
CSCI699: Machine Learning Theory Fall 2023

Lecture 4: Rademacher Complexity, Stability

Instructor: Vatsal Sharan

These lecture notes are based on an initial version scribed by Ali Omrani and Sai Anuroop Kesana-
palli.

1 Rademacher Complexity

We begin by recalling the definition of Rademacher complexity.

Definition 1 (Rademacher Complexity). Let F be a family of real-valued functions f : Z → R
where Z = X × Y. Then the Rademacher Complexity RC(F) is defined as:

RC(F) =
1

n
Eσ∼{±1}n

[
sup
f∈F

n∑
i=1

σif(zi)

]
.

More generally, given a (possibly infinite) set of vectors A ⊆ Rn, the Rademacher Complexity
RC(A) is defined as:

RC(A) =
1

n
Eσ∼{±1}n

[
sup
a∈A

n∑
i=1

σiai

]
.

We stated last time how we can use Rademacher complexity to get upper bound the expected
difference between the test and train error using a symmetrization argument.

Lemma 2 (Symmetrization with Rademacher).

E
S∼Dn

sup
h∈H

(R(h)− R̂S(h)) ≤ 2 E
S∼Dn

[RC(` ◦ H ◦ S)]

Proof. The proof follows from the same argument that we used to motivate the definition of
Rademacher complexity.

E
S∼Dn

sup
h∈H

(R(h)− R̂S(h)) ≤ E
S,S′

sup
h∈H

1

n

(
n∑
i=1

(`(h, zi)− `(h, z′i))

)

= E
S,S′,σ1:n

sup
h∈H

1

n

(
n∑
i=1

σi(`(h, zi)− `(h, z′i))

)

≤ E
S

E
σ1:n

sup
h∈H

1

n

n∑
i=1

σi`(h, zi)

+ E
S′

E
σ1:n

sup
h∈H

1

n

n∑
i=1

(−σi)`(h, z′i).
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Therefore we get that,

E
S

sup
h∈H

(R(h)− R̂S(h)) ≤ 2 E
S,σ1:n

sup
h∈H

1

n

n∑
i=1

σi`(h, zi) = 2 E
S∼Dn

RC(` ◦ H ◦ S).

1.1 Generalization bounds using Rademacher complexity

We now show how Rademacher complexity can be used to upper bound the generalization gap with
high probability.

Theorem 3 (Excess risk bounds using Rademacher Complexity). Assume that for all z ∈ X × Y
and h ∈ H we have that |`(h, z)| ≤ C. Then with probability at least (1− δ) over S ∼ Dn,

(1)

sup
h∈H

(R(h)− R̂S(h)) ≤ 2 E
S′

[
RC(` ◦ H ◦ S′)

]
+ c

√
2 log(1/δ)

n

(2)

sup
h∈H

(R(h)− R̂S(h)) ≤ 2RC(` ◦ H ◦ S) + 3c

√
2 log(2/δ)

n

(3) For any h ∈ H,

R(hERM )−R(h) ≤ 2RC(` ◦ H ◦ S) + 4c

√
2 log(4/δ)

n
.

(in particular, this holds for h = h̃ = arg min
h∈H

R(h))

Proof. We will keep using McDiarmid’s inequality throughout the proof.

(1) Note that sup
h∈H

(R(h)− R̂S(h)) satisfies the bounded differences property with constant 2c/n.

(changing any (xi, yi) changes the loss by at most 2c/n). Therefore, using McDiarmid’s
inequality

sup
h∈H

(R(h)− R̂S(h)) ≤ E
[

sup
h∈H

(R(h)− R̂S(h))

]
+ ε

with probability at least

1− exp

(
−2ε2

n(2c/n)2

)
= 1− exp

(
−nε

2

2c2

)
︸ ︷︷ ︸

δ

.

We choose ε = c

√
2 log(1/δ)

n
to set the error probability to be δ. Therefore we get that with

probability 1− δ,

sup
h∈H

(R(h)− R̂S(h)) ≤ E
[

sup
h∈H

(R(h)− R̂S(h))

]
+ c

√
2 log(1/δ)

n
.

We now use Lemma 2 (Symmetrization with Rademacher Complexity), and the result follows.
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(2) Note that

RC(` ◦ H ◦ S) = E
σ1:n

(
sup
h∈H

1

n

n∑
i=1

σi`(h, zi)

)
also satisfies bounded differences with constant 2c/n (swapping σi by σ′i changes the value by
≤ 2c/n). Therefore with probability 1− δ,

RC(` ◦ H ◦ S) ≥ E
S′

[
RC(` ◦ H ◦ S′)

]
− c
√

2 log(1/δ)

n
.

