
CSCI699: Machine Learning Theory Fall 2023

Lecture 9: Kernels, Online Learning

Instructor: Vatsal Sharan

These lecture notes are based on scribe notes by Sai Anuroop Kesanapalli, Di Zhang, Sophie Hsu
and Grace Zhang.

1 Kernels (continued)

Last time, we defined and motivated kernels.

Definition 1 (Kernel). A function k : Rd → R is called a kernel function if and only if there exists
φ : Rd → Rm, such that for any x, x′ ∈ Rd,

k(x, x′) = φ(x)Tφ(x′)

.

We stated the following properties, which can be useful for showing that a function is a kernel
function.

Theorem 2. Properties of kernels:

1. For any f : Rd → R, k(x, x′) = f(x)f(x′) is a kernel

2. If k1(·, ·) and k2(·, ·) are kernels then the following are also kernels,
a) αk1(·, ·) + βk2(·, ·) if α, β ≥ 0
b) k1(·, ·) · k2(·, ·)

Let us see two kernels which are quite useful and popular.

1. Polynomial kernel: For any positive integer p, the polynomial kernel can be defined as

k(x, x′) = (xTx′ + 1)p

To verify that this is a kernel, try to show that there is a feature mapping φ(x) which induces
this kernel. For example, last time we saw how we can get the square of the inner product:

x =

(
x1
x2

)
→ φ(x) =

 x21√
2x1x2
z22


2. Gaussian kernel: For any σ > 0, the Gaussian kernel is defined as,

k(x, x′) = exp
(
− ||x− x

′||22
2σ2

)
.

1

To verify that this is a kernel, we first expand the `2 norm squared term,

exp
(
− ||x− x

′||22
2σ2

)
= exp

(
− ||x||

2
2

2σ2

)
exp

(
− ||x

′||22
2σ2

)
︸ ︷︷ ︸

k1(x,x′)

exp
(xTx′
σ2

)
︸ ︷︷ ︸

k2(x,x′)

.

Note that k1(x, x
′) is a kernel, since it is of the form k1(x, x

′) = f(x)f(x′). Hence it is
sufficient to argue that k2(x, x

′) is a kernel, since the product of two kernels is a kernel. To
verify that k2(x, x

′) is a kernel, we can do the Taylor series expansion.

exp
(xTx′
σ2

)
= 1 + xTx′ +

(xTx′)2

2!
+

(xTx′)3

3!
+ · · · .

Each term in this expansion is a power of the inner product and can be verified to be a kernel.
Since the sum of kernels is a kernel, this verifies that k2(x, x

′) is a kernel.

Visually, the Gaussian kernel looks just like a Gaussian. σ corresponds to the standard deviation
or width of the Gaussian.

Figure 1: Gaussian kernel, where we have fixed x′ and vary x.

1.1 Parametric vs non-parametric models

To conclude our discussion of kernels, we discuss a characterization of ML models which you may
come across commonly in the literature. The differences here are not meant to be rigorous.

1. Parametric model: The model has a fixed number of parameters which we learn based on
some training set.

2. Non-parametric model: The model does not have a fixed set of parameters which are learned
from a training set. The complexity of the learned model itself depends on the data.

Example 3 (Kernel nearest-neighbors). Suppose we are given a training set S = {(xi, yi)}ni=1 where
xi ∈ X and yi ∈ {±1}. Consider a model for which the prediction at any point xtest is given by

xtest = sign

 n∑
i=1

yik(xtest, xi)∑
i
k(xtest, xi)

, where k(·, ·) is the Gaussian kernel. This is a simple kernelized

version of the nearest neighbor algorithm.

2

Suppose the dataset is of the following form.

Then the decision boundary of the model will be close to linear. However, if the dataset is more
complicated, such as a mixture of the following four Gaussians.

Then the decision boundary will be more complicated. In particular, we would expect the datapoints
within each cluster (circle in the figure) to be classified correctly for some appropriate size of σ in
the Gaussian kernel. Therefore, the decision boundary will not be linear in this case. Even though
the model itself has not changed, the complexity of the decision boundary has changed because the
data has changed. Therefore this model is a non-parametric model.

3

2 Online Learning

In our usual PAC learning/statistical learning setup we ask the learn to do well under probabilistic
assumptions on data (i.e. train/test data are drawn from the same distribution). We developed a
theory of generalization to understand how much an algorithm’s test accuracy can differ from its
training accuracy.

