
CSCI699: Machine Learning Theory Fall 2023

Lecture 3: VC Theorem, Rademacher Complexity, Stability

Instructor: Vatsal Sharan

These lecture notes are based on an initial version scribed by Berk Tinaz, Jesse Zhang and Ali
Omrani.

We begin with the notion of shattering.

Definition 1 (Restriction & Shattering). The restriction of a hypothesis class H to a set of
examples C = {c1, . . . , cn} ∈ X is a subset of {0, 1}|C|, given by HC = {(h(c1), . . . , h(cn)), ∀h ∈ H}.
We say that H shatters C if |HC | = 2|C|.

Basically, shattering says that all possible labelings are realized when we use H to label the set C.

Corollary 2 (of No Free-lunch Theorem). Let H be a hypothesis class and assume there exists a set
C ⊆ X of size 2n such that H shatters C. Then, ∃ a distribution D over X ×{0, 1} and a predictor
h∗ ∈ H such that R(h∗) = 0, but for any learning algorithm A, PS∼Dn [R(A(S)) ≥ 1/8] ≥ 1/7.

In short, if H shatters a set of size 2n then one cannot learn with just n examples. Can we do
something if C is such that |HC | � 2|C|?

Idea: For any distribution supported on C, the real hypothesis space under consideration is actually
HC . Moreover, because of the construction, HC is finite. Therefore, if |HC | is small, then maybe
one can learn.

Definition 3 (VC Dimension). The VC dimension of a hypothesis class H, denoted by VCdim(H)
is the size of the largest set C ⊆ X that can be shattered by H. If H can shatter sets of arbitrary
size, then VCdim(H) =∞.

How to that VCdim(H) = d:

1. Verify that there exists some set C of size d that can be shattered by H.

2. Verify that no set of size d+ 1 is shattered by H.

Examples

• Example 1 (Threshold functions): Let x = [0, 1], H = {hδ(x) = 1(x ≥ δ), δ ∈ [0, 1]}. H are
set of thresholds in R.

Claim: VCdim(H) = 1.

To verify the claim, we will use the 2-step approach depicted above. As a first step, we will
check if there is a set C of size 1 that can be shattered by H. Select any point x, e.g. x = 1/3.
We can see that for δ ≤ 1/3, hδ(x) = 1 and similarly for δ > 1/3, hδ(x) = 0. Hence, all
possible labeling are realized for |C| = 1. For visualization, refer to the first row of Figure 1.
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Figure 1: Setup in the first row is used to show that H can shatter a set C of size 1. Setup in the
second row is used to show that VCdim(H) < 2. To realize all possible labelings for |C| = 2, one
requires reverse thresholds.

Now we have to check that H can’t shatter any set C with |C| = 2. To see this, pick two
points x1 = a and x2 = b such that a, b ∈ [0, 1] and without loss of generality (w.l.o.g.) assume
a < b. Then, for δ ≤ a we have hδ(a) = hδ(b) = 1. For a < δ ≤ b we have hδ(a) = 0, hδ(b) = 1
and for b < δ we have hδ(a) = hδ(b) = 0. However, notice that with this hypothesis class
H, we can’t get the labeling hδ(a) = 1, hδ(b) = 0 for any δ ∈ [0, 1] (which requires a reverse
threshold as can be seen in second row of Figure 1). Therefore, H does not shatter C with
|C| = 2. Hence we are done.

If we also allow reverse thresholds, i.e. 1(x < δ), then we can show that VCdim(H) = 2.

• Example 2 (Axis-aligned rectangles): Let X = R2 and define,

Ha1,a2,b1,b2(x1, x2) = 1 (a1 ≤ x1 ≤ b1 & a2 ≤ x2 ≤ b2)

Claim: VCdim(H) = 4.

Similar to the previous example, let us first show that there is a set C of size 4 that can be
shattered by H. Consider the points in the first row of Figure 2 (points organized in diamond
shape). Notice that we can enclose any subset of these points with a rectangle. Therefore,
all labelings can be realized with H.

To see that H cannot shatter any set C with size 5, consider the case in the second row
of Figure 2. Pick any 5 points and label the left-most point c1, the right-most point c2,
the bottom-most point c3, and the top-most point c4. The last point c5 can be anywhere
in the tightest rectangle fitted to the first 4 points. We would like to label first 4 points 1
but the last point 0. For the first 4 points to be labeled 1, H must enclose them with the
rectangle. However, due to construction, c5 must also be in that rectangle which means it
can’t be labeled 0. Therefore, desired labeling cannot be realized. Hence, VCdim(H) < 5
which proves the claim.
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Figure 2: Setup in the first row is used to show that H can shatter a set C of size 4. Setup in the
second row is used to show that VCdim(H) < 5.

