
CSCI699: Machine Learning Theory Fall 2023

Lecture 8: Memory-Sample Tradeoffs, Convex Optimization

Instructor: Vatsal Sharan

These lecture notes are based on scribe notes by Ali Omrani, Navid Hashemi and Bhavya Vasudeva.

1 Memory-Sample Tradeoffs

We’ll now turn to a different kind of statistical-computational tradeoff. For most of the class, we
have used the number of operations performed by the algorithm as the proxy for the algorithms
running time and its computational efficiency. However, in many contemporary settings (including
large-scale systems and devices on the edge), the memory or space usage of the algorithm can
be crucial in determining efficiency. This is because growth in the available processing power has
outpaced the growth in the available memory by many orders of magnitude (both due to Moore’s
law and specialized hardware such as GPUs), with the result that memory and data movements
due to a shortage of memory are often the dominant performance and energy bottlenecks in modern
learning systems. In addition, from a theoretical standpoint, memory is one of the most fundamental
computational resources (e.g. for a Turing machine the number of steps that it runs for and its
space usage are the two most fundamental metrics for efficiency).

Let us see a glimpse of the role that memory plays in learning, in particular, if there are tradeoffs
between the available memory and the number of samples needed for learning.

Memory-Sample Tradeoffs for Parity Learning

We’ll understand this for the parity problem. The setting is as follows. The data comes in streaming
fashion. We get datapoints one at a time, only get a single pass over your data stream. The goal
is to learn the parity function:

X d = {0, 1}d

Y = {0, 1}
C = {w(x) = 〈w, x〉 mod 2 : w ∈ {0, 1}d}.

The setup is as follows. There is some unknown w∗ ∈ {0, 1}d which we want to find. At every
timestep we get a labeled example. We can store the example in memory if we like, or do some
computation based on the example and store the result of the computation, but we don’t get to
see the example again i.e. we only get one pass over the datastream:

At t = 1

• Get x1 ∼ Unif({0, 1}d)

• Get b1 = 〈x1, w
∗〉 mod 2

At t = 2

1

• Get x2 ∼ Unif({0, 1}d)

• Get b2 = 〈x2, w
∗〉mod 2

and so on. Let us try to understand what algorithms might be possible here. The unknown vector
x∗ is d-dimensional, so Ω(d) memory is necessary for even storing the solution, and hence for
solving the problem. Also, since we’re looking at a linear system (over GF(2)) in d-dimensions,
Ω(d) examples are also necessary for learning x∗. So if we try to solve the problem with only O(d)
memory, could we still get the optimal O(d) sample complexity? It does not seem easy, because
with O(d) memory we can only store a constant number of examples at a time, and maybe in that
case we would need to see many more than O(d) examples to solve the problem. Which brings us
to the following question:

For the parity learning problem, what is the tradeoff between the available memory and the number
of samples needed for learning?

We first consider two very natural algorithms for the problem.

Algorithm 1

Store n = O(d) examples in memory and solve the linear system.

x1

x2

.

.

.
xn




w∗

 =



b1
b2
.
.
.
bn

mod 2

Since w∗ is d-dimensional with n >> 100d examples, the system is full-rank w.h.p. Let us see the
memory usage and sample complexity of this algorithm:

Samples = n = O(d)
Memory = nd bits = Ω(d2)

So the algorithm is great in terms of its sample complexity, but uses a lot of memory. The following
brute force search algorithm achieves the other extreme.

Algorithm 2 Brute-Force Search

for every w ∈ {0, 1}d do
if w is consistent over the next o(d) examples we receive then

return w

end if
end for

Memory = O(d)
Samples = d2d = 2Ω(d)

2

Question: What else is possible?

In a surprising result, Ran Raz showed that the above two algorithms are essentially all that is
possible for the problem, and therefore we have almost a complete understanding of the algorithmic
landscape of the problem.

Theorem 1 ([1]). Any algorithm for solving the above parity problem either requires Ω(d2) memory,
or at least 2Ω(d) samples.

Interestingly, all our previous computational lower bounds were based on assumptions such as RP6=
NP, but the above theorem is unconditional. It seems that understanding memory-sample tradeoffs
is much more information-theoretic, and we can indeed show stark, unconditional lower bounds.

Figure 1: The proof is based on the idea of analyzing a branching program for the problem.