So

E
S′

[
RC(` ◦ H ◦ S′)

]
≤ RC(` ◦ H ◦ S) + c

√
2 log(1/δ)

n
.

Now set δ = δ′/2, with probability 1− δ′

2
,

E
S′

[
RC(` ◦ H ◦ S′)

]
≤ RC(` ◦ H ◦ S) + c

√
2 log(2/δ′)

n
,

sup
h∈H

(R(h)− R̂S(h)) ≤ E
S′

[
RC(` ◦ H ◦ S′)

]
+ c

√
2 log(2/δ)

n
(from part (1)).

The result now follows by doing a union bound and combining the above results. We get that
with probability 1− δ,

sup
h∈H

(R(h)− R̂S(h)) ≤ 2RC(` ◦ H ◦ S) + 3c

√
2 log(2/δ)

n

proving the result we wanted.

(3) By doing a familiar decomposition,

R(hERM )−R(h∗) = R(hERM )− R̂S(hERM )︸ ︷︷ ︸
bounded by part (2)

+ R̂S(hERM )− R̂S(h∗)︸ ︷︷ ︸
≤0

+ R̂S(h∗)−R(h∗)︸ ︷︷ ︸
Hoeffding’s

.

With probability 1− δ/2,

R̂S(h∗)−R(h∗) ≤ c
√

2 log(2/δ)

n
.

=⇒ R(hERM )−R(h∗) ≤ 2RC(` ◦ H ◦ S) + 4c

√
2 log(4/δ)

n
.

Some takeways from this result:

• Rademacher complexity bound could be much better than the VC bound:
Rademacher complexity takes the data distribution into account, whereas the VC dimen-
sion is only a property of the hypothesis class and does not depend on the data distribution.
Therefore, on natural or nice distributions, Rademacher complexity could give tighter bounds
than the VC dimesion bounds.
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• Data-dependent bound. The Rademacher complexity can also be measured rather easily
empirically. In particular, (3) in Theorem 3 uses the same training set S both for learning a
hypothesis from H, and for estimating its generalization error.

Remark 4. A now famous experiment by [1] evaluated the efficacy of a data-dependent Rademacher
complexity bound for modern neural networks on datasets that they succeed at (such as image
classification datasets such as CIFAR-10). They showed that neural networks can get close to 0
training error even if the labels of all training datapoints are completely re-randomized. This implies
that their Rademacher complexity—even on datasets that they can generalize well on—can be very
large. This was one of the early results (another one was [2]) which pointed out that neural networks
seem to be behaving quite differently in terms of their generalization behavior. Here Rademacher
complexity acts as a useful lens to uncover interesting behavior, even though it does not itself explain
that behavior.

1.2 Rademacher calculus

Rademacher complexity has several nice properties and works well with various function operations.
Here we discuss a calculus of how various functions change the Rademacher complexity.

Claim 5 (Translation and Scaling). Let A′ = {ρa+ v, a ∈ A}. Then RC(A′) = ρRC(A).

Exercise: Prove this bound.

Here is another bound that we can show for a finite collection of vectors.

Lemma 6 (Massart Lemma). Let A = {v1, . . . , vm} be a finite set of vectors in Rn. Let v =

1

m

m∑
i=1

vi. Then

RC(A) ≤ max
i
‖vi − v‖2

√
2 logm

n

Exercise: Prove this bound. First, by translation invariance, you can take v = 0 without loss of
generality. Then use the max of sub-Gaussian result from last time.

We note that this result gives a bound for finite hypothesisc classes. A good exercise is to verify
that for the case of the zero-one loss, by combining Lemma 6 and Theorem 3 we can recover the
previous bound that we have shown via uniform convergence for finite hypothesis classes.

Our next result on Rademacher calculus allows us to handle function compositions.

Lemma 7 (Contraction lemma). For each i ∈ [m], let φi : R → R be a ρ-Lipschitz function i.e.
|φi(x)− φi(y)| ≤ ρ|x− y| ∀ x, y ∈ R. For any a ∈ Rn define φ(a) ∈ Rn as

φ(a) = (φ1((a)1), . . . , φn((a)n)).

For a set A, let φ ◦A = {φ(a) : a ∈ A}. Then

R(φ ◦A) ≤ ρR(A).