• Example 3 (Finite classes): For any finite hypothesis class H, we have VCdim(H) ≤ log(|H|).
This is because for any set C, |HC | ≤ |H|. Therefore, if 2|C| > |H|, then we cannot shatter
C.

1 VC Theorem

Theorem 4 (VC Theorem). Let H be a hypothesis class with VCdim(H) = d <∞. Then there is
an absolute constant c > 0 such that H has uniform convergence property with,

nV CH (ε, δ) = c · d · log(d/ε) + log(1/ε)

ε2

Corollary 5. H is agnostic-PAC learnable with O
(
d · log(d/ε) + log(1/ε)

ε2

)
samples.

Note:

(1) It is also possible to show that nV CH (ε, δ) ≤ c · d+ log(1/δ)

ε2
. For d = log(|H|), this bound

reduces to c · log(|H|/δ)
ε2

which is the same as the O
(

log(|H|/δ)
ε2

)
sample complexity that

we derived earlier for agnostic-PAC learning.

(2) The result above is for binary classification with 0/1 loss. There are also some characteriza-
tions known beyond the 0/1 loss.
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Proof Outline:

1) For any set C ⊆ X , effective size of restriction of H on C (HC) is approximately |C|d
(|HC | ≈ |C|d).

2) We want small “effective size” which will be good when we are using union bound to get VC
result.

Step 1: Polynomial growth of HC

Definition 6 (Growth function). The growth function of H, TH : N→ N, is defined as

TH(n) = max
C⊆X ,|C|=n

|HC |.

If VCdim(H) = d, then TH(n) = 2n,∀n ≤ d. Sauer’s Lemma gives a good upper bound ∀n > d.
The key takeaway is that the number of possible labellings goes from being exponentially large in
the number of datapoints n to only being polynomialls large in n.

Lemma 7 (Sauer’s Lemma). ∀n,VCdim(H) = d,

TH(n) ≤
d∑
i=0

(
n

i

)
.

For n > d+ 1, this implies:

TH(n) ≤
(n · e

d

)d
(exponential to polynomial regime)

Proof. We will instead show a stronger inequality. For any C = {c1, . . . , cn} & any H,

|HC | ≤ |{B ⊆ C : H shatters B}| . (1)

This is sufficient since if VCdim(H) = d, H cannot shatter any set B of size |B| > d. There are(
n

i

)
subsets of size i, hence, we will get our bound.

We will prove (1) by induction.

Base Step (n = 1): We have either,

1) |HC | = 20 = 1. Then, LHS = RHS in (1) since one labeling shatters {∅}.

2) |HC | = 21 = 2. Then, again LHS = RHS as two labelings shatter {{∅}, {c1}}.

Induction Step: Assume that (1) holds for all sets of size k < n. Let C = {c1, . . . , cn} & C
′

=
{c2, . . . , cn}. Define,

Y0 = {(y2, . . . , yn) : (0, y2, . . . , yn) ∈ HC or (1, y2, . . . , yn) ∈ HC}

Y1 = {(y2, . . . , yn) : (0, y2, . . . , yn) ∈ HC and (1, y2, . . . , yn) ∈ HC} .
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Claim: |HC | = |Y0| + |Y1|. This is true because, (y2, . . . , yn) is counted once in Y0, but counted
again in Y1 if it can be shattered.

By the induction hypothesis we get,

|Y0| ≤
∣∣∣{B ⊆ C ′

: H shatters B}
∣∣∣ = |{B ⊆ C : c1 /∈ B and H shatters B}| .

For Y1, define H′ ⊆ H to be:

H′
=
{
h ∈ H,∃h′ ∈ H such that ((1− h′

(c1), h
′
(c2), . . . , h

′
(cn)) = (h(c1), h(c2), . . . , h(cn))

}
In words, H′

is the set of hypothesis h which have the property that the hypothesis that agrees
with h everywhere in C except c1 is also in H.

Note:

1) If H′
shatters B ⊆ C ′

then it also shatters B ∪ {c1}.