In online learning, we make no probabilistic assumptions on the data. The goal is to predict well
on datapoints as we see them.

Example: Weather forecasting

• We’re interested in predicting rain/no rain.

• Every night, make prediction about next day, based on current conditions.

• Next day, we see whether or not it rained.

Note that there’s no train/test split. Every example is both a training example and a test example.
Formally, at every time step t,

• Learner receives an input xt ∈ X .

• Makes prediction pt ∈ Y.

• Sees true label yt ∈ Y. Suffers loss `(pt, yt).

For most of our discussion, we will take Y = {0, 1} and `(pt, yt) = 1 {pt 6= yt}.

2.1 Realizability

As we did in PAC learning/statistical learning, we begin with the realizability assumption on the
sequence, which says that there is some hypothesis in the hypothesis classes which correctly labels
all datapoints.

Definition 4 (Mistake bound model). Let H be a hypothesis class and A be a online learning
algorithm. Given any sequence S = (x1, h

∗(x1)), . . . , (xT , h
∗(xT)) of T labeled datapoints where

h∗ ∈ H, let MA(S) be the number of mistakes A makes on the sequence S. Let MA(H) be the
supremum of MA(S) over all possible S.

If there exists an algorithm A that satisfies a mistake bound of the form MA(H) ≤ B < ∞, we
say H is online learnable in the mistake bound model.

Note: B should be independent of length of sequence T . As T → ∞, average number of mistakes
(≤ B/T)→ 0.

In PAC learning, we saw that the ERM algorithm which chooses any consistent hypothesis over the
training set does well, as long as the size of the training set is large enough that the generalization
error is small. We start by defining an analogous algorithm for the online learning setup.

4

Algorithm 1 Consistent

Initialize V1 = H
for for t = 1, . . . , T do

receive xt
choose any h ∈ Vt
predict pt = h(xt)
receive yt = h∗(xt), loss 1(pt 6= yt)
update Vt+1 = {h ∈ Vt : h(xt) = yt}

end for

The consistent algorithm will remove at least one hypothesis from Vt when there is a mistake
prediction. Therefore, after M mistakes, |Vt| ≤ |H|−M . Since we have the realizability assumption,
Vt should always be nonempty. Therefore we have the following guarantee on the algorithm,

Proposition 5. Let H be a finite hypothesis class. The above algorithm gets a mistake bound

Mconsistent(H) ≤ |H| − 1.

Can we do better? Yes, by quite a lot. If we refine the above algorithm to make its predictions pt
in a smarter way than choosing any consistent hypothesis, then we can improve exponentially on
the above mistake bound.

Algorithm 2 Halving

Initialize V1 = H
for for t = 1, . . . , T do

receive xt
predict pt = argmaxr∈{0,1} |{h ∈ Vt : h(xt) = r}| (if tie, pt = 1)
receive yt = h∗(xt), loss 1(pt 6= yt)
update Vt+1 = {h ∈ vt : h(xt) = yt}.

end for

Proposition 6. Let H be a finite hypothesis class. Then halving algorithm satisfies the mistake
bound MHalving(H) ≤ log2(|H|).

Proof. Whenever the algorithm errors, |Vt+1| ≤
|Vt|
2

. If M is the number of mistakes

|VT+1| ≤ |H|2−M

as |VT+1| ≥ 1 =⇒ M ≤ log2(|H|).

3 Littlestone Dimension

Next, we aim to characterize the complexity online learning. Nick Littlestone suggested a dimension
of hypothesis classes that characterizes the best achievable mistake bound, in the same way that
VC dimension characterizes the sample complexity of PAC learning.

5

Littlestone dimension

The key idea behind the notion of Littlestone dimension is to view online learning as a 2-player
game between learner and the environment.

At time t :

→ environment picks xt

→ learner picks pt

→ environment picks yt = 1− pt

Q) How to choose xt to get the learner to make maximum number of mistakes, while ensuring
realizability?

Strategy for the environment can be formally described as a binary tree. Each node of the tree is
associated with an instance from X . If the learner predicts pt = 1 the environment will declare that
this is a wrong prediction (i.e., yt = 0) and will traverse to the right child of the current node. If
the learner predicts pt = 0 then the environment will set yt = 1 and will traverse to the left child.
This process will continue and at each round.

