
CSCI699: Machine Learning Theory Fall 2023

Lecture 9: SGD, Boosting, Kernels

Instructor: Vatsal Sharan

These lecture notes are based on scribe notes by Di Zhang, Navid Hashemi and Sai Anuroop Ke-
sanapalli.

In this lecture, we will continue to talk about convex optimization. We will then talk about two
more powerful algorithmic frameworks in machine learning, boosting and kernels.

1 Strong convexity

Last time we stated the following bound for smooth, strongly convex functions.

Theorem 1. Let f be a convex function that is β-smooth and λ-strongly convex. Let κ = β/λ ≥ 1

be the condition number of the function. Then GD with step size η =
2

β + λ
satisfies

f(wT)− f(w∗) ≤ exp

(
−T
κ

)
B2β

2T
.

Smoothness and strong convexity give upper and lower bounds on f , respectively, as shown in the
figure above. This means that β ≥ λ.

In this case, error ε can be achieved in T ≥ κ log

(
B2β

2ε

)
or O

(
κ log

(
1

ε

))
iterations. This is

known as a linear convergence in literature since when if we plot the error ε on a logarithmic scale,
the error reduces linearly with iterations. Note that without strong convexity, the convergence rates
that we obtained for GD were 1/poly(ε) (1/ε for smooth, convex functions and 1/ε2 for Lipschitz,
convex functions). The log(1/ε) rate is exponentially faster in terms of its dependence on ε.

Let us understand this further for quadratic problems (which is really the problem of solving a
linear system). In fact, linear systems are always a good canonical setting to try out an optimization
algorithm and to get intuition for them.

Example 2. Consider the following quadratic optimization problem,

min
x∈Rd

(
1

2
xTAx− bx

)
.

1

Note that this function is convex if A < 0, i.e. vTAv ≥ 0 ∀ v ∈ Rd. The function is strongly-convex
if A � 0, i.e. vTAv > 0 ∀ v ∈ Rd. In this case the function also has a simple closed form solution
that you can verify by taking the gradient and setting it to 0, and the optimal value for x is A−1b.
Consider a simple case where A is a diagonal matrix with positive entries, sorted from largest to
smallest for simplicity,

A =

λmax . . . 0
...

. . .
...

0 . . . λmin

 .

In this case, the smoothness parameter β = λmax, and the strong convexity parameter λ = λmin.

If κ ≈ 1, this means that the quadratic function has similar curvature in every direction. This
is the case where gradient descent will have the fastest rate of convergence. If κ is very large,
then this means that there are certain directions which are much flatter than other directions. In
this case, gradient descent will take many steps to converge along these flat directions, and the
convergence rate will be slow (if we try to increase the step size to speed up convergence along
these flat directions, then that step size will be too large for the steeper directions and gradient
descent will not converge).

This finishes our discussion for gradient descent. You may wonder if the convergence rates that we
showed for gradient descent can be improved. Our analysis of the GD algorithm is tight, but there
are modifications which get faster convergence. Accelerated gradient descent improves the conver-
gence rate from O(1/ε)→ O(1/

√
ε) for smooth functions, and O(κ log(1/ε))→ O(

√
κ log(1/ε)) for

smooth, strongly convex functions. There are also lower bound known for gradient based methods
[1], and it is known that accelerated gradient descent is optimal among algorithms whose conver-
gence rates do not depend on the dimensionality d of the problem. How about rates which can
depend on the dimensionality? Using various cutting-plane methods such as the ellipsoid method,
it is possible to get a O(d log(1/ε)) rate for convex, Lipschitz functions. This could be much better
than the O(1/ε2) rate for gradient descent for small error ε (in particular, if ε� 1/

√
d). However,

these cutting plane based methods are much more expensive than our simple and efficient gradi-
ent descent algorithm. There is recent work which shows that any algorithm which significantly
improves on the convergence rate of gradient descent in this error regime must be much more
expensive computationally, with memory as the metric of computational cost [2].

It is also known that we cannot improve on the O(
√
κ log(1/ε)) convergence of accelerated GD for

strongly convex problems with only gradient information. Second-order methods such as Newton’s
method can get a much better polylog(κ) dependence on the condition number κ by using second-
derivative information. Intuitively, second-derivative information allows the algorithm to correct
for the curvature of the problem. These methods can be more expensive computationally since
they need to second-derivative (for e.g. this needs O(d2) memory to store in d dimension since the
second-derivative matrix has size d× d vs. only O(d) memory for gradient information). There are
techniques which aim to use some of this second-derivative information without this computational
cost, variants of these such as Adagrad [3] and Adam [4] are very popular in practice.

2

2 Stochastic Gradient Descent (SGD)

Stochastic gradient descent is a simple modification of GD, where we use an unbiased estimate of
the gradient instead of the exact gradient.