Refer to Lemma 26.9 in [3] for the proof. One way that this Lemma comes in handy is when the
loss function is L-Lipschitz, because we can then just bound the Rademacher complexity of the
restriction of the hypothesis class to the dataset to get generalization bounds with Theorem 3.
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Figure 1: Another elementary result that we can show is that enlarging a set of vectors by taking
their convex hull does not increase the Rademacher complexity: RC({convex hull of A}) = RC(A).
This is because the sup in rhe inner product is always one of the vertices of the convex hull, which
were already present in the set.

1.3 Rademacher complexity of linear classes

We now consider two simple hypothesis classes and compute their Rademacher complexity. The
two classes are linear predictions aiwth a L1 and L2 bound on the weight vectors.

• H1 = {hw(x) = 〈w, x〉} : ‖w‖1 ≤ B1}

• H2 = {hw(x) = 〈w, x〉 : ‖w‖2 ≤ B2}

Lemma 8 (`2 bounded linear predictor). Let S = (x1, . . . , xn). Define

H2 ◦ S = {(〈w, x1〉, . . . , 〈w, xn〉) : ‖w‖2 ≤ B2}.

Then

RC(H2 ◦ S) ≤ B2 maxi ‖xi‖2√
n

Proof. By Cauchy-Schwartz: 〈w, v〉 ≤ ‖w‖2‖v‖2.

∴ nRC(H2 ◦ S) = E
σ

[
sup
H2◦S

n∑
i=1

σiai

]

= E
σ

[
sup

w:‖w‖2≤B2

n∑
i=1

σi〈w, xi〉

]

= E
σ

[
sup

w:‖w‖2≤B2

〈w,
n∑
i=1

σixi〉

]

≤ B2 · E
σ

[
‖

n∑
i=1

σixi‖2

]
. (1)

Using Jensen’s,

E
σ

[
‖

n∑
i=1

σixi‖2

]
= E

σ

(‖ n∑
i=1

σixi‖22

)1/2
 ≤ (E

σ

[
‖

n∑
i=1

σixi‖22

])1/2

(2)
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E
σ

[
‖

n∑
i=1

σixi‖22

]
= E

σ

∑
i,j

σiσj 〈xi, xj〉

 .
Since σi are independent,

E
σ

[σi, σj ] = 0 ∀ i 6= j

=⇒ E
σ

[
‖

n∑
i=1

σixi‖22

]
=

n∑
i=1

‖xi‖22 ≤ nmax
i
‖xi‖22. (3)

The proof follows by combining (1), (2) and (3).

Lemma 9 (`1 bounded linear model). Let S = (x1, . . . , xn) where xi ∈ Rd ∀i ∈ [n] Then

RC(H1 ◦ S) ≤ B1 max
i
‖xi‖∞

√
2 log(2d)

n

Proof. By Holder’s inequality 〈w, v〉 ≤ ‖w‖1‖v‖∞. Therefore,

nRC(H1 ◦ S) = E
σ

[
sup

a∈H1◦S

n∑
i=1

σiai

]

= E
σ

[
sup

w:‖w‖1≤B1

n∑
i=1

σi〈wi, xi〉

]

= E
σ

[
sup

w:‖w‖1≤B1

〈w,
n∑
i=1

σixi〉

]

≤ B1 · E
σ

[
‖

n∑
i=1

σixi‖∞

]

= B1 E
σ

[
max
j∈[d]

∣∣∣∣∣
n∑
i=1

σi(xi)j

∣∣∣∣∣
]
.

Note that each term σi(xi)j is |(xi)j | sub-Gaussian. Since |(xi)j | ≤ max
i
‖xi‖∞, each term σi(xi)j

is max
i
‖xi‖∞ sub-Gaussian. The sum

n∑
i=1

σi(xi)j is sub-Gaussian with parameter

(
n∑
i=1

(
max
i
‖xi‖∞

)2
)1/2

≤
√
n ·max

i
‖xi‖∞.

By our bound on the expected value of the maximum of sub-Gaussian random variables (including
negations of the orignal random variables to take care of the absolute value function), we have

nRC(H1 ◦ S) ≤ B1

√
nmax

i
‖xi‖∞

√
2 log(2d).
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Lemma 8 and 9 bound the Rademacher complexity of the hypothesis class composed with the
training set. If the loss function `(h, z) is 1-Lipschitz (e.g. hinge loss or absolute value loss), then
we can get a bound on the Rademacher complexity with the loss function factored in. For e.g. by
the contraction lemma,

R(` ◦ H2 ◦ S) ≤ R(H2 ◦ S)

We can now get generalization bounds using the excess risk bound (Theorem 3).