Subsequent work has extended the result to a much larger class of problems. For instance, the
following result shows a memory lower bound based on the SQ dimension of the learning task.

Theorem 2 ([2]). Consider a hypothesis class H with SQ-dim(H) = s. Then any algorithm for
learning H requires Ω(log2 s) memory, or at least sΩ(1)(poly(s)) samples.

An upper bound which shows that classes with small SQ dimension can be learned with small
memory is also known [3]. We saw earlier that large SQ dimension can make learning hard in the
presence of noise (with a concept class based on parities being the only exception where learning is
still possible despite the SQ dimension being large). The above theorem shows that learning with
small memory is also hard with large SQ dimension. This is possibly not a complete coincidence,
it appears that algorithmic problems which are easy can be solved with various constraints or
deviations from ideal behavior (for example memory constraints or random noise), but problems
which are hard become difficult to solve in the presence of such constraints or deviations. For
example, though parities are PAC-learnable, they become hard to learn in the presence of noise, or
under memory constraints. In contrast, “simpler” classes such as conjunctions remain easy to learn
under these constraints. In this sense, hardness with respect to many different constraints (such as
running time, memory, or even communication in distributed settings) appears to be quite related.

2 Convex Optimization

So far in this class, we started with how much data is needed for learning, then went on to the
computational aspects, and saw algorithms for learning certain problems efficiently. We investigated

3

the minimum resources required for learning—in terms of number of samples, running time, and
memory. We have seen a few different frameworks for understanding these resources, such as VC
dimension and the SQ model. In this lecture, we will explore a powerful algorithmic framework,
convex optimization. Convex optimization forms the algorithmic backbone of machine learning.

We start with some basic properties:

Definition 3 (Convex set). A set C ⊆ Rd is convex if x, y ∈ C =⇒ tx+ (1− t)y ∈ C, ∀0 ≤ t ≤ 1.

Therefore a set is convex if the line joining any points on the set is also within the set. Convex
functions can be defined similarly.

Definition 4 (Convex function). A function f : Rd → R is convex if domain(f) ⊆ Rd is convex and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ∀ t ∈ [0, 1] and (x, y) ∈ domain(f).

Informally, the line joining any two points on the graph of the function must be above the function
for the function to be convex. The following is an equivalent definition of convex functions, and
says that the function must always be above the tangent at any point.

Lemma 5. If f is differentiable, then f is convex if and only if Domain(f) is convex and:

f(y)− f(x) ≥ 〈y − x,∇f(x)〉
(or equivalently, f(y)− f(x) ≤ 〈y − x,∇f(y)〉).

Proof. Exercise, use the definition of convexity.

4

Convex functions are nice, since local information is sufficient to ensure optimality. The following
corollary follows from the previous lemma.

Corollary 6 (Local minimum implies global minimum). If f is convex and differentiable the
∇f(x) = 0 implies x is a global minima of f .

The following are some simple properties of convex functions. Together, they are sufficient to show
convexity for most functions which are convex.

Lemma 7 (Some Properties of convex functions). The following properties are true for convex
functions,

1. If f is twice differentiable, then f is convex iff domain(f) is convex and ∀ x ∈ domain(f),∇2f(x) �
0, (where A � 0 ⇐⇒ x>Ax ≥ 0 ∀x).

2. If fi(x) is convex ∀i ∈ [n], then y(x) =

n∑
i=1

wifi(x) where wi ≥ 0 ∀i is convex.

3. If fi(x) is convex ∀ i ∈ [n], then g(x) = max
i∈[n]

fi(x) is convex.

3 Convex learning Problems

An optimization problem
min
x∈A

f(x)

is called a convex optimization problem if (1) f(x) is convex (2) A is convex. Convex optimization
problems can generally be solved efficiently.

Recall the ERM problem of finding the ERM w.r.t some hypotheis class H on some training set
S = (z1, z2, · · · , zn) where zi = (xi, yi),

ERMH(S) = arg min
h∈H

1

n

n∑
i=1

`(h, zi).

Let the hypothesis class H be parameterized by w ∈ Rd. We will overload notation slightly, and
assume that the domain of w is also H. Then we can write,

ERMH(S) = arg min
w∈H

1

n

n∑
i=1

`(w, zi).

Then the following result follows since the average of convex functions is convex.