2) Y1 = H′

C′

Then,

|Y1| = |H
′

C′ | ≤
∣∣∣{B ⊆ C ′

: H′
shatters B}

∣∣∣ (By induction hypothesis (1))

=
∣∣∣{B ⊆ C ′

: H′
shatters B ∪ {c1}

}∣∣∣
=
∣∣∣{B ⊆ C : c1 ∈ B and H′

shatters B
}∣∣∣

≤ |{B ⊆ C : c1 ∈ B and H shatters B}|

From previous claim:

|HC | = |Y0|+ |Y1|
≤ |{B ⊆ C : c1 /∈ B and H shatters B}|+ |{B ⊆ C : c1 ∈ B and H shatters B}|
= |{B ⊆ C : H shatters B}|

which completes our proof.

Step 2: Symmetrization

In this step we will get a bound on the expected deviation of the empirical and true risks.

Lemma 8. For a class H with growth function τH,

ES∼Dn

[
sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣] ≤√2 · log(2 · τH(2n))

n
.
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Note that with this expectation bound, we can use Markov’s inequality to get a high probability
statement such as:

Pr

[
sup
h∈H
|R(h)− R̂S(h)| > t

]
≤

√
2·log(2·TH(2n))

n

t

However in the next step we will use McDiarmid’s inequality to get a better bound than what
Markov’s provides. But we first need to prove the expectation bound (Lemma 8)

Proof. (Lemma 8): We will use the idea of symmetrization. Symmetrization means introduc-
ing an identical copy of a random variable to help with analysis.

Let S′ = {(x′i, y′i), i ∈ [n]} be a training set sample indentically distributed as S.

Note that ES′

[
R̂S′(h)

]
= R(h).

Therefore,

ES
[

sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣] = ES

[
sup
h∈H

∣∣∣ES′

[
R̂S′(h)

]
− R̂S(h)

∣∣∣] . (2)

For now we will fix S and work with S′.

Claim 9. sup
h∈H

∣∣∣ES′

[
R̂S′(h)

]∣∣∣ ≤ ES′ sup
h∈H

∣∣∣R̂S′(h)
∣∣∣.

Proof. (Claim 9): This follows from the fact that | · | is a convex function, and sup /max of
convex functions is convex.

Therefore, sup
h∈H

∣∣∣ES′

[
R̂S′(h)

]∣∣∣ is a convex function of R̂S′(h).

By applying Jensen’s inequality (f(E(X)) ≤ E(f(x)) if f convex), the claim follows.

Using Claim 9 and combining with Eq. 2 and pulling the expectation out, we have

ES
[

sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣] ≤ ES,S′

[
sup
h∈H

∣∣∣R̂S′(h)− R̂S(h)
∣∣∣]

= ES,S′

[
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)∣∣∣∣∣
]
.

Now, let σ1:n = {σ1, ..., σn} be independent Rademacher random variables, i.e. ∼ Unif({±1}).

Since (xi, yi), (x
′
i, y
′
i) are i.i.d.,

1{h(x′i) 6= y′i} − 1{h(xi) 6= yi} ∼ 1{h(xi) 6= yi} − 1{h(x′i) 6= y′i}.
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Therefore,

ES
[

sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣] ≤ Eσ1:nES,S′ sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

σi
(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)∣∣∣∣∣
= ES,S′Eσ1:n sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

σi
(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)∣∣∣∣∣ .
Now fix both S, S′ and let C be the set of examples appearing in S ∪ S′ (both of them). Note that
|C| ≤ 2n as there can be some overlap between S, S′.

The key idea here is that we can replace the supremem over the (possibly infinite) set H by the
maximum over the discrete restriction HC , as all possible labelings for all training examples from
both S, S′ are included in HC . Thus,

ES
[

sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣] ≤ ES,S′Eσ1:n sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

σi
(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)∣∣∣∣∣
= ES,S′Eσ1:n max

h∈HC

∣∣∣∣∣ 1n
n∑
i=1

σi
(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)∣∣∣∣∣ .
Let the random variable θh be θh =

1

n

n∑
i=1

σi
(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)
. Note that S and S′

are fixed here, and the randomness in θh only comes from the randomness in the σi. With this
notation, we can shorten the above to

ES sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣ ≤ ES,S′Eσ1:n max

h∈HC

|θh|. (3)

Now we want to bound Eσ1:n max
h∈HC

|θh| in Eq. 3. To do this, we will prove a bound regarding the

max of sub-Gaussian variables, and then show that θh is sub-Gaussian.

Lemma 10 (Max of sub-Gaussians). If (x1, ..., xm) are mean 0 and sub-Gaussian with parameter
λ (they need not be independent), then

Emax
i
xi ≤ σ

√
2 log(m).