We also note that the VC-dimension bound for linear predictors in Rd is O(d). The Rademacher
bound does not directly depend polynomially on dimension. Hence, it can be much smaller
than the VC dimension.

1.4 Regularization

The above analysis for L2 and L1 bounded linear predictors is a good example of how choosing a
suitable function class, and the related technique of regularization can be useful.

• Notice that the Rademacher complexity bound for H2 (Lemma 8) depends on B2 max
i
‖xi‖2.

So, if decide learn over a small `2-norm ball, we can have better generalization. In other words,
less data could sufficefor getting small gap between training and test error if we restrict our
predictor to have small `2 norm.

Recall from Lecture 1 though that small generalization gap is not the only goal in supervised
learning. The overall risk depends on the sum of the representation error, the optimization
error, and the generalization error. We are ignoring the optimization error for the time being,
by saying that we can find the empirical risk minimizer. So the goal becomes to balance the
representation error and the generalization error. If we choose to restrict our hypothesis class
to linear predictors which have L2 norm bounded by B2, and the best possible predictor w∗

also has bounded norm bounded by B2, then we can can get small representation error. In
general we want to choose B2 suitably such that the representation error and generalization
error are simultaneously small.

• We also note that the Rademacher complexity bound forH1 (Lemma 9) depends onB1 max
i
‖xi‖∞.

How does this compare with the bound for H2?

Suppose xi ∈ {±1}d =⇒ max
i
‖xi‖∞ = 1 & max

i
‖xi‖2 =

√
d. Also, suppose the true w∗ is

in {−1, 0, 1}d, and it is also k-sparse. Then, ‖w∗‖2 =
√
k and ‖w∗‖1 = k.

To have good representation error, we should choose B2 and B1 for H2 and H2 respectively
such that w∗ lies in those hypothesis classes. Therefore, we should choose B2 =

√
k and

B1 = k. Then B1 max
i
‖xi‖∞ = k and B2 max

i
‖xi‖2 =

√
kd. Therefore if k << d, working

over the `1 ball could be much better than working over the `2 ball.

This discussion motivates how working with the right hypothesis class (which is also known as hav-
ing the right inductive bias) can lead to better accuracy. Regularization is a technique which allows
us to smoothly control the complexity of the model we learned. In empirical risk minimization,
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we associate the same complexity with any hypothesis h ∈ H, since we find any minimizer of the
empirical risk:

min
h∈H

( 1

n

n∑
i=1

`(h(xi), yi)
)
.

Structural risk minimization (SRM) in contrast, does not necessarily regard all the hypothesis
in H as being equivalent. We define some function ψ(h), which measures complexity of any h ∈ H.
Simpler hypothesis in H should have smaller values for ψ(h). In SRM, the objective function is to
minimize the sum of the empirical risk and the complexity of the learned hypothesis.

Definition (Structural Risk Minimization (SRM)). For a given hypothesis class H, complexity
function ψ(h) for any h ∈ H training dataset {(xi, yi), i ∈ [n]} and λ >= 0, we solve the following
optimization problem:

min
h∈H

( 1

n

n∑
i=1

`(h(xi), yi) + λψ(h)
)
.

λ is known as the regularization strength.

λ controls how much weight to put on the regularization term. If λ = 0, then the SRM problem is
the same as the ERM problem. If λ→∞, then the objective function only minimizes complexity,
and disregards the empirical risk on the training set.

As an example, consider linear predictors once more, so hw(x) = wTx. Two possible complexity
functions or regularization functions ψ(h) are ψ(h) = ‖w‖22 (which is known as L2 regularization)
and ψ(h) = ‖w‖1 (which is known as L1 regularization). Using the method of Langrange multipliers,
it can be shown that the SRM objective

arg min
h∈H

( 1

n

n∑
i=1

`(h(xi), yi) + λψ(h)
)
,

is equivalent to the following constrained optimization problem:

arg min
h∈H

1

n

n∑
i=1

`(h(xi), yi)

subject to ψ(h) ≤ β

for some suitable β depending on λ. Therefore, we can see doing regularization is equivalent to
controlling the radius of the L2 or L1 ball (B2 and B1 respectively) from which we choose our
predictor. Therefore, choosing the radius (and hence λ) suitably can help balance the tradeoff
between the representation error and the generalization error.

