
CSCI699: Machine Learning Theory Fall 2023

Lecture 2: Agnostic Learning, Uniform Convergence, Concentration

Instructor: Vatsal Sharan

These lecture notes are based on an initial version scribed by Ta-Yang Wang, Yingxiao Ye and Berk
Tinaz.

1 Agnostic PAC learning

PAC learning requires the realizability assumption, meaning that it cannot handle noise/error within
the labels.

Agnostic PAC learning relaxes the realizability distribution, and also allows the labels to be noisy.
Consider an arbitrary distribution P over X ×Y. The conditional distribution of y given x is given
by P (y|x), which may not be deterministic.

We will continue with the zero/one loss, and our previous definitions of population and empirical
risk are still preserved,

R(h) = E(x,y)∼P [`(h(x), y)] = Pr(x,y)∼P [h(x) 6= y]m (1)

R̂S(h) =
1

n

n∑
i=1

1(h(xi) 6= yi). (2)

With the realizability assumption, it was possible to get zero error (since the true hypothesis h∗

gets zero error). A quick calculation tells us the best possible risk (i.e. the Bayes optimal risk) in
the agnostic case.

min
h:X→Y

Pr(x,y)∼P [h(x) 6= y]

=
∑
x∈X

P (x)

(
min

h(x)∈{0,1}
{Pr(x,y)∼P (y = 1|x)1{h(x) = 0},Pr(x,y)∼P (y = 0|x)1{h(x) = 1}}

)
=
∑
x∈X

P (x) min{Pr(x,y)∼P (y = 1|x),Pr(x,y)∼P (y = 0|x)}.

This calculation also tells us that the Bayes-optimal predictor h∗ on a datapoint x is given by:

h∗(x) = 1
(
Pr(x,y)∼P (y = 1 | x) ≥ 1/2

)
.

We are now ready to define agnostic PAC learning.

Definition 1 (Agnostic PAC Learnability). A hypothesis H is agnostic PAC learnable if for every
ε, δ ∈ (0, 1), there exists a function nH(ε, δ) and a learning algorithm such that for every distribution
D over X × Y, if the algorithm is run on n ≥ nH(ε, δ) samples drawn i.i.d. from D, then the
algorithm returns a hypothesis ĥ with R(ĥ) ≤ min

h∈H
R(h) + ε, except with probability δ.
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We remark that PAC learning is a special case of agnostic PAC learning where min
h∈H

R(h) = 0 (due

to realizability). Therefore agnostic PAC learnablity implies PAC learnablity.

As an example of agnostic PAC learnability, consider the hypothesis class

H = {hw(x) : 1(wTx > 0), w ∈ Rd} (the class of linear classifiers).

Learning H agnostically means that the algorithm works except with a failure probability δ in
finding a linear classifier which is at most ε-suboptimal compared to the best linear classifier on
the data.

2 Uniform Convergence

Even with the agnostic learning framework, it makes sense to find some ERM ĥ ∈ H on the training
set. We want to show that ĥ is close to the best it is possible to do with respect to population risk
using the hypothesis class H (min

h∈H
R(h)).

Uniform convergence is a powerful framework to show this. The key idea is that it suffices to show
that all empirical risks of all members of H are close to their population risk.

Recall our definitions of population risk (1) and empirical risk (2). Let hERM = arg min
h∈H

R̂S(h)

(we were calling this hS,ERM last lecture but will drop the S in the subscript now for brevity) and

h̃ = arg min
h∈H

R(h) . Note that h̃ is not the same as the Bayes optimal predictor h∗ since we do not

assume realizability.

We can decompose the differeence between the population risk of hERM and h̃ as follows:

R(hERM)−R(h̃) = R(hERM)− R̂S(hERM)︸ ︷︷ ︸
trickier

+ R̂S(hERM)− R̂S(h̃)︸ ︷︷ ︸
≤0

+ R̂S(h̃)−R(h̃)︸ ︷︷ ︸
easy to bound

. (3)

In (3), R̂S(hERM)− R̂S(h̃) ≤ 0 due to the definition of hERM.