Definition 7 (H shattered tree). A shattered tree of depth d is a sequence of instances x1, x2, . . . , x2d−1 ∈
X such that for every path from the root to a leaf, ∃ h ∈ H which realizes all the labels along this
path.

Definition 8 (Littestone dimension). The Littlestone dimension of a hypothesis class H, denoted
by Ldim(H), is the maximal T such that ∃ a tree of depth T shattered by H.

The following result is immediate from the definition of Littlestone dimension.

Proposition 9. For any online learning algorithm A, MA(H) ≥ Ldim(H).

Examples

1. Let H be a finite hypothesis class. Then Ldim(H) ≤ log2(H).
→ Any tree which is shattered by H must have |H| ≥ # leaves in the tree.

2. x = [0, 1], H = {x 7→ 1(x < a), a ∈ [0, 1]} (thresholds on [0, 1]). Then, Ldim(H) =∞

6

As a direct corollary of the above bound, we have that thresholds are not online learnable.

Corollary 10. Cannot learn thresholds in the online learning model.

This follows because algorithm can have a mistake bound smaller than Ldim(H). In fact, it turns
out that there is an intimate relation between thresholds and Littlestone dimension. Based on some
deep results in model theory, it can be shown that a class has finite Littlestone dimension if and
only if it does not embed threshold as a sub-class (see [2] for more details).

Next we see that there is in fact an algorithm which matches the Littlestone dimension bound.

Lemma 11. There exists an algorithm A with MA(H) ≤ Ldim(H).

Instead of predicting according to the larger class as done in Halving, we present an algorithm that
predicts according to the class with larger Littlestone dimension.

Algorithm 3 Standard optimal algorithm (SOA)

Initialize V1 = M
for for t = 1, . . . , T do

receive xt
for r ∈ {0, 1}, let V

(r)
t = {h ∈ Vt : h(xt) = r}

predict pt = argmaxr∈{0,1} Ldim(v
(r)
t)

receive yt = h∗(xt), loss 1(pt 6= yt)
update Vt+1 = {h ∈ Vt : h(xt) = yt}.

end for

Claim 12. Whenever algorithm makes a mistake Ldim(Vt+1) = Ldim(Vt)− 1

Proof. We prove by contradiction. For the sake of contradiction, assume Ldim(Vt+1) = Ldim(Vt)
though the algorithm has made a mistake. Without loss of generality, assume that the algorithm
predicts 0. Then yt = 1, since the algorithm made a mistake. Therefore,

Ldim(Vt+1) = Ldim(V
(1)
t) = Ldim(Vt)

By the definition of the algorithm,

Ldim(V
(0)
t) ≥Ldim(V

(1)
t) = Ldim(Vt)

7

But since V
(0)
t ⊆ Vt, we also have that

Ldim(V
(0)
t) ≤ Ldim(Vt)

=⇒ Ldim(V
(0)
t) = Ldim(Vt).

However, this implies that Ldim(Vt) = Ldim(V
(0)
t)+1 by constructing the following tree. Therefore,

we have a contradiction.

Theorem 13 (Comparison to VCdim(H)). For any class H, V Cdim(H) ≤ Ldim(H). Further,
the gap can be arbitrarily large.

Proof. Suppose VCdim(H) = d. Let x1, . . . , xd be a shattered set. Then the following tree can
be shattered.

The gap can be arbitrarily large just because of thresholds.

Connection to differential privacy. We conclude this section with a somewhat surprising
connection between online learning and differential privacy. Let us recall the definition of differential
privacy.

Definition 14. Consider some randomized algorithm A which takes some dataset S as input, and
computes some output A(S) (this could be some hypothesis built from the data). Consider some
datasets S and S′ which differ in just one example. We say that A satisfies ε-differential privacy if
for any set T in the range of A(·) and for any such datasets S and S′, we have that

P (A(S) ∈ T)

P (A(S′) ∈ T)
≤ eε.

8

It turns out that a hypothesis class is learnable with differential privacy if and only if the Little-
stone dimension is finite [2, 1]. Since Littlestone dimension characterizes online learning as well,
a hypothesis class can be learned with differential privacy if and only if it can be learned in the
online learning model.

This also implies that thresholds cannot be learned privately. In fact, even earlier work had shown
that thresholds cannot be learned privately via proper learner [3], which was later extended by [2]
to improper learners. The reason behind why thresholds cannot be learned privately is that, in
general, revealing the threshold can reveal information about where the datapoints are located. In
particular, if the datapoints are supported on an infinite set, then revealing threshold function can
potentially reveal at least one of the training datapoints.