Lemma 8. If ` is a convex loss (in terms of w), and H is convex, then ERMH(S) is a convex
optimization problem.

5

A simple example is linear regression with the squared loss:

Let H =
{
x→ 〈w, x〉, w ∈ Rd

}
,

`(h, (x, y)) = (h(x)− y)2,

`(w, (x, y)) = (〈w, x〉 − y)2,

H = Rd (convex).

As an exercise, verify that `(w, (x, y)) is convex in terms of w. Therefore ERMH(S) is a convex
problem.
What happens when we consider classification, and the 0/1 loss?

`01(h, (x, y)) = 1(h(x) 6= y) = 1(yh(x) ≤ 0).

Unfortunately, the 0-1 loss is non-convex. A common technique to handle a non-convex loss is to
instead consider a convex surrogate.

4 Convex Surrogates

A convex surrogate is some loss function that we minimize instead of minimizing the 0-1 loss. The
figure below shows some convex surrogates for the 0/1 loss.

Hinge loss: `(h, (x, y)) = max(1− yh(x), 0)

Logistic loss: `(h, (x, y)) = log(1 + e−yh(x))

6

To find a good hypothesis from a training set, we can choose to minimize some convex surrogate
instead of the 0-1 loss. However, for classification problems, the eventual goal is often to minimize
the 0-1 loss, since it measures the classification error. When is minimizing the convex surrogate
effective in minimizing the original 0-1 loss?

Let R(h) = E(x,y)∼D[1(yh(x) ≤ 0)] be the expected 0/1 risk. Let φ : R→ R be some other function
(used as a surrogate) and define Rφ(h) = E(x,y)∼D[φ(yh(x))] to be the surrogate risk (plugging in
φ(yh(x)) in place of 1(yh(x) ≤ 0) in R).

Note that in this definition, functions which depend on yh(x) can be used as a surrogate loss φ.
For e.g., the hinge loss and logistic loss fit this description.

Recall that R∗ = inf
f :X→Y

R(f) is the Bayes optimal risk.

Let R∗φ = inf
f :X→Y

Rφ(f) be the Bayes optimal φ-risk.

Definition 9. We say surrogate loss φ is classification calibrated if for any sequence of functions
fi and every distribution D over (x, y),

Rφ(fi)→ R∗φ =⇒ R(fi)→ R∗.

This says that if you can find a hypothesis which is Bayes optimal according to φ-risk, then it will
also be optimal according to the 0/1 loss, i.e. the surrogate is a good surrogate.

Note that this definition requires the surrogate risk to converge to the Bayes optimal surrogate
risk, i.e. Rφ(fi) → R∗φ (Bayes optimal predictor for φ-risk). Therefore it is only meaningful if we
optimize our risk over some hypothesis class which includes the Bayes optimal predictor in terms
of the φ-risk.

The following theorem characterizes when a surrogate loss is classification calibrated.

Theorem 10 ([4]). Consider a surrogate loss φ(yh(x)). If φ is convex, then it is classification
calibrated if and only if φ′(0) exists and φ′(0) < 0 (the derivatives are taken w.r.t. yh(x)).

The following corollary is immediate from this theorem by taking derivatives.

Corollary 11. Hinge loss and logistic loss are classification calibrated.

Note that the squared loss `(h; (x, y)) = (h(x) − y)2 doesn’t fit the form of a function depending
only on yh(x), i.e. φ(yh(x). However, it is known that it is still classification calibrated.

5 Gradient Descent (GD)

Let us go back to convex optimization problems, and look at algorithms for solving such problems.
Consider an unconstrained optimization problem: min

x∈Rd
f(x), where f(x) is differentiable. Gradient

descent is perhaps the most natural algorithm for solving the problem.

7

Algorithm 3 Gradient Descent (GD)

Initialize w1

for t=1,2,...,T do
wt+1 ← wt − η∇f(wt)

end for

Here, the output of the algorithm maybe the last iterate wT , or the average iterate
1

T

T∑
t=1

wt. For

any point, we are considering the first-order approximation of f and taking a step in that direction
with step size η. The figure below shows this for a 1-D problem.

The following theorem proves the convergence of gradient descent for convex, Lipschitz problems.

Theorem 12 (Convergence rate of GD). Let f be a convex, differentiable and ρ-Lipschitz function,
i.e.

|f(x)− f(y)| ≤ ρ‖x− y‖ ∀ x, y ∈ Rd.

