
QI

RY → Random Variable
A → RV representing color of ball drawn by Alice
B → RV representing color of ball drawn by Bob

Alice goes
first → We know P(A)

Bob goes second → We know PCB /A)

D P(A=r , B = b) = p(A=r)P(B=blA=r)
=

2 3 -

[ 5 4

2 red balls
↳
3 blueballsc.FI

,

out of balls the remaining4
= ¥

2) P(A=b / B--b) = p(B=b / A -- b) PLA -_b) [Baye's]
PCB :b )

=
PCB :b / A :b)P(A :b)

PCB :b / A-- b) PCA -_ b) + P(B=b1A=r)P(A=r)

= (2/4)-(3/5) = 1-
(214>(3/5)+(3/4) (%) 2



Q2 a , c

a) Inclusion - Exclusion Principle
P(AUB) =P(A) + PCB) - P(An B)

a

↳
Ants

b) To prove :

PCA u B) ≤ P(A) + PCB) - P(A)PIB)

i.e. PIA> +PLB) - PLANB) ≤ PLA> + R(B) - PIA)PlB)

i.e. PLA)P(B) ≤ P(AnB)

i.e. PCA)P(B) ≤ p(A) PCB /A)

Not necessary . Proof by counter- example
PLAS = 1-2 PCB IA) = 113 PCB / A-3=43

P( B) = P( Bn A) + p(Bnñ)
= PCB/ A) P(A) + PCB / F) PCÑ)
= -31 . { + -23 . { = ± > PCB / A)



Q2

c) True by Law of Total Probability

d) since (c) is True

PC A) = P( An c) + PCA n E)

= P(At c) Plc ) + PLAIT) PCE)

03 a. b, d

94 b
,
d

05 a,b , c, d

sa is non-trivial to prove
→ × -1W ~ Gaussian if ✗ &W are

independent Gaussians

→ ✗+1^1~ Gaussian if ✗ Evil are

jointly Gaussian
→ ✗ -24 ~ Gaussian by change of variable

w→ -24 in previous result



QG

E- → Event that an email is spam

s → Event that an email is marked as spam

p(E) = 0.01

P ( SIE) = 0.9

PLS IE) = 0.1

PCEIS) = PLS /E) PCE)

PLS)

= PCs / E) PCE)

P(SIE )P(E) + PLS /E)PCE)

= (o .9) (0.01)

(0.9) (0.01) + (0 . 1)(0.99)
= ¥
I
Given low rates of spam ,

high false positive rate is
terrible



General
Risk of a predictor f-(x) :

R (f) = E(×,y>→ [l (floc
),y)]

Practically : He do not know the distributionD
i. What is the distribution of all

images of dogs and cats ?
2. What is the distribution overall

movie reviews?
Solution : Work with samples from distribn D

Empirical
Risk of a predictor f-(x) wrt samples S :

[ l(f(xi) ,yi)pig (f) = ¥
i = ,

where s = { (x , ,y ,), Gca , yz? . . . ,
Gen ,Yn)}

are n samples drawn i. i.d. from D



1 . Ñs (f) is an unbiased estimate of Rcf)

E.
☐
[Ñscf)] = F-

☐
[ 1- Élcflxi) , yi)]

i =\

n

= ± F-
☐
[lcflxi) , yi)]

n

= ± i?
R(f) ± ± .

nR (f)

= R(f)
2. Even n =\ is an unbiased estimate

,

but it has a high variance

Yar [ É$(f)] = E [ (Rdf) - R(f))2]
•÷

3. Empirical risk only tells us something
about true risk if the estimator f

does not depend on the n samples in S

Train /test splits allow :

1. Learn f from training samples to min?⃝(f)
2. Estimate R(f) via Ñs on unseen test samples



R (f) = Ñs (f) + [ R (f) - R^s (f)]
--

Generalization GapEmpirical
Risk

Caveats :

i. Here Ñs(f) refers to empirical risk on
seen training data

2. R (f) is still the true risk and will be

approximated by empirical risk on
unseen test data in practice

Case : Consider the all -zero house-price
predictor

1. Rs(f) will be the loss from predicting °

on training data
ÉsCf) = 1- [ l(0 , yi )

n Gci ,y:)~train

2. R(f) can be estimated from test data

R(f)≈ Ñ+t(f) = ÷ [
(Kingi)~test

t.CO . yi)



Assuming train & test are drawn iid from D

t.rs (f) on train will be large

2 . R(f) - Rs (f) ≈ Ñ+es+(f) - Es (f)
≈ 0

Case :The SERIOUS ML predictors
I. Rs (f) will be made low via optimization
2. By choosing good model classes ,

loss functions & optimization procedure
we hope R(f) is comparable to ÉsLf)
i.e. R (f) - Rs (f) ≈ O
- R(f) estimated via test set error

will be almost always greater than

Rs(f) on train
- If R(f) Con unseen data) < Rs(f) on train
CAUTION : train / test split may be

inappropriate


