
CSCI699: Machine Learning Theory Fall 2023

Lecture 5: Computational Complexity of Learning

Instructor: Vatsal Sharan

These lecture notes are based on scribe notes by Emir Ceyani, Jiahao Wen and Chandra Sekhar
Mukherjee.

1 Computational Complexity of Learning

In the last few weeks, we’ve studied the sample complexity of learning. We saw complexity measures
such as VC dimension, Rademacher complexity and algorithmic stability which allow us to analyze
the number of samples need for a learning algorithm to generalize. Our discussion so far has ignored
the computational costs associated with learning. That will be the focus of our investigation today.

In particular, we consider the running time of the algorithm, and explore what hypothesis classes
can be learned in polynomial time.

Let us begin by recalling the definition of PAC learability:

Definition 1 (PAC learnability). A hypothesis class H is PAC-learnable if there exists a learning
algorithm with the following property: ∀ε, δ ∈ (0, 1), ∀D ∼ X and ∀h∗ ∈ H, when the algorithm
is given nH(ε, δ) samples drawn from D and labelled by h∗, the algorithm produces a hypothesis ĥ
such that with probability 1− δ, R(ĥ) ≤ ε.

Note that the probability is over randomness in training set, and any internal algorithmic ran-
domness. This definition so far does not talk about efficiency. From your algorithms class, you
probably recall that the usual notion of efficiency is that an algorithm should run in “polynomial
time”. But what does polynomial time mean in the learning setting, and what should the running
time be polynomial with respect to?

Typically for an algorithmic task, we measure complexity with respect to the size of the problem
instance. For example, for an algorithm to find shortest paths in a graph, we measure its complexity
with respect to the size of the graph (the number of vertices and edges). What is the right notion
of size of the problem instance in our learning setting?

A first guess could be to have the size of the training set as the size of the instance. However, the
number of datapoints that the algorithm needs for learning is an important resource consideration
as well, and it should be up to the algorithm to decide the minimum number of datapoints it needs.

To account for the cost of accessing training data, we can define an oracle (think of this as a black-
box function) which gives a training datapoint to the algorithm. We define this as the example
oracle

Definition 2 (Example Oracle). For any distribution D over X & hypothesis h(x) : X → Y, we
define Ex(L, D) as the example oracle which executes the following steps:

• Draws x ∼ D

1

• Labels y = h(x)

• Outputs (x, h(x))

With this definition of an example oracle, we can define sample complexity as the number of
example oracle calls. We will regard each oracle call costs unit time to the learner. Think of
this oracle as a button, which the learner can press at any time to demand a labelled datapoint.
The learner does not have to worry about the complexity of “implementing this button”, or more
formally implementing this oracle. Such an abstraction is useful because, as we will see later, we can
define various other meaningful oracles as well which dictate how the learner accesses information
about the data distribution.

Let us go back now to defining how we will measure the size of the problem instance. Our notion is
straightforward, we just measure the instance size of each datapoint. Hence an efficient algorithm
will be required to run in time polynomial in the instance size. We will typically think of the
instance space as being X d where X is {±}d or Rd. Therefore, we want the algorithm to run in
time polynomial in the feature dimension d.

The dimensionality of the data is the measure of instance size we will use, but there is one subtlety
we should discuss once (and can mostly forget after that). When we talk about efficient algorithms,
we need to also allow the runtime to depend polynomially on the in representation size of the
hypothesis class.

So what is the representation size of an hypothesis class? Essentially this is just the number of bits
required to write down any hypothesis in hypothesis class. For most reasonable hypothesis classes,
this would be about the number of parameters which defines a function in the hypothesis class.
As an example for a feed-forward neural network with instance size d (input) As an example for a
feed-forward neural network,

representation size = #edges×#bits required to store each weight.

However, for all hypothesis classes we consider in class,

representation size = poly(instance size of datapoints).

Therefore for all problems that we consider,

poly(representation size, instance size) = poly(instance size).

Therefore, we only consider polynomial in instance size as our notion of efficiency.