Let w∗ = arg min
w∈Rd

f(w), ‖w∗ − w1‖ ≤ B, where w1 is the initialization for GD. Suppose we run

GD for T steps with η =

√
B2

ρ2T
and let w̄ =

1

T

T∑
t=1

wt. Then w̄ satisfies f(w̄) − f(w∗) ≤ Bρ√
T

.

Therefore if T ≥ B2ρ2

ε2
, then f(w̄)− f(w∗) ≤ ε.

Note that the convergence rate depends on both ρ and B. For a function which is flat, ρ is small.
When we initialize within a ball of radius B, the value on any point in this ball is not too different
from the best value, so we don’t need to take many steps to get small error, hence T is small when
ρ is small. If the function is steep (ρ is large) and we initialize in the same ball, we will need more
steps to get small error, so T would be large. These cases are shown in the figure below.

8

Proof. By using the definition of w̄ and Jensen’s,

f(w̄)− f(w∗) = f

(
1

T

T∑
t=1

wt

)
− f(w∗)

≤ 1

T

T∑
t=1

f(wt)− f(w∗)

=
1

T

T∑
t=1

(f(wt)− f(w∗)). (1)

Because f is convex, we have:

f(wt)− f(w∗) ≤ 〈wt − w∗,∇f(wt)〉. (2)

Combining (1) and (2),

f(w̄)− f(w∗) ≤ 1

T

T∑
t=1

〈wt − w∗,∇f(wt)〉. (3)

We do not need convexity for the rest of the proof. We will now upper bound

T∑
t=1

〈wt−w∗,∇f(wt)〉.

Lemma 13 (Iterative Update). Let v1, ..., vT be an arbitrary sequence of vectors. Consider any
algorithm with an update rule wt+1 = wt − ηvt. Then,

T∑
t=1

〈wt − w∗, vt〉 ≤
‖w∗ − w1‖2

2η
+
η

2

T∑
t=1

‖vt‖2.

If ‖w∗ − w1‖ ≤ B, ‖vt‖ ≤ ρ, and η =

√
B2

ρ2T
,

T∑
t=1

〈wt − w∗, vt〉 ≤ Bρ
√
T .

Proof. By completing the squares,

〈wt − w∗, vt〉 =
1

η
〈wt − w∗, ηvt〉

=
1

2η
(−‖wt − w∗ − ηvt‖2 + ‖wt − w∗‖2 + η2‖vt‖2)

=
1

2η
(−‖wt+1 − w∗‖2 + ‖wt − w∗‖2) +

η

2
‖vt‖2

9

By summing over all timesteps, we get a telescoping sum,

T∑
t=1

〈wt − w∗, vt〉 =
1

2η

T∑
t=1

(−‖wt+1 − w∗‖2 + ‖wt − w∗‖2) +
T∑
t=1

η

2
‖vt‖2

=
1

2η
(−‖wT+1 − w∗‖2 + ‖w1 − w∗‖2) +

η

2

T∑
t=1

‖vt‖2 (other terms can-
cel out due to
telescopic sum)

≤ 1

2η
‖w1 − w∗‖2 +

η

2

T∑
t=1

‖vt‖2

Now using the bounds on ‖w1 − w∗‖2 and ‖vt‖2,

T∑
t=1

〈wt − w∗, vt〉 ≤
B2

2η
+
η

2
Tρ2

=⇒ 1

T

T∑
t=1

〈wt − w∗, vt〉 ≤
B2

2ηT
+
η

2
ρ2.

To minimize the bound, set both terms equal to get η =
B

ρ
√
T

, which gives

1

T

T∑
t=1

〈wt − w∗, vt〉 ≤
Bρ√
T
,

and completes the proof of the lemma.

As a final step, note that since f is differentiable and ρ-Lipschitz, ‖∇f(x)‖ ≤ ρ ∀ x. This completes
the proof of the theorem.

5.1 Variants of GD

Various variations of gradient descent are known which work beyond the vanilla setup in the previous
theorem.

• If f is not differentiable, we can use subgradient descent. A subgradient ∂f(x) is any vector which
satisfies the first order definition of convexity, f(y)− f(x) ≤ 〈y − x, ∂f(y)〉.
For example, the hinge loss is not differentiable at 0 but there are many valid subgradients, as
shown in the figure below.