Note that by definition,

R̂S(h̃) =
1

n

n∑
i=1

`(h̃(xi), yi)︸ ︷︷ ︸
average of n i.i.d. random variable

,

and ∀ i ∈ [n],

R(h̃) = E(xi,yi)∼D[`(h̃(xi), yi)].

Therefore, by concentration inequalities which we will see soon, it is not difficult to get

Pr[|R̂S(h̃)−R(h̃)| ≥ ε] ≤ δ

for any fixed hypothesis h̃. Uniform convergence asks for such a deviation bound for every hypoth-
esis in the hypothesis class.
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Definition 2 (Uniform Convergence). A hypothesis class H has the uniform convergence prop-
erty if for every ε, δ ∈ (0, 1), there exists a function nUC

H (ε, δ) such that for every distribution D
over X×Y, if S is a training set of n ≥ nUC

H (ε, δ) samples drawn i.i.d. from D, then with probability
1− δ,

∀h ∈ H, |R̂S(h)−R(h)| ≤ ε.

Figure 1: Consider the hypothesis class H is parameterized by single parameter α ∈ R. For e.g.
H could be thresholds on the first coordindate x(1) of the datapoint x, {H : y = 1(x(1) > α)}.
Suppose H has the UC property. Then the deviation of the empirical risk from the true risk is
bounded by ε. The figure on the right consider a stronger case: R̂(h) is a convex function with
respect to the parameter α. In this case, there exists a unique local minimizer (and thus it is the
global minimizer) so optimization method e.g. stochastic gradient descent algorithm can find the
optimal solution. In contrast, in the figure on the left, there are multiple local minimizers. SGD
can converge to anyone of them, which may lead to a suboptimal solution. Uniform convergence
does not distinguish between these landscapes, but there is recent work on doing this [1, 2].

Proposition 3 (UC =⇒ Agnostic PAC learning). If H has the UC property with nUC
H (ε, δ), then

H is Agnostic-PAC learnable with sample complexity nH(ε, δ) ≤ nUC
H (ε/2, δ). Moreover, ERM is an

algorithm which achieves this sample complexity.

Proof. Let S be a sample of size n ≥ nUC
H (ε/2, δ). By definition,

∀h ∈ H, |R̂S(h)−R(h)| ≤ ε/2.

Consider ERM hERM and let h̃ = arg min
h∈H

R(h).

R(hERM)−R(h̃) = R(hERM)− R̂S(hERM)︸ ︷︷ ︸
≤ε/2

+ R̂S(hERM)− R̂S(h̃)︸ ︷︷ ︸
≤0

+ R̂S(h̃)−R(h̃)︸ ︷︷ ︸
≤ε/2

.
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Last lecture we show a PAC bound for finite hypothesis classes. Using uniform convergence we can
show a agnostic PAC bound for finite hypothesis classes.

Theorem 4 (Agnostic PAC for finite classes). Let H be a class |H| <∞. Then H is agnostic-PAC
learnable with

nH(ε, δ) ≤
⌈

2 log(2|H|/δ)
ε2

⌉
.

Proof. We will show:

(1) For any fixed h ∈ H and ε > 0,

Pr
[∣∣∣R̂S(h)−R(h)

∣∣∣ ≥ ε] ≤ 2e−2nε
2

(2) For any ε > 0,

Pr[∀h ∈ H,
∣∣∣R̂S(h)−R(h)

∣∣∣ ≤ ε] ≥ 1− 2|H|e−2nε2 .

(3) For n ≥
⌈

log(2|H|/δ)
2ε2

⌉
, with probability 1− δ,

|R̂S(h)−R(h)| < ε ∀h ∈ H.

(4) By UC, H is agnostic PAC learnable with

n ≥
⌈

2 log(2|H|/δ)
ε2

⌉
samples.

Proof of part (1)

We will use the following result, which we will prove later.