Definition 3 (Efficient PAC Learning). A hypothesis class H is PAC-learnable if there exists a
learning algorithm A with the following property: ∀ε, δ ∈ (0, 1), ∀D ∼ X d(where X is typically
{0, 1}orR) and ∀h∗ ∈ H, if A is given access to example oracle Ex(h∗, D), with probability 1− δ,
it outputs a hypothesis h ∈ H with R(ĥ) ≤ ε. H is efficiently PAC learnable if running time of A

is polynomial in d,
1

ε
,
1

δ
.

As an example of a hypothesis class that can be learned efficiently, we consider the class of con-
junctions.

2

1.1 Conjunctions

A conjunction is an example of a Boolean function, which is a function with input domain X d =
{0, 1}d. As an example consider

x1 ∧ x̄3 ∧ x4.

This represents the hypothesis class which is 1 if and only if x1 = 1, x3 = 0, and x4 = 1.

The class of conjunctions refers to the set of all possible conjunctions on d Boolean literals (x1, x2, . . . xd)
and their negations (x̄1, x̄2, . . . x̄d). Can we design a poly(d, 1/ε, 1/δ) time algorithm for learning
conjuctions? The answes is yes:

Theorem 4. The class of conjunctions on Boolean literals is efficiently PAC learnable.

Proof. We will prove that the following algorithms is an efficient PAC learner for the class of
conjunctions.

Algorithm 1 Algorithm to learn Boolean Conjunctions

1: Set h = x1 ∧ x̄1 ∧ x2 ∧ x̄2 . . . xd ∧ x̄d
2: for i = 1 to n do do
3: (ai, yi)← EX(h∗, D)
4: if ti = 1 then
5: Drop each x̄j from h if (ai)y = 1
6: Drop each xj from h if (ai)y = 0
7: end if
8: end for

We will show that the above algorithm is an ERM over the class of conjunctions. This means
that we need to show that the algorithm gets 0 misclassification error over training examples
(a1, y1), . . . , (an, yn). We consider two cases.

• We claim that the algorithm never predicts 0 on a training datapoint which is labelled as 1.
This is because after getting any new data point ai with yi = 1, h updates to predict 1 on
the datapoint and it will never be updated predict 0 on ai, as literals are only removed.

• Next, we claim that h correctly classifies all training data labeled as 0. Note that in the
beginning, h is the conjunction of every literal . We remove a literal from h if it was get to
0 in an example. Such a literal cannot appear in h∗. Therefore the set of literals appearing
in h at any time, contains the set of literals in target hypothesis h∗. Therefore h(a) = 1 =⇒
h∗(a) = 1,∀a ∈ {0, 1}d. This proves that h correctly all training datapoints labelled as a 0.

Therefore we have shown that our algorithm is an ERM.

Now, we use ERM result for finite hypothesis classes as |H| ≤ 22d. The result for learnability
of finite hypothesis classes implies that we can learn with error ε with failure probability δ with

O

(
d log(1δ)

ε

)
samples.

3

2 Intractability of learning 3-Term Disjunctive Normal Forms(DNFs)

We now consider the class of 3-Term Disjunctive Normal Forms(DNFs), which are only a slight
generalization of the class of conjunctions.

3-Term-DNFd = {T1 ∨ T2 ∨ T3 : Ti is a conjunction on {x1, . . . xd}}

Though conjunctions were efficiently PAC learnable, this generalization turns out to be hard to
learn.

Theorem 5. 3-Term-DNF formulae are not efficiently PAC-learnable unless RP=NP.

Before proving the theorem, let us recap some fundamental concepts in computational complexity.

2.1 Computational Complexity Review

The first definition we need is for the complexity class NP.

Definition 6 (NP). A decision problem C is in NP if there exists a polynomial-time algorithm A
such that for every instance x of C,

• If x evaluates to“yes”, then ∃y, |y| ≤ poly(|x|), A(x, y) = 1

• If x evaluates to “no”, then ∀y, |y| ≤ poly(|x|), A(x, y) = 0

The intuition for the definition is that A is some verifier who can verify solutions to the decision
problem. y is a certificate or witness which A can check to verify the solution to the problem.

As an example, consider 3SAT on d variables

3SATd =(x1 ∨ x̄2 ∨ x5)
∧ (x5 ∨ x6 ∨ x̄7)
...

∧ (xd−2 ∨ x̄d−1 ∨ xd).