• If we are doing constrained optimization, we can use projected gradient descent (PGD).
Suppose we are solving the following optimization problem: min

x∈H
f(x). Then PGD updates are

given by:

wt+ 1
2

= wt − η∇f(wt)

wt+1 = arg min
w∈H

‖w − wt+ 1
2
‖.

10

The second step finds the projection of wt+ 1
2

in the convex set H which is closest to it.

Projected GD is visualized in the figure above.

Lemma 14. If H is convex, then for any v ∈ H, ‖wt+1 − v‖ ≤ ‖wt+ 1
2
− v‖.

Proof. Note that v ∈ H and projection finds a point wt+1 ∈ H, closest to wt+ 1
2
. As wt+ 1

2
/∈ H

and H is convex, wt+1 is closer to v. This Stack Overflow post has a more formal and geometric
proof.

Using the above lemma, it is possible to show that PGD achieves the same convergence rate.

Lemma 15. PGD has the same convergence rate as GD.

The intuition for the proof is that the projection step never takes us farther away from the optimal
point. Therefore, we can repeat the analysis for GD.

Note that the projection should be efficiently computable to do PGD. If H is a convex set, the
projection can be computed efficiently.

5.2 Faster convergence under more assumptions

If we place more assumptions on the function than just convexity and Lipschitzness, then we can
get faster convergence rates. One such assumption is smoothness.

11

https://math.stackexchange.com/questions/3809431/geometric-proof-that-projections-on-convex-sets-are-contractive

Definition 16 (Smoothness). We say a function f is β-smooth if ∀ x, y ∈ domain(f),

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

Smoothness says that the gradient itself is a Lipschitz function, therefore the function cannot be
too steep. This also implies that

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
β

2
‖y − x‖2.

This says that the function cannot change too quickly, and in praticular that the growth is upper
bounded by some quadratic. Smoothness provides a faster convergence rate

Theorem 17. Let f be a convex function that is β-smooth. Then GD with step size η =
1

β
satisfies

f(wT)− f(w∗) ≤ B2β

2T
.

Therefore, GD finds a ε-optimal point in T ≥ B2β

2ε
iterations. Contrast this with the O(1/ε2) rate

that we got only with Lipschitzess. Also note that the convergence guarantee here is on the last
iterate itself, and not the average iterate.

Another useful property is strong convexity.

Definition 18 (Strong Convexity). A function f is λ-strongly convex if its domain is convex and
∀ x, y,

f(y) ≥ f(x) + 〈y − x,∇f(x)〉+
λ

2
‖y − x‖2.

Strong convexity says that the function can be lower bounded by a quadratic. Smoothness and
strong convexity give upper and lower bounds on f , respectively, as shown in the figure below.
(This also implies that we must have β > λ.)

Together, strong convexity and smoothness yield an exponentially faster convergence rate.

Theorem 19. Let f be a convex function that is β-smooth and λ-strongly convex. Define condition

number κ =
β

λ
> 1. Then GD with η =

2

β + λ
satisfies

f(wT)− f(w∗) ≤ B2β

2T
exp (−T/κ) .

12

In this case, ε error can be achieved in T ≥ κ log

(
B2β

2ε

)
or O

(
κ log

(
1

ε

))
iterations. This is

known as a linear convergence rate in the literature, since the error reduces linearly with the number
of iterations when we plot it on a log scale. We will discuss the smooth, strongly convex case more
next time.

6 Further Reading

You can read the papers we mentioned to learn more about memory-sample tradeoffs for learning.

Our analysis of GD follows Chapter 14 in the book [5]. You can also read there for more details
about subgradients and projected gradient descent. There are a number of good lectures notes
online for surrogate losses if you want to learn more, such as this one.

References

[1] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
Journal of the ACM (JACM), 66(1):1–18, 2018.

[2] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learn-
ing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 990–1002, 2018.

[3] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Conference on Learning Theory, pages 1490–1516. PMLR, 2016.

[4] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

[5] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

13

https://people.eecs.berkeley.edu/~wainwrig/stat241b/lec11.pdf

	Memory-Sample Tradeoffs
	Convex Optimization
	Convex learning Problems
	Convex Surrogates
	Gradient Descent (GD)
	Variants of GD
	Faster convergence under more assumptions

	Further Reading

