CSCI699: Theory of Machine Learning Fall 2023

Problem Set 3 (Theory portion)
Due: November 29 by 11:59 pm

Discussion is allowed and encouraged but everyone should write solutions on their own. Please also
mention any collaborators you had substantial discussions with. You are also allowed to consult
general resources on the internet (such as one of the books, or other lecture notes online), but you
should not search for any the solutions themselves online.

If you use the LaTeX template, then please only keep your answers and remove the questions before
submitting. Homeworks should be written in Latex and submitted via Gradescope. When you submit
on Gradescope, make sure to mark the page which contains each answer.

Problem 1: Learning sparse parities

Consider the concept class of sparse parity functions:

d
C ={w(z) =(w,z) mod2:we€ {O,l}d,Zwi = k}.

i=1

Let the distribution D over z be the uniform distribution over {0,1}? for the remainder of this
question.

(a) (5pts) Show that in the presence of random classification noise with noise level 7, C is learnable

klogd
08 ) samples with high

(not necessarily efficiently) under the distribution D with O <(12)2
— 40

probability.

(b) (4pts) Show that then any SQ algorithm for learning C over the distribution D which makes
queries of tolerance T > Ty must make Q(72; (d/k)*¥) queries to STAT(¢, D) to learn C. The
following theorem from the lecture notes will be useful.

Theorem 1. If the concept class C has SQ-DIMp(C) = s, then any SQ algorithm for learning
C over the distribution D which makes queries of tolerance T > Tmin must make Q(Téins)
queries to STAT (¢, D) to learn C.

(c) (2pts) Contrast the bounds from the previous two parts. What can you say about the learn-
ability of the sparse parity concept class?



Problem 2: Convergence rate of gradient descent for strongly con-
vex problems

In this question, we will prove the exponential convergence rate of gradient descent for smooth,
strongly convex functions which was stated in the lecture. Let f be a convex, differentiable function
from R — R. Further, assume that f is S-smooth and A-strong convex:

Definition 2. f is -smooth if V z,y € domain(f),

F(w) < J(x) +{y— 2, V(@) + 2 fly— .

Definition 3. fis A-strongly convex if ¥V x,y € domain(f),

Fw) = 1)+ (= 2.V @)+ 5y~ al.

(a) (2pts) Show that for any w € R?,

A

5 llw = wlly < f(w) = f(w) <

Therefore we can relate the sub-optimality of w to its distance from w®.

(b) (2pts) Let w* = argmin f(z). Show that for any w € RY,
zERY

216 IVF )2 < f(w) - F(w").

1
Hint: Use the definition of S-smoothness for x = w and y = w — BVf(w).

This says that the norm of the gradient at a point is proportional to the sub-optimality of
the point, and hence if gradient descent takes small steps then the current function value is
close to optimal.

(c) (4pts) Suppose we run gradient descent with step size 1/, and let w; be the gradient descent
iterate at time t. Show that,

A
2 2
ot — w| < (1 - 5) T}

Hint: First use the gradient descent update step to write wyy1 in terms of wy. Then erpand
the square, use the definition of strong-convezity, and the result from part (b) to simplify the
ETPTeSSLON.

(d) (2pts) Finally, show that for k = 5/,

Flwe) = f(w*) < e lwg — w*||3 (8/2).



Problem 3: Online learning of decision lists

In this question we consider the hypothesis class H of decision lists. A decision list is a function
from {0,1}% — {0,1}, defined as follows. A decision list of length k over d Boolean variables
Z1,...,xq is a list of k pairs {(l;,b;),i € [k]} of literals I; and bits b;, and a single bit by (recall
that a literal is either a Boolean variable z;, or its negation Z;). The output of a decision list is
given by a if-then-else statement over the literals:

else else else else
(xllbl) @! bZ) > (xk—lvbk—l) m: bk) _’bk+1
if TRUEl if TRUEl if TRUE l if TRUEl
by b, b;_4 by

Figure 1: A decision list of length k.

To compute the value of h(x) for any decision list h, we start from the first level of the list which
has a literal /1 and a bit b1. If the literal [ evaluates to true, we output by, otherwise we go to the
next level. Therefore the output of the decision list is b; if the literal at the i-th level is the first
literal which is satisfied, and is bi4; if none of the literals are satisfied.

(a) (3pts) Show that the Littlestone dimension of the class of decision lists of level k on d variables
is upper bounded by O(klog d). (Note that this only depends logarithmically on the number of
variables d, and can hence handle a very large input space. An algorithm for learning decision
lists which has a poly(k,logd) mistake bound is known as an attribute-efficient learning
algorithm, since it is very efficient in the number of attributes).

(b) We will now show that there is an efficient algorithm A which learns A in the mistake bound
model with a mistake bound M (H) = O(dk).

(3pts) Using the following sketch, write an algorithm for learning decision lists:
e You can begin by putting all possible pairs {(l,b) : | € {z;,%;,i € [d]},b € {0,1}} at the
first level of the decision list.

e At any time ¢, given any example a¢, start from the first level. If there is any pair (I, b)
such that [ is satisfied on the example, choose b as the output. If there is no such pair
move to the next level.

e If the prediction is incorrect, you should move the chosen pair to some other level.

(Your algorithm need not be a proper learning algorithm, since multiple pairs could survive
at every level.)

(c¢) (4pts) Show that the pair at level i for the ground truth decision list A* is never demoted
below the ¢-th level in your algorithm.

(d) (4pts) Finally, argue that your algorithm can only make O(dk) mistakes.

Note that we get a O(dk) mistake bound, whereas the Littlestone dimension is O(klogd).
Learning decision lists with a poly(k,logd) mistake bound (attribute-efficient learning of de-
cision lists) is a long-standing open problem in computational learning theory. We can also



ask this question in the PAC learning setup, where O(klogd) samples are information theo-
retically sufficient for learning, but there is no efficient algorithm with a poly(k,logd) sample
complexity. Check out [1, 2] to learn more about this problem if you are interested.
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