To choose λ, we generally rely on a validation set. Earlier we talked about the training/test split,
the validation set is another split which is usually employed to tune the regularization and other
hyperparameters, and model selection more broadly. The reason that a validation set is necessary
from the persepective of regularization is because our eventual goal is supervised learning is to get
low error on the unseen test set. Choosing smaller λ in the SRM objective will usually help the
ERM objective (since more weight is put on the ERM objective). However, this does not mean
that the solution we find generalize well, since we could end up with a overly complex model which
overfits on the training set.
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2 Algorithmic Stability

So far, we have seen measures to bound the complexity of a given hypothesis classes (such as the
size of a finite hypothesis class, the VC dimensions etc.). We also saw how regularization provides
a more fine-grained knob to control the complexity of models within this hypothesis class as well
(such as based on the L2 or L1 norm for linear predictors). For modern hypothesis classes such
as hugely overparameterized neural networks, direct measures of complexity can often by overly
pessimistic since they suggest a data requirement which is much larger than what seems sufficient for
generalization in datasets of interest. Though regularization techniques (such as L2 regularization
on the weights, known as weight decay in that context) are still quite useful in practice for neural
networks, their role from the perspective of generalization seems unclear.

It appears instead that the algorithms that we use for training these models have a possibly large role
to play in helping these large models generalize. We will now see a new notion, called algorithmic
stability, which captures when a particular algorithm can be expected to generalize.

We begin with some notation. As before let S = {(x1, y1), . . . , (xn, yn)} be a training set of n
examples drawn i.i.d. from D. Let zi be the labeled example, zi = (xi, yi). Let S′ = {z′i, . . . , z′n}
be another dataset of n i.i.d. examples drawn from D. We also define a hybrid dataset S(i) =
{z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}, where we substitute the i-th example from S with the corresponding

example in S′. We are now ready to define our first notion of stability, known as average stability.

Definition (Average Stability). For any algorithm A which outputs the predictor A(S) on training
set S, the average stability ∆(A) is

∆(A) = ES,S′

[ 1

n

n∑
i=1

(`(A(S), z′i)− `(A(S(i)), z′i))
]

One way to understand this definition is that it measures how sensitive the algorithm to changes
in one training datapoint. This is average over all training datapoints, since the algorithm could
be sensitive to any one of them.

Notice in this definition that in the first term `(A(S), z′i), z
′
i is unseen to an algorithm which trains

on the set S. In the second term `(A(S(i)), z′i), z
′
i is seen to the algorithm since it is part of the

training set S′. Therefore this definition measures how much the predictions of an algorithm on
a datapoint change when that datapoint is part of the training set. Intuitively, if an algorithm
generalizes well then it’s predictions on some test point should not change if that test point is
included in the training set, since generalization requires that the algorithm behaves similarly on
the training and test set. This can in fact be formalized, and it turns out that the expected
generalization gap is exactly equal to the average stability of the algorithm.

Proposition 10 (Expected generalization gap equals average stability). Define ∆gen(h) to be the
gap between test and training errors, ∆gen(h) = R(h)− R̂S(h). Then

ES [∆gen(A(S))] = ∆(A).

Proof. Since this is an exact equality, the proof just involves expanding out the definition and
reinterpreting the terms that we get. The expression we want to analyze is,

ES [∆gen(A(S))] = ES [R(A(S))− R̂S(A(S))]
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We begin with the first term, which involves a datapoint unseen to the algorithm. Since E
z′i

`(A(S), z′i) =

ES [R(A(S))] by definition (since z′i is i.i.d. from D), by linearity of expectations

ES [R(A(S))] = ES,S′ [
1

n

n∑
i=1

`(A(S), z′i)].

We now consider the second term, which involves a previously seen datapoint.

ES [R̂S(A(S))] = ES

[
1

n

n∑
i=1

`(A(S), zi)

]

Note that ES [`(A(S), zi)] = ES,S′ [`(A(S(i), z′i)] since S and S′ are sampled from the same distribu-
tion. Therefore,

ES [R̂S(A(S))] = ES,S′

[
1

n

n∑
i=1

`(A(S(i)), z′i)

]
which finishes the proof.

Average stability requires taking an average over training sets drawn from the distribution. It
is often easier to bound the maximum value instead of the average, which leads to the notion of
uniform stability.

Definition 11 (Uniform Stability). The uniform stability ∆sup(A) of an algorithm A is defined as

∆sup(A) = sup
S,S′∈(X×Y)n

s.t. S,S′ differ in one point

sup
z∈X×Y

|`(A(S), z)− `(A(S′), z)|.