Here, the certificate y is just a satisfying assignment. The verifier just checks if the certificate/as-
signment is valid, note that it is easy to check this (it can be done in running time which is linear in
the number of variables). To complete the proof that 3SATd is in NP, note that there always exists
a certificate if the instance is satisfiable, and there does not exist any certificate if the problem is
not satisfiable.

Our next complexity class is a class of randomized polynomial time algorithms.

Definition 7 (RP). A decision problem C is in RP if there exists a randomized polynomial-time
algorithm A such that for every instance x of C,

• If x evaluates to ”yes”, A outputs ”yes” w.p. ≥ 2

3

4

• If x evaluates to ”no”, A outputs ”no” w.p. 1.

The intuition for this definition is that C is in RP if there exists a polynomial-time algorithm with
one-sided error. In particular, for the case of 3SAT, if the 3SAT instance is satisfiable, then the

algorithm will output TRUE w.p. ≥ 2

3
. If the 3SAT instance is not satisfiable, then the algorithm

will always output FALSE.

It is widely believed that RP 6= NP. This is a slightly stronger version of the famous P 6= NP conjec-
ture. The P 6= NP conjecture states that polynomial time algorithms cannot solve all problems in
NP. RP 6= NP claims that even randomized polynomial time algorithms cannot solve all problems
in NP. We believe that RP 6= NP, because there is strong evidence that RP = P.

Our final definition is of NP-Completeness.

Definition 8 (NP-Completeness). A decision problem C is in NP-Complete if,

• C is in NP

• Every decision problem C ′ in NP can be reduced to C in polynomial time.

Intuitively, if a problem is NP-Complete that solving that problem in polynomial time is sufficient
for solving all problems in NP in polynomial time.

2.2 Proof of hardness of learning 3-term DNF

Let us now prove Theorem 5. Though this proof is for hardness of 3-term DNF, the recipe of
showing hardness is generally quite useful.

The key idea is to reduce a NP-complete problem to the problem of learning 3-term DNF. The key
property we want from mapping is that the answer to decision problem is “Yes” if and only if a set
of labelled examples is consistent with some hypothesis h ∈ H.

Definition 9. Let U = {(a1, y1), ..., (an, yn)} be labelled set of instances. Let h be any hypothesis.
We say that h is consistent with U if ∀ i ∈ [n], h(ai) = yi.

We now state the NP-complete problem we use to show hardness for 3-term DNF.

Definition 10 (graph 3-Coloring). Given an undirected graph G = (V,E) with vertex set V =
1, . . . , d, is there any assignment from every vertex v → {R,B,G}, such that for every edge e ∈ E,
the endpoints of e are assigned different colors?

5

Figure 1: An example of graph 3-Coloring.

Note that graph 3-Coloring is NP-complete.

Reduction

Our goal is to show that learning 3-Term DNF is at least as hard as graph 3-coloring. Therefore
we will use an algorithm for learning 3-Term DNF to solve graph 3-coloring. The first step in the
reduction is to convert a graph into some set UG of positive and negative examples, such that UG
is consistent with some h ∈ H if and only if G is 3-Colorable.

Graph G Set UG of positive and negative labelled examples

Polynomial time

Let us see why this is sufficient. We will use a PAC-learning algorithm for 3-Term DNF with the
following parameters:

• D: uniform on UG.

• EX(h∗, D): pick a point uniformly at random from UG.

• δ: 1/3.

• ε: 1/2|UG|.

The reduction is given in Algorithm 2. Note that D is uniform over a discrete set of size |UG| and
every element in the support has probability mass 1/|UG|. Therefore, the error of any algorithm
must be in integral multiples of 1/|UG|. This implies that if the algorithm outputs a hypothesis h

with R(h) < ε for ε =
1

2|UG|
, then R(h) = 0, i.e. h must be consistent with set UG, i.e. R(h) = 0.

All that remains is to show we can construct UG such that there is some consistent hypothesis
h ∈ H if and only if G is 3-Colorable.