Lemma 5 (Hoeffdings inequality). Let X1, X2, . . . , Xn be independent random variables such that
ai ≤ xi ≤ bi for each i ∈ [n]. Then for any ε > 0,

Pr

[∣∣∣∣∣ 1n
n∑
i=1

xi − E

[
1

n

n∑
i=1

xi

]∣∣∣∣∣ ≥ ε
]
≤ 2 exp

 −2n2ε2

n∑
i=1

(bi − ai)2

 .

Given Hoeffding’s, we prove part (1): take each Xi = `(h(xi), yi). Since `(h(xi), yi) = 1(h(xi) 6= yi),
Xi ∈ {0, 1}, and thus ai = 0, bi = 1. Therefore, we have

Pr

[∣∣∣∣∣ 1n
n∑
i=1

xi − E

[
1

n

n∑
i=1

xi

]∣∣∣∣∣ ≥ ε
]
≤ 2 exp(−2nε2)
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Proof of part (2)

Pr[∀h ∈ H, |R̂S(h)−R(h)| ≤ ε] = 1− Pr

 |H|⋃
i=1

|R̂S(h)−R(h)| > ε


≥ 1−

|H|∑
i=1

Pr[|R̂S(hi)−R(hi)| > ε]

≥ 1− |H|(2 exp(−2nε2))

Proof of part (3)

Set n ≥
⌈

log(2|H|/δ)
2ε2

⌉
in the previous step, then we have the failure probability is bounded by δ

for any h ∈ H i.e. Pr[∀h ∈ H, |R̂S(h)−R(h)| ≤ ε] ≥ 1− δ.

Proof of part (4)

In part (3), we have shown thatH has the uniform convergence property, and thus by Proposition 3,

we have H is agnostic PAC learnable with n ≥
⌈

2 log(2|H|/δ)
ε2

⌉
samples.

Therefore the proof of agnostic PAC learnability here boils down to Lemma 5 (Hoeffdings in-
equality). Results such as Hoeffdings inequality are known as concentration inequalities and lie
at the heart of proving generalization bounds for ML algorithms. We will now spend some time
understanding them.

3 Concentration inequalities

Let {X1, X2, . . .} be sequence of random variables E[Xi] = µ,Var(Xi) = σ2 < ∞. Let Xn =

1

n

n∑
i=1

Xi. How close is Xn to µ?

The Central Limit Theorem gives an asymptotic answer to this question.

Theorem 6 (Central Limit Theorem). As n→∞(
Xn − µ

) in distribution−−−−−−−−−→ N (0, σ2/n).

In words, this means that Xn converges to its mean µ at a rate of O

(
σ√
n

)
. However, the central

limit theorem is an asympototic result which applies when n → ∞. We are interested in bounds
which hold non-asymptotically for finite n. Concentration inequalities provide this, the simplest
of which is Markov’s inequality. Markov’s inequality can be used whenever the random variable is
non-negative and has a finite expectation.
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3.1 Markov, Chebyshev and Chernoff

We will consider a series of bounds which analyze the ‘tail’ behavior of a random variable. Tail
behavior refers to the proabability of a random variable deviating too far from its mean.

Proposition 7 (Markov’s inequality). Let X be a non-negative random variable. Then for any
t > 0, we have

Pr[X ≥ t] ≤ E[X]

t
.

Proof.

E[X] =

∞∑
i=0

iPr[X = i]

≥
∞∑
i=t

iPr[X = i] (follows from non-negativity)

≥ t ·
∞∑
i=t

Pr[X = i]

=⇒ Pr[X ≥ t] ≤ E[X]/t.

Without further assumptions, Markov’s inequality is tight (Exercise: Prove that this is the case by
showing that for any t > 0 there exists some distribution such that Pr[X ≥ t] = E[X]/t.)

Markov’s inequality only applies to non-negative random variables. But if we have a bound on the
variance of the random variable, then we can work with the square of the random variables to still
apply Markov’s. Since we have a bound on the variance we can actually get a stronger tail bounds
(1/t2 instead of 1/t for Markov).

Proposition 8 (Chebyshev’s inequality). Let X be a random variable. Then for any t > 0,

Pr[|X − E[X]| ≥ t] ≤ Var[X]

t2
.

