
CSCI699: Theory of Machine Learning Fall 2023

Problem Set 1

Due: September 20 by 11:59 pm

Discussion is allowed and encouraged but everyone should write solutions on their own. Please also
mention any collaborators you had substantial discussions with. You are also allowed to consult
general resources on the internet (such as one of the books, or other lecture notes online), but you
should not search for any the solutions themselves online.

If you use the LaTeX template, then please only keep your answers and remove the questions before
submitting.

Homeworks should be written in Latex and submitted via Gradescope. When you submit on
Gradescope, make sure to mark the page which contains each answer.

Problem 1: PAC Learnability for Axis-Aligned Rectangles

Most of this question appears as Exercise 3 in Chapter 2 of the Understanding Machine Learning
book. You are free to look at additional hints given there, if you like.

This question is about showing a PAC learning guarantee for rectangles, and will hopefully help
understand different facets of PAC learning. As we discussed in lecture 1 of class, an axis aligned
rectangle classifier is a classifier than assigns the value 1 to a point if and only if it is inside a
certain rectangle. Formally, given real numbers a1 ≤ b1, a2 ≤ b2, define the classifier h(a1,b1,a2,b2)
on an input with coordinates (x1, x2) by

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2

0 otherwise

The hypothesis class of all axis-aligned rectangles in the plane is defined as

H2
rec = {h(a1,b1,a2,b2)(x1, x2) : a1 ≤ b1, a2 ≤ b2}.

Throughout this exercise we rely on the realizability assumption.

(a) (3pts) Let A be the algorithm that returns the smallest rectangle enclosing all positive exam-
ples in the training set. Show that A is an ERM.

(b) (5pts) Show that if the algorithm A from part (1) receives a training set of size ≥ 4 log(4/δ)

ϵ
then with probability at least 1− δ it returns a hypothesis with error at most ϵ.

(c) (5pts) Repeat the previous question for the class of axis-aligned rectangles in Rd.

(d) (5pts) Show that the runtime of the algorithm A is polynomial in d, 1/ϵ and log(1/δ). There-
fore, we have shown that the class of axis-aligned rectangles in R2 is efficiently PAC-learnable.
Though we are not talking too much about efficient runtimes at this point of the class, we
will spend more time discussing it soon.
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Problem 2: Uniform Convergence for Parameterized Hypothesis
Classes

In class, we saw a uniform convergence result for finite hypothesis classes (which then directly
implied agnostic PAC learnability for finite hypothesis classes). In this question, we’ll see how we
can use the result for finite hypothesis classes to also get uniform convergence for certain infinite
classes, using the powerful idea of an ϵ-net.

Let H be a hypothesis class consisting of a family of functions indexed by some parameter θ which
lies in the set S, i.e. H = {hθ : θ ∈ S}. We assume for this question that the set S is the ball of
radius B > 0 in Rd:

S = {θ ∈ Rd : ∥θ∥2 ≤ B}. (1)

Assume that the risk R(hθ) of any hypothesis hθ is a L-Lipschitz function of θ, defined as follows.

Definition 1. Let L ≥ 0. The function R(hθ) is a L-Lipschitz function of θ if for all θ, θ′ ∈ S we
have,

|R(hθ)−R(hθ′)| ≤ L
∥∥θ − θ′

∥∥
2
.

Similarly, the empirical risk R̂(hθ) is a L-Lipschitz function of θ if for all θ, θ′ ∈ S we have,

|R̂(hθ)− R̂(hθ′)| ≤ L
∥∥θ − θ′

∥∥
2
.

(a) (2pts) Briefly discuss when this L-Lipschitz condition could be satisfied (does not need to be
rigorous, you can be high-level). You might find it useful to think about losses other than
the 0/1 loss we’ve usually considered in class.

(b) (5pts) Since S is infinite, H is an infinite hypothesis class. We now define the notion of an
ϵ-net of S which allows us to consider only a finite subset of S to show uniform convergence
for H.

Definition 2. Let ϵ > 0. An ϵ-net of S (with respect to the ∥·∥2 norm) is a subset C ⊆ S
such that ∀ θ ∈ S,∃ θ′ ∈ C such that

∥∥θ − θ′
∥∥
2
≤ ϵ.

Show that the set C defined as follows is an ϵ-net of S,

C =

{
θ ∈ S : θi =

jϵ√
d
, j ∈ Z, |j| ≤ B

√
d

ϵ

}
.

Here θi denotes the i-th coordinate of the vector θ, Z is the set of all integers. (Hint: it might
be helpful to draw a picture. We’re essentially trying to ‘cover’ the entire ball S using this
grid of points C.)

(c) (3pts) Assume ϵ < 3B
√
d. Show that |C| ≤

(
3B

√
d

ϵ

)d

.
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(d) (2pts) Assume that the loss function ℓ(hθ(x), y) ∈ [−M,M ] for every datapoint (x, y). Using

Hoeffding’s inequality, show that with probability ≥ 1− 2|C| exp
(
− nα2

2M2

)
,

|R̂(hθ)−R(hθ)| ≤ α, ∀ θ ∈ C.

We refer to the above event as E for the rest of the problem.