6

Algorithm 2

1: Given instance of 3-Color, construct set UG.
2: Use PAC-learning algorithm A for 3-term DNF with EX(h∗, D), δ = 1/3, ε = 1/2|UG|.
3: Let h be the 3-term DNF returned by A.
4: if h is consistent with UG then
5: return “Yes”.
6: else
7: return “No”.
8: end if

Constructing UG

UG = U+
G ∪ U

−
G

U+
G : positive examples

U−G : negative examples

To construct U+
G , for every vertex i in the graph, we create a positively labelled example which is 0

at the index i and 1 everywhere else. For the example shown in Fig. 1, we construct U+
G as follows:

|U+
G | = |V |

(v(1),+1) = ((0, 1, 1, 1, 1, 1),+1)

(v(2),+1) = ((1, 0, 1, 1, 1, 1),+1)

...

(v(6),+1) = ((1, 1, 1, 1, 1, 0),+1)

To construct U−G , for every edge (i, j) in the graph, we create a negatively labelled example which
is 0 at the coordinates i and j and 1 everywhere else. For Fig. 1, we have

|U−G | = |E|
(e(1, 2),−1) = ((0, 0, 1, 1, 1, 1),−1)

(e(1, 4),−1) = ((0, 1, 1, 0, 1, 1),−1)

...

(e(5, 6),−1) = ((1, 1, 1, 1, 0, 0),−1)

We will now show that there is some consistent 3-Term DNF if and only if G is 3-Colorable. The
proof is in two parts.

Part I: 3-Colorable =⇒ there exists a consistent 3-term DNF

Consider a 3-term DNF φ = TR ∪ TB ∪ TG where

• R: set of all vertices colored red.

• B: set of all vertices colored blue.

7

• G: set of all vertices colored green.

Let TR be the conjunction of all variables whose index doesn’t appear in R. For our example,
TR = x2 ∩ x3 ∩ x4 ∩ x5. Similarly, we get TB = x1 ∩ x3 ∩ x6 and TG = x1 ∩ x2 ∩ x4 ∩ x5 ∩ x6.

For each i ∈ R, example v(i) must satisfy TR because xi doesn’t appear in TR.

Further, no e(i, j) ∈ U−G can satisfy TR. Both i and j cannot be colored red at the same time,
one of xi or xj must appear in TR. But e(i, j) has 0 values for both xi and xj . So, TR cannot be
satisfied by e(i, j). The same argument follows for TB and TG, and we have therefore shown that
φ = TR ∪ TB ∪ TG is consistent.

Part II: Consistent 3-term DNF =⇒ 3-colorable

Let φ = TR ∪ TB ∪ TG be a consistent 3-term DNF.

For a vertex i, if v(i) satisfies TR, color i red. Similar with TB and TG. (Break any ties arbitrarily.)

Since the formula is consistent, every v(i) must satisfy at least one of TR, TG, TB. Therefore every
vertex is assigned a color. We now need to show that the coloring is valid:

Claim 11. The coloring is a valid 3-Coloring.

Proof. If i and j(i 6= j) are assigned the same colors (say red), both v(i) and v(j) satisfy TR.

v(i) = (1, . . . , 0, . . . , 1, . . . , 1)

v(j) = (1, . . . , 1, . . . , 0, . . . , 1)

e(i, j) = (1, . . . , 0, . . . , 0, . . . , 1)

Since i-th bit of v(i) is 0 and i-th bit of v(j) is 1, we can infer that neither xi nor x̄i appears in
TR. We can see e(i, j) and v(j) only differs in i-th coordinate. If v(j) satisfies TR, so does e(i, j).
Then e(i, j) should be labelled positive. So e(i, j) /∈ U−G and (i, j) /∈ E.

This completes our reduction and the proof of hardness for 3-Term DNF. It is worth noting here
that hardness arises from the difficulty in expressing the hypothesis as a 3-Term DNF. Note that the
distribution D was only supported on n+m examples, and hence is actually not difficult to predict
on. For example, if we have a dataset of more than O(n+m(log(n+m))) examples, then by coupon
collector we would see all possible examples with high probability. Therefore, a simple “nearest
neighbor algorithm” which makes a prediction on a test point by finding the corresponding training
datapoint will get perfect prediction accuracy. The hardness arises because we cannot express the
predictor as a 3-Term DNF because doing so would imply that we can find a 3-coloring for the
graph, which we expect to be hard to do. In the next section, we will see how we can use an
alternate representation to learn 3-Term DNFs.