Proof. Note that
Pr[|X − E[X]| ≥ t] = Pr[|X − E[X]|2 ≥ t2].

We now apply Markov’s inequality to the non-negative random variable (X − E(X))2,

Pr[(X − E(X))2 ≥ t2] ≤ E[(X − E(X))2]

t2
=

Var[X]

t2
.

We can ask if this is already enough to get Hoeffding’s inequality 5.

• Consider ai = 0, bi = 0, and E[Xi] = µ, ∀ i.

6



• By definition, Xn =
1

n

n∑
i=1

Xi, and thus E[Xn] = µ (by linearity of expectations).

• Also, note that since the variance of the sum of indepdent random variables is the sum of

their individual variances, Var[Xn] =
1

n2

n∑
i=1

Var[Xi] ≤
1

n
where the last step follows because

Var[Xi] = E[X2
i ]− E[Xi]

2 ≤ 1.

Let us see what Chebyshev gives us,

Pr[|Xn − µ| ≥ ε] ≤
Var[Xn]

ε2
≤ 1

nε2
.

But Hoeffding’s inequality says,

Pr[|Xn − µ| ≥ ε] ≤ 2 exp(−2nε2),

which is saying that the tails have exponentially small probability, so Chebyshev clearly isn’t strong
enough. The crucial idea to get stronger concentration bounds is that there is no need to stop at
the second moment. In fact for any positive integer k,

Pr[|X − E[X]| ≥ t] = Pr[|X − E[X]|k ≥ tk] ≤ E(|X − E(X)|k)
tk

We can even consider functions other than polynomials. For any λ > 0,

Pr[X − E(X) ≥ t] = Pr
[
eλ(X−E(X)) ≥ eλt

]
≤

E
[
eλ(X−E[X])

]
eλt

.

Since the inequality holds for any λ > 0, to get the best possible bound, we have

Pr[X − E(X) ≥ t] ≤ inf
λ≥0

E
[
eλ(X−E[X])

]
eλt

.

This brings us to Chernoff-style bounds which take the following form.

log(Pr[X − E[X] ≥ t]) ≤ inf
λ≥0

(
log
(
E
[
eλ(X−E[X])

])
− λt

)
(4)

As a remark, the quantity that appears inside the logarithm of the Chernoff bound above is known
as the moment-generating function. Formally, for any random variable X, the moment generating
function MX(t) is defined as MX(t) = E(etx).

Exercise: Verify that
∂kMX(t)

∂tk

∣∣∣∣
t=0

= E[Xk]

which is where the name moment-generating function comes from.

The moment generating function exists if all finite moments exist for the random varibale. By
taking the exponentiation, Chernoff-bounds consdier all moments of X simultaneously which will
allow us to prove exponential tail bounds.
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3.2 Gaussian tail bounds

We will now use Chernoff-style bounds to derive concentration bounds for sums of random variables.
We start with just deriving a tail bound for a Gaussian using (4).

Figure 2: Why is it called a tail bound? Perhaps because the Gaussian density function looks a bit
like a Brontosaurus, and we are interested in the probability mass in its ‘tail’? :) Picture directly
copied from Mary Wootters’ beautifully written and illustrated Ph.D. thesis [3].

• Let X ∼ N (µ, σ2)

• Goal: Bound Pr[X − µ ≥ t].

By using (4) and applying the exponential function on both sides,

Pr[X − µ ≥ t] ≤ inf
λ≥0

e(λ(X−E[X]))

eλt
.

Let X −E[X] = y. Note that y ∼ N (0, σ2). We can now derive the moment generating function of
the Gaussian,

E(eλ(X−E[X])) = E(eλy)

=

∫
R
eλy

e−y
2/2σ2

√
2πσ

dy

=

∫
R

e−(y−λ/σ
2)2· 1

2σ2 eλ
2σ2/2

√
2πσ

dy

= eλ
2σ2/2

∫
R

e−(y−λ/σ
2)· 1

2σ2

√
2πσ

dy

= e
λ2σ2

2 .