Algorithm 1: SGD

1 Initialize w1

2 for t=1,2,...,T do
3 Choose any vt s.t. E(vt|wt) = ∇f(wt)
4 wt+1 ← wt − ηvt

Step 3 requires that vt is a valid gradient in expectation. If we are minimizing training loss over
n points, we can just sample one point (xi, yi) uniformly at random and take gradient at (xi, yi),
instead of computing gradient for the entire training set. Since

∇w

(
1

n

n∑
i=1

`(w, zi)

)
=

1

n

n∑
i=1

∇w`(w, zi),

There if we sample zi uniformly at random from the datapoints,

Ezi∼Unif(S) [∇w`(w, zi)] = ∇w

(
1

n

n∑
i=1

`(w, zi)

)

Therefore this gives an unbiased estimate of the overall gradient.

We have a similar convergence guarantee for SGD as our guarantee for GD.

Theorem 3 (convergence of SGD). Let f be a convex, ρ-Lipschitz function. Let w∗ = arg min
w∈Rd

f(x)

and ‖w∗ − w1‖ = B (where w1 is the initialization). Suppose we run SGD for T steps with step

size η =

√
B2

ρ2T
and ‖vt‖ ≤ ρ for all t. Let w =

1

T

T∑
t=1

wt. Then,

E[f(w)]− f(w∗) ≤ Bρ√
T
.

Proof. Let v1:t denote the sequence v1, . . . , vt. By convexity,

E
v1:T

[f(w)− f(w∗)] ≤ E
v1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
.

By the iterative update lemma from the proof of GD,

E
v1:T

[
1

T

T∑
t=1

〈wt − w∗, vt〉

]
≤ Bρ√

T
.

3

So we only need to show

E
v1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
≤ E

v1:T

[
1

T

T∑
t=1

〈wt − w∗, vt〉

]
.

E
v1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
=

1

T

T∑
t=1

E
v1:T

[f(wt)− f(w∗)]

=
1

T

T∑
t=1

E
v1:t−1

[f(wt)− f(w∗)] .

SGD requires E
vt

[vt | wt] = ∇f(wt).

Since wt only depends on v1:t−1,
E
vt

[vt | v1:t−1] = ∇f(wt).

E
v1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
≤ 1

T

T∑
t=1

E
v1:t−1

[〈
wt − w∗,E

vt
[vt | v1:t−1]

〉]

=
1

T

T∑
t=1

E
v1:t−1

[
E
vt

[〈wt − w∗, vt〉 | v1:t−1]
]

=
1

T

T∑
t=1

E
v1:t−1

[〈wt − w∗, vt〉](law of iterated expectations)

=
1

T

T∑
t=1

E
v1:T

[〈wt − w∗, vt〉]

= E
v1:T

[
1

T

T∑
t=1

〈wt − w∗, vt〉

]
,

and we are done.

Some more points about the convergence rate,

• Same convergence rate as GD (but in expectation).

• The convergence rate does not improve with the β-smoothness assumption.

• For strongly convex functions, the convergence rate goes from
1√
T

to
1

T
, but we cannot get

the e−T/K rates that we got for GD.

Even though the convergence rate maybe slower for SGD compared to GD, each iteration can be
much faster. For example, for the ERM problem we only need to find the gradient at one randomly
sampled datapoint to get a stochastic gradient, instead of taking the gradient over every example.
Therefore, there is some tradeoff in terms of cost per iteration and the number of iterations.

4

3 Learning with SGD, Discussion

Suppose we are interested in minimizing the risk

R(w) = E
z∼D

[`(w, z)].

We have seen one way of solving this, we sample n datapoints, minimize training error, and then
use generalization bounds to ensure small test error.

SGD gives a different way to look at this. Note that

∇R(wt) = ∇ E
z∼D

[`(wt, z)] = E
z∼D

[∇`(wt, z)︸ ︷︷ ︸
gradient at z

].

If we set vt = ∇`(wt, z) (for z ∼ D),
E[vt] = ∇R(wt).

Therefore we can directly do SGD on the true risk, and get a direct bound on the risk of the
estimate.

Algorithm 2: SGD for minimizing R(w)

1 Initialize w1

2 for t = 1, . . . , T do
3 z ← EX(C, D)
4 get vt = ∇`(wt, z)
5 update wt+1 = wt − ηvt

6 Output w̄ =
1

T

T∑
t=1

wt

Corollary 4. Consider a convex, ρ-Lipschitz function `(w, z). Let w∗ = arg min
w∈H

R(w). Let ‖w∗ −

w1‖ ≤ B. Then if we run SGD for T iterations with η =

√
B2

ρ2T
where T ≥ B2ρ2

ε2
, then the output

w satisfies,
E[R(w)] ≤ min

w∈H
R(w) + ε.