(e) (5pts) Using the L-Lipschitz property of R(hθ) and R̂(hθ), show that conditioned on the event
E,

|R̂(hθ)−R(hθ)| ≤ 2Lϵ+ α,∀ θ ∈ S. (2)

(Hint: by the property of the ϵ-net, for any θ ∈ S, there is some θ′ ∈ C such that
∥∥θ − θ′

∥∥
2
≤ ϵ.

In part (d) we have shown that the empirical and true risks are close for all θ′ ∈ C. Try to
decompose R̂(hθ) − R(hθ) in a suitable way such that you can then use part (d), the L-
Lipschitz property of the functions R(hθ) and R̂(hθ), and the triangle inequality to bound
|R̂(hθ)−R(hθ)|.)

(f) (3pts) The final step is a bit algebraic, so we take all constants L = B = M = 1. Show that
if we set

α = 10

√
d log(n)

n
, and ϵ =

α

2
,

then conditioned on the event E,

|R̂(hθ)−R(hθ)| ≤ 20

√
d log(n)

n
,∀ θ ∈ S.

Using this, bound the failure probability: show that Pr(E) ≥ 1− e−d. This implies that with
failure probability O(e−d),

|R̂(hθ)−R(hθ)| ≤ 20

√
d log(n)

n
,∀ θ ∈ S.

Let’s look back at what we have shown: our result implies that for some constant c′ > 0 and

n ≥ c′d log(d/γ)

γ2
, with failure probability O(e−d),

|R̂(hθ)−R(hθ)| ≤ γ,∀ θ ∈ S.

Using the reduction from agnostic PAC learning to uniform convergence, we have therefore shown
that the sample complexity of agnostically learning H to error γ with failure probability O(e−d) is

at most O
(
d log(d/γ)

γ2

)
. This technique of using an ϵ-net to show some property of every member

of an infinite set comes in handy in many places.
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Problem 3: VC dimension

In this problem we will explore VC dimension bounds for various hypothesis classes.

(a) Let X = Rd,Y = {−1,+1} and H = {fθ,b(x) = sign (⟨x, θ⟩+ b) : θ ∈ Rd, b ∈ R} be the set
of d-dimensional linear classifiers. Prove VCdim(H) = d+ 1 following the two steps below.

(i) (3pts) Construct d+1 points x1, . . . , xd+1 ∈ Rd and argue that for any labeling y1, . . . , yd+1 ∈
{−1,+1}, there exists h ∈ H such that h(xt) = yt for all t = 1, . . . , d+ 1.

(ii) (4pts) Prove that for any d+2 points x1, . . . , xd+2 ∈ Rd, there exists a labeling y1, . . . , yd+2 ∈
{−1,+1} such that no h ∈ H satisfies h(xt) = yt for all t = 1, . . . , d+ 2. (Hint: use the
fact that m+ 1 points in an m-dimensional space must be linearly dependent.)

(b) We will now get a VC dimension bound for neural networks. For k = {1, . . . ,M}, let rk be
some positive integer and Hk : {−1,+1}rk → {−1,+1} be some function class with growth
function ΠHk

and VC-dimension dk. Further define a vector-valued function class mapping
from {−1,+1}rk to {−1,+1}rk+1 as

Fk =
{
h(x) = (f1(x), . . . , frk+1

(x)) : f1, . . . , frk+1
∈ Hk

}
.

Define rM+1 = 1. Then the following class represents an M -layer feedforward neural net

H = {hM ◦ · · · ◦ h1 : {−1,+1}r1 → {−1,+1} : h1 ∈ F1, . . . , hM ∈ FM}

where ◦ represents function composition (try to draw a picture to help understand the nota-
tion).

(i) (4pts) Prove that the growth function of H is bounded as

ΠH(n) ≤
M∏
k=1

(ΠHk
(n))rk+1 .

(ii) (2pts) Let d =
M∑
k=1

rk+1dk. Prove ΠH(n) ≤ (en)d for n > d+ 1.

(iii) (3pts) Further show VCdim(H) = O(d ln d). (Hint: take logarithms, and you might find
the inequality 1 + lnx ≤ 2

√
x useful.)

This shows a VC-dimension bound which holds for deep neural networks, and is essen-
tially the same as the number of parameters of the network. This bound can be loose
for modern neural networks where the number of parameters d can run in billions, but
we can still can good test accuracy with much fewer samples. Understanding the rela-
tionship between the number of parameters of neural networks and how much data we
need to learn has been a topic of much study recently [1, 2].
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(c) (4pts) For the examples of hypothesis classes we’ve seen so far, the number of parameters
gave a good estimate of the VC dimension of the hypothesis class. This is often, but not
always the case. Let X = R,Y = {−1,+1} and H = {fθ(x) = sign(sin(θx)) : θ ∈ R}. Prove
that for any n, H shatters the set {x1, . . . , xn : xi = 2−2i, i ∈ [n]}. This implies that
VCdim(H) = ∞. Therefore there is a hypothesis classes with just a single parameter which is

not PAC-learnable. (Hint: for any labeling {y1, . . . , yn}, consider θ = π(1+
n∑

i=1

(1−yi)2
2i−1).)
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