
CSCI699: Theory of Machine Learning Fall 2023

Problem Set 2

Due: October 25 by 11:59 pm

Discussion is allowed and encouraged but everyone should write solutions on their own. Please also
mention any collaborators you had substantial discussions with. You are also allowed to consult
general resources on the internet (such as one of the books, or other lecture notes online), but you
should not search for any the solutions themselves online.

If you use the LaTeX template, then please only keep your answers and remove the questions before
submitting. Homeworks should be written in Latex and submitted via Gradescope. When you submit
on Gradescope, make sure to mark the page which contains each answer.

Problem 1: Rademacher Complexity Bounds for Neural Networks

In this problem, we will derive bounds on the Rademacher Complexity for some simple neural
networks.

(a) (5pts) First, consider the following class of ‘neural networks’ with no hidden layers and a
ReLU activation:

C0 = {x 7→ max{0, wTx} : w ∈ Rd, ∥w∥2 ≤ B2}.
Consider a set of unlabelled datapoints S = (x1, . . . , xn), where xi ∈ Rd, ∥xi∥2 ≤ C. Bound
the Rademacher Complexity RC(C0 ◦ S).

(b) (8pts) Now consider the following class of neural networks with one hidden layer with m
hidden units,

C1 = {x 7→
m∑
j=1

αj max{0, wT
j x} :

m∑
j=1

|αj | ≤ B1 & ∀ j ∈ [m], wj ∈ Rd, ∥wj∥2 ≤ B2}.

Consider a set of unlabelled datapoints S = (x1, . . . , xn), where xi ∈ Rd, ∥xi∥2 ≤ C. Bound
the Rademacher Complexity RC(C1 ◦ S).
To do this, you will likely find it useful to bound the Rademacher complexity of an absolute
value of a function composition. Define RC′(A) as the Rademacher complexity of a set A,
but with an absolute value:

RC′(A) =
1

n
Eσ∼{±}n

[
sup
a∈A

∣∣∣∣∣
n∑

i=1

σi(a)i

∣∣∣∣∣
]
,

where (a)i is the ith coordinate of the vector a. This definition is identical to the one we
used in class, except for the additional absolute value. In fact, many papers consider this
alternative definition of Rademacher complexity [1]. It can be shown RC′(A) satisfies a
function composition property very similar to the contraction lemma we stated in class for
the original definition of Rademacher complexity.
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Lemma 1. [1] Let ϕ : R → R be a ρ-Lipschitz function which satisfies ϕ(0) = 0. For any
a ∈ Rn, define ϕ(a) ∈ Rn as the function ϕ applied to very coordinate of a, i.e. ϕ(a) =
(ϕ((a)1), . . . , ϕ((a)n)). Let ϕ ◦A = {ϕ(a), a ∈ A}. Then,

RC′(ϕ ◦A) ≤ 2ρRC′(A).

Try to use the above result to simplify your calculations. In the end, you should get a bound
which does not explicitly depend on m or d. Therefore, in contrast to the VC dimension
bound we got in the last homework, the Rademacher complexity bound only depends on some
appropriate norms of the parameters of the neural network, not the number of parameters
itself. There has been some interesting recent work [2, 3, 4] on showing generalization bounds
for neural networks based on various novel norms of matrices.

Problem 2: High Probability Generalization Bounds with Stability

(6pts) Let A be some algorithm with a uniform stability bound ∆sup(A) and S be some training
dataset {xi, yi}ni=1. Assume that the loss function ℓ(A(S), z) satisfies |ℓ(A(S), z)| ≤ B. Using
McDiarmid’s inequality, derive a high probability bound on the generalization gap ∆gen(A(S)) =
R(A(S)) − R̂S(A(S)). (Optional, carries no credit: Discuss the implication of your bound for the
case of the SRM algorithm on a convex, Lipschitz, bounded loss.)

Problem 3: PAC Learning with 2-sided Oracles

(15pts) As we mentioned in class, one of the advantages of defining the example oracle EX(c,D) is
that we can now just think of access to a randomly drawn, labelled example as a resource/oracle
that the learner has. The example oracle is just one possible kind of oracle access the learner could
have, and this question will explore a different two-oracle model. For a target concept c ∈ C,
define two separate distributions, D+

c over the positive examples of c, and D−
c over the negative

examples of c. In other words, D+
c is the distribution of x conditioned on c(x) = 1, and similarly

for D−
c (where as usual, we say that label 1 is a positive label and label 0 is a negative label). The

learning algorithm now has access to two oracles EX(c,D+
c ) and EX(c,D−

c ) that return a random
positive or negative example in unit time. For error parameter ϵ, the learning algorithm must find
a hypothesis h ∈ H satisfying Pr

x∈D+
c

[h(x) = 0] ≤ ϵ and Pr
x∈D−

c

[h(x) = 1] ≤ ϵ. Thus, the learning

algorithm may now explicitly request either a positive or negative example, but must find a single
hypothesis with small error on both distributions.

Let C be any concept class and H be any hypothesis class. Let h0 and h1 be representations of the
identically 0 and identically 1 functions, respectively (i.e. h0(x) = 0 ∀ x ∈ X , analogously for h1).
Prove that:

(a) If C is efficiently PAC learnable using H in the original one-oracle model, then C is efficiently
PAC learnable using H in the two-oracle model.

(b) If C is efficiently PAC learnable using H in the two-oracle model, then C is efficiently PAC
learnable using H ∪ {h0, h1} in the one-oracle model.
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Problem 4: Learning Halfspaces

(6pts) Consider the concept class of halfspaces

C = {x 7→ 1(θTx+ b > 0) : θ ∈ Rd, b ∈ R},

here 1(·) denotes the indicator function which takes the value 1 if the input is true, and 0 otherwise.
Show that C is efficiently PAC learnable. You might find it useful to use a routine for solving
linear programs as part of your learning algorithm. A linear program (LP) solver takes as input
u ∈ Rd, A ∈ Rn×d and v ∈ Rm, and outputs w ∈ Rd which is the solution to:

max
w∈Rd

wTu

such that Aw ≥ v.

It is known that there LP solvers which run in time polynomial in n, d [5].

Problem 5: Learning rectangles in the SQ model

Consider an extension of the statistical query model where in addition to the oracle STAT(c,D)
the learner is also given access to unlabelled random draws from the target distribution D.

(a) (2pts) Argue that if a concept class is (efficiently) learnable with access to unlabelled examples
and the STAT(c,D) oracle, then it is also (efficiently) learnable with access to the noisy
example oracle EXη(c,D).

(b) (8pts) Show that the concept class of axis-aligned rectangles in Rd can be efficiently learned
with access to the oracle STAT(c,D) and unlabelled random draws from the target distri-
bution D (and is therefore efficiently PAC learnable in the presence of random classification
noise). (Hint: Use unlabelled examples to decide what queries to make to the SQ oracle.)
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