As the statement of Lemma 10 says, in contrast to previous concentration bounds this one does not
require the random variables involved in the bound to be independent. We will see why that is the
case in the proof, but the intuition is that when we are looking at upper bounding the maximum
of a set of random variables, the case where they are independent is actually the worst-case. If the
random variables are independent then their maximum can only be larger with a higher probability
(since the maximum only cares about just one of the random variables being large).
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Proof. (Lemma 10):

Emax
i
xi =

1

λ
log exp

(
λE
[
max
i
xi

])
∀λ

≤ 1

λ
logE

[
exp(λmax

i
xi)

]
(Jensen’s)

≤ 1

λ
logE

[
m∑
i=1

exp(λxi)

]

=
1

λ
log

(
m∑
i=1

E [exp (λxi)]

)

≤ 1

λ
log

(
m∑
i=1

exp(
λ2σ2

2
)

)
(sub-Gaussian definition)

≤ σ√
2 log(m)

log

(
m∑
i=1

exp (logm)

)
by setting λ =

√
2 log(m)

σ

= σ
√

2 logm.

Claim 11. θh is sub-Gaussian with parameter
1√
n
,E[θh] = 0.

Proof. (Claim 11): Remember that θh =

n∑
i=1

σi
n

(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)
. Thus,

E [θh] =
n∑
i=1

E [σi]

n

(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)
= 0 as E[σi] = 0.

Now we show that θh is sub-Gaussian:

θh =

n∑
i=1

σi
n

(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)
︸ ︷︷ ︸
each term is sub-Gaussian with parameter 1

n

.

The above is because Rademacher RV’s are sub-Gaussian with parameter 1, and each σi is multiplied
by ±1, which does not change its sub-Gaussianaeity.

Therefore using the result for sums of sub-Gaussian random variables from the previous lecture, θh

is sub-Gaussian with parameter

(
n∑
i=1

1

n2

) 1
2

=
1√
n

.

Now we can finally bound Eσ1:n max
h∈HC

|θh| in Eq. 3.

Claim 12. Eσ1:n max
h∈HC

|θh| ≤
1√
n

√
2 log(2|HC |)
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Proof. (Claim 12):
Eσ1:n max

h∈HC

|θh| = Eσ1:n max
h∈HC

max{θh,−θh}.

Recall that if θh is sub-Gaussian then −θh is also sub-Gaussian. Thus we have the max over 2|HC |
sub-Gaussian variables with the same parameter. Thus,

Eσ1:n max
h∈HC

|θh| ≤
1√
n

√
2 log(2|HC |),

by combining Claim 11 and Lemma 10.

In summary, we have now shown that the right hand side of Eq. 3, ES,S′ [Eσ1:n max |θh|] is bounded

by

√
2 · log(2|HC |)

n
. Thus, by plugging into Eq. 3,

ES sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣ ≤√2 · log(2|HC |)

n
. (4)

Note that |HC | ≤ τH(2n) since |C| ≤ 2n and we can finally finish the proof of Lemma 8 by plugging
in τH(2n) for |HC |.

Step 3: McDiarmid’s Inequality

Define
f(S) = sup

h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣ .

Observe that f(S) satisfies the bounded differences property with constant 1/n (changing (xi, yi)
can only change R̂S(h) by 1/n for any h ∈ H, therefore the max also changes by at most 1/n).

Using McDiarmid’s, we get that

P [f(S)− E [f(S)] > t] ≤ 2 exp(−2nt2).

If we choose t =

√
log(2/δ)

2n
to get the failure probability δ, then with probability 1− δ,

f(S) < E [f(S)] +

√
log (2/δ)

2n
.

Now plug in Lemma 2 to replace E [f(S)], replace f(S), and we get that

sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣ <√2 log (2τH(2n))

n
+

√
log (2/δ)

2n
. (5)

Step 4: Finish the VC theorem proof

Using Sauer’s lemma, for n > d+ 1, τH(n) ≤
(ne
d

)d
.
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Plugging this into Eq. 5, with probability (1− δ),

sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣ ≤√2 · d log (2ne/d)

n
+

√
log (2/δ)

2n
. (6)

Therefore, for n ≥ O
(
d log (d/ε) + log (1/δ)

ε2

)
the right hand side ≤ ε, showing the uniform conver-

gence property for a hypothesis classes H with finite VCdim(H) = d. Exercise: Show this explicity
from Eq. 6.

2 Rademacher Complexity

Let us recall the proof of the VC theorem. We wanted to bound

ES sup
h∈H

∣∣∣R(h)− R̂S(h)
∣∣∣ .

This quantity is called an “empirical process”. Empirical process theory studies such quantities.