Using this, we can write,

log(Pr[X − E[X] ≥ t]) ≤ inf
λ≥0

(
λ2σ2

2
− λt

)
=
−t2

2σ2

{
Exercise: minimize the quadratic

to show the equality.

=⇒ Pr[X − E[X] ≥ t] ≤ e−t2/2σ2
.
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For the case of a Gaussian distribution, we could have derived a tail bound directly without using
the moment generating function or the Chernoff-bound. But we didn’t loose much, the bound
above is in fact tight up to polynomial factors, i.e., the best bound one could hope to show is
Pr[X − E[X] ≥ t] ≤ e−t2/2σ2 · (poly(t, σ))−1.

In Hoeffding’s inequality 5, the random variable of interest is a sum of random variables. To get tail
bounds for many ‘nice’ random variables (which we will formally define later), one can pretent that
the random variables are Gaussian and see what the tail bound are in that case. Since Gaussian
have many nice properties, it is often much easier to work with Gaussian random variables. This
gives a back-of-the-envelope calculation which can often be made rigorous, and we will see some of
the machinery involved. But let us first see what bound we would get for sums of Gaussian random
variables.

Let

Xn =
n∑
i=1

Xi/n, E[Xi] = µ, Var[Xi] = σ2.

Since the Gaussian distribution is a stable distribution, the sum of Gaussians is also a Gaussian,
therefore Xn ∼ N (µ, σ2/n). Therefore using the tail bound we derived for a single Gaussian,

Pr[Xn − µ ≥ t] ≤ e−nt
2/2σ2

.

If we now want to set the failure probability to be δ, then the deviation expected from the true

mean given n samples is about O

(
σ

√
log(1/δ)

n

)
:

Pr

[
Xn − µ ≥ σ

√
2 log(1/δ)

n

]
≤ δ.

We will next see that similar bounds can be obtained by sums of ‘nice’ non-Gaussian random
variables as well.

3.3 Sub-Gaussian random variables

Notice that we didn’t really use too many special properties of the Gaussian to get the previous
tail bound. All we really need is a bound on the moment generating function, and the notion of
sub-Gaussian random variables formalizes this.

Definition 9. A random variable X with mean µ = E(X) is sub-Gaussian if there exists a
positive number σ such that

E
[
eλ(X−µ)

]
≤ eσ2λ2/2 ∀λ ∈ R.

σ is known as the sub-Gaussian parameter (think of this as the standard deviation proxy for the
distribution).

• Any Gaussian random variable with standard deviation σ is sub-Gaussian with parameter σ.

• Many non-Gaussian random variables also have this property! Let’s see one example.
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Rademacher random variable

Let X be the random variable which is {−1,+1} with equal probability. This random variable is
known as a Rademacher random variable.

Claim 10. The Rademacher random variable is sub-Gaussian with parameter σ = 1.

Proof. Note that E(X) = 0. We can write,

E[eλX ] =
1

2

(
e−λ + eλ

)
=

1

2

( ∞∑
k=0

(−λ)k

k!
+
∞∑
k=0

λk

k!

)

=
∞∑
k=0

λ2k

(2k)!

≤ 1 +
∞∑
k=1

λ2k

2kk!
((2k)! ≥ 2kk!)

= eλ
2/2.

3.4 Concentration bound for sub-Gaussian random variables

We now show that a sub-Gaussian random variable with sub-Gaussian parameter σ has similar tail
upper bounds as a Gaussian random variable with standard deviation σ,

Lemma 11. If X is a sub-Gaussian with parameter σ, then for any t > 0,

(1) Pr[X > E[X] + t] ≤ e−t2/2σ2
.

(2) Pr[X < E[X]− t] ≤ e−t2/2σ2
.

(3) Pr[|X − E[X]| ≥ t] ≤ 2e−t
2/2σ2

.

Proof. (1) Using (4),

log(Pr[X − E[X] ≥ t]) ≤ inf
λ≥0

(logE(eλ(X−E(X)))− λt).

By sub-Gaussianity,
E[eλ(X−E[X])] ≤ eσ2λ2/2.