3 Using 3-CNF formulae to avoid intractability

So far, we have restricted the learning algorithm to output a hypothesis from the same class it was
learning. What if we allow the algorithm to output a hypothesis from a different, more expressive
class?

8

We can use the distributive law to rewrite the 3-term DNF. The distributive law says that

u ∪ (v ∩ w) = (u ∪ v) ∩ (u ∪ w).

You can easily verify this by checking the truth table. We can use this repeatedly to rewrite more
complicated expressions:

(u ∩ v) ∪ (w ∩ x) = (u ∪ w) ∩ (u ∪ x) ∩ (v ∪ w) ∩ (v ∪ x). (1)

More generally, this gives a way of writing a disjunction of conjunctions as a conjunction of disjunc-
tions. In particular, we can represent any 3-term DNF φ = T1 ∪T2 ∪T3 as ψ = ∩u∈T1,v∈T2,w∈T3(u∪
v ∪ w). You should verify that Eq. 1 is an example of this for a 2-Term DNF.

ψ is an example of a 3-CNF (conjunctive normal form).

3-CNFd = {∩iCi : Ci is a disjunction (OR) on 3 literals from the set {x1, , x̄1, . . . xd, x̄d}}.

Note that the 3-CNF which arise from rewriting 3-Term DNFs with the distributive law do not
contain all possible 3-CNFs (you can verify this even for 2-Term DNFs such as in Eq. 1, notice that
we cannot get only 3 of the 4 terms on the right hand side). More generally, every 3-Term DNF
can be written as a 3-CNF, but the converse is not true. We will show that 3-CNFs are efficiently
learnable. This implies that 3-Term DNFs are also efficiently learnable if we choose to represent
them as 3-CNFs.

Theorem 12. The class of 3-CNF formulae is efficiently PAC-learnable.

Proof. We will reduce the problem of PAC learning 3-CNF formulae to the problem of PAC
learning conjunctions.

Oracle for 3-CNF Oracle for conjunctions

Transform output back to 3-CNF Use PAC learning algorithm for conjunctions

Idea: Regard 3-CNF formulae as a conjunction over a new and larger variable set.

Transformation: For every triple of literals, u, v, w over the original variable set {x1, . . . , xd}, the
new variable set contains a variable yu,v,w = u ∪ v ∪ w. Note that when u = v = w, yu,v,w = u, so
all the original variable are in the new set. The number of variables is (2d)3, O(d3). Note that any
3-CNF over x1, . . . , xd is equivalent to a conjunction over {yu,v,w}. (Replacing any clause u∪ v ∪w
by yu,v,w.)

Transforming oracles: For any assignment a ∈ {0, 1}d to the original variables, we can compute
the assignments tothe new variable set {yu,v,w} in O(d3) time.

9

Use conjunction learning algorithm: We can now run algorithm for conjunctions. Finally, we
can transform the output h′ of the algorithm back to a 3-CNF h, by expanding any occurrence of
yu,v,w by (u ∪ v ∪ w).

Claim 13. If h∗ and D are the target 3-CNF formula and the distribution over {0, 1}d, and h∗′

and D′ are the corresponding conjunction over yu,v,w and the corresponding distribution over yu,v,w,
then if h′ has errors at most ε with respect to h∗′ and D′, then h has error at most ε with respect
to h∗ and D.

Proof. We first note that our transformation of instances is one → one.

If a1 → a′1 and a2 → a′2

a1 6= a2 =⇒ a′1 6= a′2.

Additionally, note that if h′(a′) = h∗′(a′) then h(a) = h∗(a), and if h′(a′) 6= h∗′(a′) then h(a) 6=
h∗(a). Therefore, our transformation preserves the error with respect to the original and trans-
formed instances.

This completes our polynomial time reduction.

3.1 Proper vs improper learning

An important takeaway from the previous results is that the choice of representation/hypothesis
can make the difference between efficient algorithms and intractability. Going to a more expressive
(richer) hypothesis classes (for example, from 3-Term DNF to 3-Term CNF) can make learning
efficient. Note that statistically, learning over a richer hypothesis class can never help if you know
the target class is in a smaller hypothesis. When computational efficiency is brought into, though,
a richer hypothesis class might well be easier to learn over.