4 Online learning in the unrealizable case

So far, we’ve talked about online learning in the realizable case, and defined a complexity measure
(Littlestone dimension) which characterizes when online learning is possible. We also showed that
finite hypothesis class are online learnable. Following a similar outline as with PAC learning, the
next step is to remove the realizability assumption. This brings us to the notion of regret.

Definition 15 (Regret). The regret of an algorithm A relative to a hypothesis h when run on a
sequence of T examples is:

RegretA(h, T) = sup
(x1,y1),··· ,(xT ,yT)

[
T∑
t=1

|pt − yt| −
T∑
t=1

|h(xt)− yt|

]
.

The regret of A relative to a hypothesis class H is:

RegretA(H, T) = sup
h∈H

RegretA(h, T).

Note that if the sequence is realizable, this is the same as the mistake bound.

The first question to ask is if we can we get sublinear regret, (o(T))? Unfortunately the answer is
no.

Consider H = {h0, h1}, h0 always predicts 0 and h1 always predicts 1. An adversary can force the
number of mistakes made by the algorithm to T (by always having the label of the datapoint to be
the opposite of the algorithm’s prediction).

However, the best predictor in hindsight is the majority of y1 . . . yT which makes ≤ T/2 mistakes.
This implies that the regret is ≥ T/2. We have no made assumptions on the algorithm here, and
even our hypothesis class is rather simple. Therefore, sublinear regret is impossible in general.

To get around this, we allow randomized algorithms. Importantly, the environment decides yt
before the random coins are flipped.

Setup At every time step f ,

→ learner receives xt ∈ X

9

→ learner decides pt ∈ [0, 1], probability of label being 1

→ environment “decides” true label yt ∈ {0, 1}

→ learner outputs ŷt =

{
1, w.p. pt
0, w.p. 1− pt

→ Expected loss at time t,

P (ŷt 6= yt) =

{
pt, if yt = 0

1− pt , if yt = 1

= |pt − yt|.

The definition of regret remains the same as it was before, and is the expected number of errors
compared to the best possible predictor in hindsight in the class H.

RegretA(H, T) = sup
h∈H

sup
(x1,y1),··· ,(xT ,yT)

[
T∑
t=1

|pt − yt| −
T∑
t=1

|h(xt)− yt|

]

Q) Can we get sublinear regret in this new setting? Yes, using the Weighted-Majority algorithm.

To discuss this algorithm, we need to first define the setting of prediction with “expert advice”.
This is a powerful setup, and comes up frequently in online learning problems.

4.1 Learning with expert advice

The setting is that there are d experts, each of which makes a prediction for the outcome at any
time step. At every time t, the learner has to choose one among the d experts to base its prediction
on. The learner then sees the true label, and the loss each expert incurs on that time step. The
learner can use this information to guide future predictions. How well can the learner do compared
to the best expert in hindsight? The Weighted-Majority algorithm provides an approach for the
problem.

Algorithm 4 Weighted Majority (also known as Multiplicative Weights/Hedge)

initialize w(1) = (1, . . . , 1) (d dimensional)
for for t = 1 . . . T do

set w̃(t) = w(t)/Zt where Zt =
∑
i

w
(t)
i

choose expert i at random according to P [i] = w̃
(t)
i

receive costs of all expects vt ∈ [0, 1]d

pay expected cost: 〈w̃(t), vt〉
update: ∀i : w

(t+1)
i = w

(t)
i e−ηvt,i

end for

Theorem 16. Assuming T > 2 log(d), the Weighted-Majority algorithm enjoys the bound

T∑
t=1

〈w̃(t), vt〉 −min
i∈[d]

T∑
t=1

vt,i ≤
√

2 log(d)T

10

Proof. We have:

log

(
Zt+1

Zt

)
= log

(∑
i w̃

(t)
i e−ηvt,i

Zt

)
= log

(∑
i

ŵ
(t)
i e−ηvt,i

)
.

Using

1. e−a ≤ 1− a+
a2

2
,∀a ∈ (0, 1)

2.
∑
i

w̃ti = 1,

3. log(1− b) ≤ −b, (b ≤ 1),

we get

log

(
Zt+1

Zt

)
≤ log

(∑
i

w̃(t)(1− ηvt,1 +
η2

2
v2t,i)

)

= log

(
1−

∑
i

w̃
(t)
i

(
ηvt,i −

η2

2
v2t,i

))

≤ −
∑
i

w̃
(t)
i

(
ηvt,i −

η2

2
v2t,i

)
= −η〈w̃(t), vt〉+

η2

2

∑
i

w̃
(t)
i v2t,i/2.