Therefore,

log(Pr[X − E[X] ≥ t]) ≤ inf
λ≥0

(
σ2λ2

2
− λt

)
=
−t2

2σ2

and part (1) follows.
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(2) Take X ′ = −X. Note that X ′ is also sub-Gaussian with parameter σ (by symmetry of the
definition with respect to λ, i.e. the definition requires the inequality to be satisfied both for
λ ≥ 0 and λ ≤ 0). We can now write,

Pr[X < E[X]− t] = Pr[X ′ > E[X ′] + t].

The result now follows by part (1).

(3) Follows from a union bound.

3.5 Concentration bound for sum of sub-Gaussian random variables

As we did for Gaussians, we can now get a tail-bound for sums of independent sub-Gaussian random
variables. The crucial property we will use here is that sums of independent sub-Gaussian random
variables are sub-Gaussian.

Theorem 12. Suppose that the random variable {Xi}ni=1 are independent and E[Xi] = µi and Xi

is sub-Gaussian with parameter σi. Then for all t ≥ 0, we have

Pr

[∣∣∣∣∣
n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≥ t
]
≤ 2 exp

 −t2

2

n∑
i=1

σ2i



Proof. We show that Z =
n∑
i=1

Xi is sub-Gaussian with parameter σ2Z =
n∑
i=1

σ2i .

E
(
eλ(Z−E[Z])

)
= E

(
eλ(

∑
Xi−E[

∑
Xi])
)

=
n∏
i=1

E
(
eλ(Xi−E[Xi])

)
(this uses independence)

≤
n∏
i=1

eσ
2
i λ

2/2 = e(
∑
σ2
i )λ

2/2.

The Theorem now follows from Lemma 11.

We state the following direct Corollary of the above theorem for the case where the random variables
Xi have the same mean and variance.

Corollary 13 (Corollary of Theorem 12 for identical random variables). Consider n i.i.d. random
variable X1, . . . , Xn each with E[Xi] = µ and sub-Gaussian parameter σ. Then for all t ≥ 0,

Pr

[∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ ≥ ε] ≤ exp

(
−nε2

2σ2

)
.

Not coincidentally, this is exactly the same as the bound we got earlier for sums of independent
Gaussian random variables.
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3.6 Hoeffding’s inequality

We now use the tools we have developed to show Hoeffding’s inequality, which is a concentration
bound for bounded random variables. We first show that bounded random variables are sub-
Gaussian.

Claim 14 (Bounded random variable is sub-Gaussian). Let X be a random variable with mean
zero and supported on the interval [a, b]. Then X is sub-Gaussian with sub-Gaussian parameter
(b − a) (in fact, it is possible to show sub-Gaussianity with parameter (b− a)/2, but we won’t do
that here).

Proof. The proof uses the idea of symmetrization, which we will see in future lectures. Let X ′

be an independent copy of X. Note that since E[X ′] = 0, we can write,

EX [eλX ] = EX [exp(λ(X − E[X ′]))] ≤ EX,X′ [exp(λ(X −X ′))]

where the last step uses Jensen’s inequality, f(E[X]) ≤ E(f(X)) for any convex f . Note that
X −X ′ and X ′ −X have the same distribution. This implies

EX,X′ [exp(λ(X −X ′))] = EX,X′ [exp(λ(X ′ −X))].

Therefore, we can introduce a Rademacher random variable ε, which {±1} with probability 1/2
each, without changing the expectation,

EX,X′ [exp(λ(X −X ′))] = EX,X′,ε[exp(λε(X −X ′))].

Now fixing X,X ′ and just taking the expectation over ε, we can use the moment generating function
bound for Rademacher random variables in Claim 10 to write,

Eε[exp(λε(X −X ′))] ≤ exp(λ2(X −X ′)2/2).

Plugging this back,

E[eλX ] ≤ EX,X′ [exp(λ2(X −X ′)2/2)] ≤ exp(λ2(b− a)2/2)

where last inequality follows since X,X ′ lie in the interval [a, b].

Using Theorem 12 we now get a slightly weaker version of Hoeffding’s inequality.