To account for this, we make the following distinction:

Definition 14 (Concept and Hypothesis Class).

• The concept class C is the class to which the ground-truth hypothesis originally belongs.

• The hypothesis class H is the class from which the learner chooses its hypothesis.

With this, we have a revised definition for efficient PAC learning.

Definition 15 (Proper and Improper PAC Learning). If C is a concept class over the instance
space X d and H is a hypothesis class over X d, we say that C is (efficiently) PAC learnable using
H if our basic definition of PAC learning is met by an algorithm which is allowed to output a
hypothesis from H. Here we implicitly assume that H is at least as expressive as C. (This implies
that there is a representation in H for every function in C.)

• If C = H then the algorithm is called a proper learning algorithm.

• If C ⊂ H then the algorithm is called an imporper learning algorithm.

10

Thm. 5 was a hardness result for proper learning. Are there learning problems which are hard
even improperly?

To answer this we look into representation independent hardness results for learning, and explore
some connections between learning theory and cryptography.

4 Representation Independent Hardness Results for Learning

In some sense, cryptography and learning are two sides of the same coin. Problems which are hard
to learn are possible cryptographic primitives, and cryptographic primitives can be used to derive
learning problems which are hard to solve. A key similarity between cryptography and learning is
that both care about solving problems on average, when instances come from some distribution.

We currently do not know how to base cryptography on worst-case hardness, such as assuming that
P 6= NP . Instead, cryptography must rely on stronger average-case assumptions. One widely used
notion is that of one way functions.

Definition 16 (One Way Functions). A one-way function f : {0, 1}d → {0, 1}d is one that is easy
to compute, but hard to invert.

More formally, f can be computed in polynomial time but for any randomized polynomial time
algorithm A and for any polynomial p(), we have

Pr [f(A(f(∗)) = f(x)] ≤ 1

p(d)

where the probability is taken over x drawn uniformly from {0, 1}d, and randomness in A.

Proving that one-way functions exists is harder than showing P 6= NP , and we currently do not
even know how to show that they exist even assuming P 6= NP . However, there are several
functions which are good candidates and are widely believed to be one-way functions. In fact,
much of internet commerce and secure communication hinges on this assumption being true.

Discrete Cube Root: A candidate one way Function

Let N = p · q b a product of two primes of roughly equal length. Let fN (x) = x3 mod N .

If one knows p and q, it can be shown that this function is invertible in polynomial time (using
Euclid’s GCD algorithm). However, it is widely believed that this function is hard to invert without
knowledge of p and q. This forms the basis of the famous RSA cryptosystem.

For a fixed L, let F be the family of all functions:

F = {fN (x), N = p · q, p and q are primes, length(p), length(q) ≤ d}

The Discrete Cube Root Assumption (DCRA) states that given N and y = fN (x) for some random
x ∈ {0, 1}d, it is hard to compute x in polynomial time. Next lecture we will show how this
assumption can be used to derive a learning problem which is hard to solve using any representation
class.

11

5 Further Reading

The best reference for today’s lecture, and the next few lectures is the book [1], which should be
available using your USC account here. Sec 1.3 in Chapter 1 covers learning conjunctions (via a
different proof from the one in class though), and 1.4 and 1.5 cover hardness of learning 3-Term
DNFs and using CNFs to avoid intractability. You can read Chapter 6 of Kearns-Vazirani for more
on how cryptographic assumptions give hard learning problems, including more discussion for the
Discrete Cube Root problem.

References

[1] Michael J Kearns and Umesh V Vazirani. Computational learning theory. ACM SIGACT News,
26(1):43–45, 1995.

12

https://uosc.primo.exlibrisgroup.com/discovery/fulldisplay?docid=cdi_proquest_ebookcentral_EBC5966119&context=PC&vid=01USC_INST:01USC&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=Everything&mode=Basic

	Computational Complexity of Learning
	Conjunctions

	Intractability of learning 3-Term Disjunctive Normal Forms(DNFs)
	Computational Complexity Review
	Proof of hardness of learning 3-term DNF

	Using 3-CNF formulae to avoid intractability
	Proper vs improper learning

	Representation Independent Hardness Results for Learning
	Further Reading

