIOUS ML predictors 1. Rs (f) will be made low via optimization 2. By choosing good model classes, loss functions & optimization procedure we hope R(f) is comparable to RS(f) i.e. $R(f) - \hat{R}_{s}(f) \approx 0$ R(f) estimated via test set error will be almost always greater than Rs(f) on train If R(f) (on unseen data) < Rs(f) on train CAUTION: train /test split may be inappropriate