Lemma 15 (weaker version of Hoeffding’s). Let X1, X2, . . . , Xn be independent random variables
such that ai ≤ xi ≤ bi for each i ∈ [n]. Then for any ε > 0,

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ ≤ ε
]
≥ 1− 2 exp

(
−n2ε2

2
∑n

i=1(bi − ai)2

)
.

Remark: This bound is only loose compared to Hoeffding’s inequality stated earlier in terms of a
factor of 2 in the denominator of the exponent, which should instead be in the numerator. If we use
the right sub-Gaussian parameter (bi − ai)/2 for the random variables, we will recover Hoeffding’s
inequality as stated earlier.

So far, we’ve only worked with sums of random variables. There is a very rich and vast literature
on showing that various other functions of random variables are also close to their expectation with
high probability. A statement of this form is McDiarmid’s inequality, which we will use in a few
lectures.
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Theorem 16 (McDiarmid’s inequality). Let X1, X2, . . . , Xn be independent random variables tak-
ing values over some domain X . A function f : X n → R satisfies the bounded differences
property if:

∀ i ∈ [n], ∀x1, . . . , xn, x′i ∈ X ,

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci.

If f satisfies this property, then

Pr(f(x1, . . . , xn)− E[f(x1, . . . , xn)] > ε) ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

Remark: Note that this gives us back Hoeffding’s inequality by taking f =

∑
Xi

n
, and realizing

that f satisfies the bounded differences property with ci =
bi − ai
n

∀ i.

4 Vapnik-Chervonenkis (VC) Dimension

So far, we have shown that for hypothesis classes H with finite size |H|,

• H is PAC learnable with nH(ε, δ) = O
(

log(|H|/δ)
ε

)
samples (with the realizability assump-

tion).

• H is agnostic-PAC learnable with nH(ε, δ) = O
(

log(|H|/δ)
ε2

)
samples.

What can we say whenH is infinite? (This is the case for many common hypothesis classes, such
as linear classifiers.)

• One quick hack is to do discretization: Think about a linear classifier in Rd. For a 32-bit
system =⇒ (232)d possible classifiers which is large but still finite. Moreover, since our finite
hypothesis classes bound only depends logarithmically on the cardinality of the hypothesis
class, the number of samples needed is ≈ log(|H|) = O(d), which does not seem too bad.

• Discretization can be good for back-of-the-envelope calculations, but is a bit limited since it
only counts the number of functions within the class and not their complexity. For example,
what if all the different hypothesis in the hypothesis class actually make the same prediction?
In this case, the number of samples required for learning should not depend on the number of
hypotheses in the class. VC dimension gives a more complete solution than discretization
and can handle ∞-sized classes.

5 Further reading

You can read more about Agnostic PAC learning in Section 3.2 of [4]. You can read Chapter 4 for
uniform convergence and agnostic PAC learnability for finite hypothesis classes.
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There are many good references for concentration inequalities, a very good reference one is Martin
Wainwright’s notes https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_
2015.pdf. We covered the first few pages of this (up to Proposition 2.1) in class, but I’d en-
courage you to read the rest as well if interested, it’s very nice and useful material. Everything
we talked about in class was for independent random variables, but we often have to deal with
dependent random variables too. Some of the bounds we showed can be obtained without inde-
pendence and rhere is a lot of interesting work on this, for example see [5, 6, 7]. If you’re inter-
ested in bounds for dependent random variable, you can also check out Central Limit Theorems
for Martingales (https://en.wikipedia.org/wiki/Martingale_central_limit_theorem) and
Markov chains (https://en.wikipedia.org/wiki/Markov_chain_central_limit_theorem). If
you’re interested in the proof of McDiarmid’s inequality you can have at Martin Wainwright’s
notes linked above or Madhur Tulsiani’s notes which also have some cool applications: https://

home.ttic.edu/~madhurt/courses/toolkit2015/l15.pdf Someone asked about Lipschitz func-
tions in the context of McDiarmid’s in class, you might also want to have a look at Theorem 2.4 in
Section 2.3 of Wainwright’s notes, since it shows concentration for any Lipschitz function.
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