Let’s use symmetrization to bound this empirical process (without the absolute values):

ES sup
h∈H

(
R(h)− R̂S(h)

)
≤ ES,S′ sup

h∈H

(
R̂S′(h)− R̂S(h)

)
= ES,S′ sup

h∈H

1

n

n∑
i=1

(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)
= Eσ1:nES,S′ sup

h∈H

1

n

n∑
i=1

σi
(
1{h(x′i) 6= y′i} − 1{h(xi) 6= yi}

)
≤ ES′Eσ1:n sup

h∈H

1

n

n∑
i=1

σi
(
1{h(x′i) 6= y′i}

)
+

ESEσ1:n sup
h∈H

1

n

n∑
i=1

(−σi) (1{h(xi) 6= yi})

≤ 2ES Eσ1:n sup
h∈H

1

n

n∑
i=1

σi (1{h(xi) 6= yi})︸ ︷︷ ︸
Rademacher Complexity

(i.i.d.).

The quantity in paranthesis above is known as the “Rademacher Complexity”, and we will later
see that it can be used to bound generalization error. We begin by first defining this formally. Let

• Z = X × Y

• F : function class Z → R

• D: distribution over Z
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Definition 13 (Rademacher Complexity). Let F be a family of real-valued functions f : Z → R
where Z = X × Y. Then the Rademacher Complexity RC(F) is defined as:

RC(F) =
1

n
Eσ∼{±1}n

[
sup
f∈F

n∑
i=1

σif(zi)

]
.

More generally, given a (possibly infinite) set of vectors A ⊆ Rn, the Rademacher Complexity
RC(A) is defined as:

RC(A) =
1

n
Eσ∼{±1}n

[
sup
a∈A

n∑
i=1

σiai

]
.

Intuition: RC(F) captures how well the function class F can fit random noise as we’re essentially
measuring correlation between f ∈ F and a random vector σ1:n. If F can fit random noise, then F
will probably overfit on our training data, incurring high generalization error.

Geometric Picture

Figure 3: In expectation over σ ∼ {±1}n, what is the max inner product we can get with σ? For
the figure on the left the set of vectors points in very different directions, so for every σ there is
some vector vi which has good inner product with σ. This is not the case in the figure on the right.

2.1 How do we use Rademacher complexity?

• S = {(xi, yi), i ∈ [n]}

• H: function from X → Y.

• H ◦ S = {h(x1), . . . , h(xn) : h ∈ H}

• `(h(x), y) : instead of writing `(h(x), y) we can write `(h, z) = `(h(x), y) where z = (x, y)

• ` ◦ H ◦ S = {(`(h, zi), i ∈ [n]) : h ∈ H}
For example if H = {h1, h2, h3}

` ◦ H ◦ S = {(`(h1, z1), . . . , `(h1, zn)), `(h2, z1), . . . , `(h2, zn)), (`(h3, z1), . . . `(h3, zn))}
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Lemma 14 (Symmetrization with Rademacher).

E
S∼Dn

sup
h∈H

(R(h)− R̂S(h)) ≤ 2 E
S∼Dn

RC(` ◦ H ◦ S)

Proof. The proof follows from the same argument that we used to motivate the definition of
Rademacher complexity.

E
S∼Dn

sup
h∈H

(R(h)− R̂S(h)) ≤ E
S,S′

sup
h∈H

1

n

(
n∑
i=1

(`(h, zi)− `(h, z′i))

)

= E
S,S′,σ1:n

sup
h∈H

1

n

(
n∑
i=1

σi(`(h, zi)− `(h, z′i))

)

≤ E
S

E
σ1:n

sup
h∈H

1

n

n∑
i=1

σi`(h, zi)

+ E
S′

E
σ1:n

sup
h∈H

1

n

n∑
i=1

(−σi)`(h, z′i).

Therefore we get that,

E
S

sup
h∈H

(R(h)− R̂S(h)) ≤ 2 E
S,σ1:n

sup
h∈H

1

n

n∑
i=1

σi`(h, zi) = 2 E
S∼Dn

RC(` ◦ H ◦ S).

3 Further reading

You can read Chapter 6 of [1] for the VC theorem. The chapter does a Markov’s inequality though
instead of McDiardmid’s to get the high probability bound, hence it is looser. The bound we show
in this lecture (and also a bound for the realizable case which has a 1/ε dependence instead of a
1/ε2 dependence) is in Chapter 28 of the book. Getting the right bound which does not have an
additional factor of log(d/ε) requires using a more advanced technique for showing concentration
bounds called chaining, and was shown in [2]. Rademacher complexity is Chapter 26 of the book.
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