Notice that ∆(A) ≤ ∆sup(A) by definition. Therefore, you can verify that uniform stability can
also be used to upper bound the generalization error.

Claim 12. E[∆gen(A(S)] ≤ ∆sup(A)

As we discussed in the beginning of this section, in contrast to our previous generalization measures
stability is a property of an algorithm instead of the hypothesis class. Many algorithms are known
to be stable. A simple example is SRM with L2 regularization. Consider some hypothesis class
parameterized by w ∈ Rd. Let the loss function `(w, z) for z = (x, y) be

1. Convex in w. An example of this is linear prediction with a convex loss, such as `(w, z) =
(wTx− y)2 or `(w, z) = |wTx− y|.

2. L-Lipschitz in w, i.e. |`(w1, z)− `(w2, z)| ≤ L · ‖w1 − w2‖2.

We define the SRM objective as

FS(w) =
1

n

n∑
i=1

`(w, zi) + λ‖w||22. (4)

Theorem 13 shows that the algorithm which minimizes the structural risk is uniformly stable.
Therefore due to Claim 12, this algorithm will have small generalization gap.
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Theorem 13. Assume `(w, z) is convex and L-Lipschitz. Then the SRM algorithm (which minizes
(4)) satisfies

∆sup(SRM) ≤ 2L2

λn

Proof. Let ŵS = arg min
w

FS(w). Let S and S′ be two sets of n examples which differ at index

i ∈ [n]. We need to show that |`(ŵS , z)− `(ŵS′ , z)| ≤ 2L2

λn
.

Since ` is L-Lipschitz, it suffices to show that ‖ŵS − ŵS′‖2 ≤
2L

λn
.

Claim 14. For any w, FS(w)− FS(ŵS) ≥ λ‖w − ŵS‖22

Proof. The proof follows by strong convexity, which we will define and study further later in the
class.

To get some intuition for this in the meantime, consider the case when w is univariate. Then we
can do a Taylor series expansion around the minizer ŵS to write,

FS(w) = FS(ŵS) +
∂FS(w)

∂w

∣∣∣
w=ŵS

(w − ŵS) +
1

2!

∂2FS(w)

∂2w

∣∣∣
w=ŵS

(w − ŵS)2 + · · · .

Note that the first derivative at ŵS is 0 if ŵS is the minimizer of FS(w). The second derivative
is at least 2, since `(w, z) is convex in w (and hence has non-negative 2nd derivative) and w2 has
second derivative 2.

Using this result for w = ŵS′ , we get,

FS(ŵS′)− FS(ŵS) ≥ λ‖ŵS − ŵS′‖22 (5)

We can also rewrite and bound FS(ŵS′)− FS(ŵS) in another way,

FS(ŵS′)− FS(ŵS) =
1

n
(`(ŵS′ , zi)− `(ŵS , zi)) +

1

n

∑
j 6=i

(`(ŵS′ , zj)− `(ŵS , zj))

+ λ‖ŵS′‖22 − λ‖ŵS‖22

=
1

n
(`(ŵS′ , zi)− `(ŵS , zi))−

1

n
(`(ŵS′ , z′i)− `(ŵS , z′i)))

+
1

n

∑
j

(`(ŵS′ , z′j)− `(ŵS , z′j)) + λ‖ŵS′‖22 − λ‖ŵS‖22.

Note that
1

n

∑
j 6=i

`(w, zj)+λ‖w‖22 = FS′(w). Moreover, by definition ŵS′ is the minimizer of FS′(w),

therefore
1

n

∑
j

(`(ŵS′ , z′j)− `(ŵS , z′j)) + λ‖ŵS′‖22 − λ‖ŵS‖22 ≤ 0. Hence we can write,

FS(ŵS′)− FS(ŵS) ≤ 1

n
|`(ŵS′ , zi)− `(ŵS , zi)|+

1

n
|`(ŵS′ , z′i)− `(ŵS , z′i)|

≤ 2L

n
‖ŵS′ − ŵS‖2 (6)
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Combing (5) and (6), we get that ‖ŵS − ŵS′‖2 ≤
2L

λn
, which proves the result.

3 Further reading

Rademacher complexity is Chapter 26 of the book [3]. Structural risk minimization is discussed in
Chapter 7 of the book. Stability and the role of regularization in stability is in Chapter 13. A lot
of our discussion of stability is based on Chapter 6 of [4].
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