≤ −η〈w̃(t), vt〉+
η2

2
.

Note that

T∑
t=1

log

(
Zt+1

Zt

)
= log (ZT+1)− log (Z1)

≤ −η
T∑
t=1

〈w̃(t), vt〉+
Tη2

2

By summing the inequality over t,

η

T∑
t=1

〈w̃(t), vt〉 ≤ log (Z1)− log (Zt+1) +
Tη2

2
.

Note that log(Z1) = log(d). We now lower bound ZT+1. Note that w
(T+1)
i = e−η

∑
t vt,i ,

log (ZT+1) = log

(∑
i

e−η
∑

t vt,i

)

≥ log

(
max
i
e−η

∑
t vt,i

)
= −ηmin

i

∑
t

vt,1.

11

Using log(Z1) = log(d),

η

i∑
t=1

〈w̃(t), vt〉 ≤ log(d) + ηmin
i

∑
t

vt,i +
Tη2

2

=⇒
T∑
t=1

〈w̃(t), vt〉 −min
i

∑
t

vt,i ≤
log(d)

η
+
Tη

2
.

Choosing η =

√
2 log(d)

T
upper bounds the RHS by

√
2 log(d)T , proving the result.

4.2 Regret bound for online leaning

We can use the Weighted Majority algorithm to get a regret bound for finite hypothesis classes.

Theorem 17. Let H = {h1, · · · , hd} be a finite hypothesis class. Then Weighted-Majority achieves

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

2 log(|H|)T

Proof. Each experts hi predicts hi (xt) on example xt. The loss vt,i = |hi(xt)− yt|.
The predictions of Weighted-Majority are

pt =
∑
i

w̃
(t)
i hi(xt).

The expected loss is

|pt − yt| =

∣∣∣∣∣
d∑
i=1

w̃
(t)
i hi(xt)− yt

∣∣∣∣∣
≤

d∑
i=1

∣∣∣w̃(t)
i (hi (xt)− yt)

∣∣∣
= 〈w̃(t), vt〉

Then we use the regret bound for Weighted-Majority to bound 〈w̃(t), vt〉.

For infinite sized hypothesis classes, we can prove a regret bound using Littlestone dimension.

Theorem 18. For every hypothesis class H, there exists an algorithm for online learning with a
regret bound:

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

2Ldim(H) log(eT)T

The proof of this result can be found in Section 21.2.1 of [4].

12

5 Online Convex Optimization

Just as we saw with the PAC learning settings, convex functions can be learned efficiently in the
online setting as well.

In online convex optimization, at each timestep, the learner chooses wt ∈ S (for some domain S).
We have convex loss ft : S → R at every time t. The learner suffers ft(wt) at time t. We can write
regret as:

Regret(T) =

T∑
t=1

ft(wt)−min
w∈S

T∑
t=1

ft(w)

Example 19 (Linear regression). This is just the online version of our prototypical linear regression
problem. Let us assume, S = Rd. The loss at any time step t is

ft(w) = (〈w, xt〉 − yt)2(this is convex as a function of w).

Note that the data (xt, yt) are baked into ft.

Example 20 (Learning with experts). Recall our previous learning with experts setting. The set
of experts are discrete which is not a convex set. However, we can create a convex set by drawing
from a distribution over experts.

S = ∆d = {w ∈ Rd, wi ≥ 0 ∀i ∈ [d],
∑

wi = 1}(simplex over Rd),

ft(w) = 〈w, vt〉,
where vt = (l(h1(xt), yt), l(h2(xt), yt), s, l(hd(xt), yt)), (l(hi(x), y) ∈ [0, 1]) ∀ i.

As before, note that ft is merging the loss function and data.

6 Algorithmic Frameworks

We will now discuss some algorithmic frameworks for online convex optimization. As with convex
optimization previously, the algorithms themselves are useful even if the functions are not convex.

6.1 Algorithm: Follow-the-Leader (FTL)

At every timestep t, we play

wt ∈ arg min
w∈S

t−1∑
i=1

fi(w) (1)

The following Lemma shows that FTL has bounded regret if it does well as compared to a one-step
lookahead oracle.

13

Lemma 21 (FTL vs. one-step lookahead oracle). Let w1, · · · , wT be produced by the FTL algorithm
according to Equation 1. For any u ∈ S, define

Regret(u, T) =
T∑
t=1

[
ft(wt)− ft(u)

]

Then Regret(u, T) ≤
T∑
t=1

[
ft(wt)− ft(wt+1)

]
. This also gives a bound for regret with respect to any

u ∈ S,

Regret(T) = max
u∈S

Regret(u, T) ≤
T∑
t=1

[
ft(wt)− ft(wt+1)

]
.

Proof. It suffices to show that ∀u ∈ S,

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u)

We prove this by induction. The base case can be shown easily. By the inductive hypothesis on
τ − 1,

τ−1∑
i=1

ft(wt+1) ≤
τ−1∑
i=1

ft(u) ∀u ∈ S

=⇒
τ∑
t=1

ft(wt+1) ≤
τ−1∑
i=1

ft(u) + fτ (wτ+1) ∀u ∈ S

Applying this for u = wτ+1,

τ∑
t=1

ft(wt+1) ≤
τ∑
t=1

ft(wτ+1)

Since wτ+1 ∈ arg min
w∈S

τ∑
t=1

ft(w),

τ∑
t=1

ft(wt+1) ≤
τ∑
t=1

ft(u) ∀u ∈ S

This completes the inductive step and the result follows.

The regret bound depends on the stability of the FTL iterates,

Regret(T) ≤
T∑
t=1

[
ft(wt)− ft(wt+1)︸ ︷︷ ︸

stability of FTL

]
.

Therefore if FTL is stable, then it has low regret. We will now see an example where FTL is stable.

14

Lemma 22 (Quadratic Optimization (FTL Works)). Assume ft(w) =
1

2
||wt − zt||22 where ||zt|| ≤

B ∀ t ∈ [T]. Then FTL has regret O(B2 log T).

Proof. Let us look at the FTL solution given some examples.

Figure 2: FTL on quadratic functions

As we can see, FTL has the closed form solution:

wt =
1

t− 1

t−1∑
i=1

zi

=⇒ wt+1 =
(t− 1)wt + zt

t

=

(
1− 1

t

)
wt +

zt
t
.

Using Lemma 21 (FTL vs. one-step lookahead oracle),

Regret(T) ≤
T∑
t=1

[
ft(wt)− ft(wt+1)

]
ft(wt)− ft(wt+1) =

1

2
‖wt − zt‖22 −

1

2
‖
(
1− 1

t

)
wt +

zt
t
− zt‖22

=
1

2

(
1−

(
1− 1

t

)2)‖wt − zt‖22
≤
(1

t

)
‖wt − zt‖22

≤ 4B2

t
(any 2 points are at most 2B apart)

=⇒ Regret(T) ≤ 4B2
T∑
t=1

(
1

t

)
. (2)

We have the algebraic property that,

15

T∑
t=1

1

t
≤ 1 +

∫ T

1

1

t
dt

= 1 + log(T). (3)

Together, (2) and (3) imply that Regret(T) = O(B2 log(T)).

Let us now see an example where FTL fails.

Example 23. [Linear Optimization, FTL fails]

Let S = [−1, 1] be FTL’s possible predictions. Consider the linear functions ft(w) = wvt (in d = 1
dimensions) where

(v1, v2, · · ·) = (−0.5, 1,−1, 1,−1, · · ·).

What does FTL do here?

Suppose we initialize w1 = 0→ loss(w1, v1) = w1v1 = 0.

Since f1(w) = −0.5w =⇒ w2 = 1→ loss(w2, v2) = w2v2 = 1.

Then f1(w) + f2(w) = 0.5w =⇒ w3 = −1→ loss(w3, v3) = 1. And so on and so forth.

Therefore, FTL gets loss 1 on every example except the first. Note that the expert u = 0 gets 0
loss. Therefore

Regret(u, T) = T − 1, =⇒ Regret(T) ≥ T − 1.

Therefore, FTL does not get sublinear regret in this case (average regret over time does not converge
to zero).

Why are these two examples different? For quadratic functions, wt and wt+1 get closer and closer.
This gives stability, and hence low regret. For linear functions, wt and wt+1 do not get closer (and
we get high regret).

To get a FTL-like algorithm to work for linear optimization we need a way to enforce stability.
Earlier in the class, we have seen that adding regularization can make ERM stable in certain cases.
A similar technique also makes FTL stable, which gives us the Follow the Regularized Leader
(FTRL) algorithm.

Definition 24 (Follow the Regularized Leader (FTRL)). Let Ψ : S → R be a function, referred to
as the regularizer. Let f1, · · · , fT be the sequence of loss functions played by the environment. At
every time t, the Follow the Regularized Leader (FTRL) algorithm plays,

wt ∈ arg min
w∈S

(t−1∑
i=1

fi(w) + Ψ(w)

)

16

Note that FTL is FTRL with Ψ = 0. For Example 23 (linear optimization), FTRL with quadratic

regularization Ψ(w) =
‖w‖22

2η
can be shown to get regret O(

√
T) (for some appropriate choice of

regularization strength η). Adding this `2 regularization yields stability, just like we saw for convex,
Lipschitz functions for ERM.

6.2 Beyond the linear case: Online convex optimization

We will now go beyond linear functions. To still allow for efficient algorithms, we consider convex
functions.

Algorithm 5 Online Gradient Descent

1: Let w1 = 0
2: for t = 1, 2, . . . , T do
3: Predict wt, receive ft
4: Find gradient vt = ∇ft(wt)
5: if S = Rd then
6: wt+1 = wt − ηvt
7: else
8: θt+1 = wt − ηvt, wt+1 = ΠS(θt+1), (ΠS is the projection onto the set S)
9: end if

10: end for

Note that if f is not differentiable, we can use subgradients (as we did with vanilla gradient descent).

An example of online gradient descent is the Perceptron algorithm. The setup here is standard
binary classification, X = Rd,Y = {±1}. At every time t, learner receives xt ∈ Rd. The learner
maintains wt ∈ Rd, predicts pt = sign (〈wt, xt〉), and incurs loss 1(pt 6= yt), where yt is the true
label of xt. We showed earlier that thresholds have infinite Littlestone dimension even in the one-
dimensional case, and therefore there is no hope of getting small mistake bound without further
assumptions.

Recall that in the adversarial instance where the Littlestone dimension was infinite, we had the
datapoints xt get closer and closer to the decision boundary. To prevent the adversary from doing
this, the key assumption we will make is that there are no datapoints which are too close to the
decision boundary. This is known as the margin assumption.

Figure 3: A linear classification problem with margin.

Even with the margin assumption, we cannot hope to directly use online gradient descent on the
problem since the zero-one class is not convex. The Perceptron algorithm uses the hinge loss as a

17

convex surrogate of the zero-one loss, and does online gradient descent with respect to the hinge
loss on every example which is misclassified.

Figure 4: `Hinge as a convex surrogate for `0−1 loss

For completeness, we state the Perceptron algorithm below.

Algorithm 6 Perceptron

Initialize w1 = 0
for t = 1, . . . , T do

receive xt
predict pt = sign〈wt, xt〉
if yt〈wt, xt〉 ≤ 0 then

wt+1 = wt + ytxt (we can drop the step size η since we just use the sign for predictions)
else

wt+1 = wt
end if

end for

It can be shown that Perceptron gets a finite mistake bound under the margin assumption.

7 Further reading

You can refer to Percy Liang’s lecture notes for more on kernels. You can read Chapter 21 of [4]
for more on online learning and the Perceptron algorithm. The book [4] does not cover FTL and
FTRL, but there are resources available online. For example, you can read Section 5.3, 5.4 and 5.5
of Percy Liang’s lecture notes.

18

https://web.stanford.edu/class/cs229t/notes.pdf
https://web.stanford.edu/class/cs229t/notes.pdf

References

[1] Mark Bun, Roi Livni, and Shay Moran. An equivalence between private classification and
online prediction. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 389–402. IEEE, 2020.

[2] Noga Alon, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private pac learning implies finite
littlestone dimension. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 852–860, 2019.

[3] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release and
learning of threshold functions. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 634–649. IEEE, 2015.

[4] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

19

	Kernels (continued)
	Parametric vs non-parametric models

	Online Learning
	Realizability

	Littlestone Dimension
	Online learning in the unrealizable case
	Learning with expert advice
	Regret bound for online leaning

	Online Convex Optimization
	Algorithmic Frameworks
	Algorithm: Follow-the-Leader (FTL)
	Beyond the linear case: Online convex optimization

	Further reading