We conclude with some remarks on SGD:

1. SGD is implementable in the SQ model (we need to extend the SQ model to allow real-valued
queries).

2. SGD is a stable algorithm [5], and hence we can get some guarantees for its generalization
gap.

5

4 Boosting

We will discuss a new algorithmic framework now, boosting. We start by recalling our definition
of weak learning from the lecture on SQ learnability.

Definition 5 (Weak Learning). An algorithm A is a weak learner with advantage γ for class C if:
for any dist. D and any target c ∈ C, given access to EX(c,D), w.p. (1− δ), produces a hypotheses
with error(h; c,D) ≤ γ.

If A runs in time poly(d, 1/δ) and γ ≥ 1

poly(d)
, then C is efficiently weakly PAC-learnable.

In [6], Kearns and Valiant asked if weak PAC learning implies PAC learning. This was answered
positively by Freund and Schapire in [7], and the resulting Adaboost algorithm has been highly
influential both in theory and practice.

Theorem 6. If C is weakly PAC-learnable (efficiently) the C is PAC-learnable (efficiently).

Proof. The proof relies on the AdaBoost algorithm due to Freund and Schapire. We begin by
recalling our setup.

There is a training set {(x1, y1), · · · , (xn, yn)}, where xi ∈ X , yi ∈ {−1, 1}. Note that by realizabil-
ity,

∃ c ∈ C s.t.∀i yi = c(xi).

We assume there exists weak learning algorithm (WL), for C.

Algorithm 3: AdaBoost

1 D1(i) =
1

n
∀ i ∈ [n]

2 for t = 1, . . . , T do
3 Use Weak Learner (WL) on distribution Dt to get ht
4 Let εt = Px∼Dt [ht(x) = y] (εt ≤ 1− γ with probability 1− δ)

5 Choose αt =
1

2
log

(
1− εt
εt

)
6 Dt+1(i) =

Dt(i)

zt+1
=

{
e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi
=
Dt(i)

zt+1
e−αtht(xi)yi , where zt+1 is normalizing

constant

7 Output sign(H(x)) where H(x) =
T∑
t=1

αtht(x)

Some remarks about the algorithm:

1. We can assume εt ≤
1

2
− γ (by a union bound over all time steps).

2. We can emulate the example oracle EX(c,Dt), because Dt has finite support.

6

As an aside, AdaBoost fits in the “Multiplicative Weight Update” framework [8]. This is a general
framework with many algorithmic applications, all of which take the form of maintaining a distri-
bution over a certain set and use the multiplicative update rule (such as in AdaBoost) to iteratively
change these weights.

Though AdaBoost might initially seem very different from the algorithms we have seen so far in the
class, it can be shown that it is actually minimizing the exponential loss as a surrogate for 0/1 loss
in a greedy manner. Recall that for convex surrogate function φ : R → R, instead of minimizing
the 0/1 loss we minimize the loss on the surrogate,

minφ(yh(x))

With AdaBoost, we solve min
n∑
i=1

exp(−yiH(xi)) in a greedy manner.

Figure 1: exp (−x) is convex surrogate for 0/1 loss

Suppose we have found ft(x) =
t∑

τ=1

ατhτ (x). AdaBoost adds a function ht+1(x) to ft(x) which is

a solution of the following problem,

min
ht+1(x)

n∑
i=1

exp
(
− yift+1(x)

)
.

Try to verify that solving this problem yields the AdaBoost algorithm.

We now go back to proving the guarantee for AdaBoost. We will first show that AdaBoost gets
zero training error, and then show that it generalizes.

Lemma 7. For T =
1

2γ2
log(2n), the training error is 0.

Proof. Note that the training error is given by,

PD1(sign(H(x) 6= y)) =
1

n

n∑
i=1

1(sign(H(x) 6= yi)).

7

Note that
1(sign(H(x) 6= y)) ≤ e−yH(x).

Define Ht(x) =

T∑
s=t

αshs(x). Ht(x) has the following recursive form,

Ht(x) = αtht(x) +Ht+1(x)

H1(x) = H(x)

Therefore we can write the training error as,

1

n

n∑
i=1

1(sign(H(xi) 6= yi)) ≤
n∑
i=1

D1(i)e
−yiH1(xi)

=

n∑
i=1

D1(i)e
−d1yih1(xi)−yiH2(xi)

= z2

n∑
i=1

D2(i)e
−yiH2(xi)

= z2

n∑
i=1

D2(i)e
−α2yih2(xi)−yiH3(xi)

= z2z3

n∑
i=1

D3(i)e
−yiH3(xi)

...

=
T+1∏
t=2

zt

We now need to bound zt+1.

zt+1 =
n∑
i=1

Dt(i)e
−αtyiht(xi)

=
∑

i:yi=ht(xi)

Dt(i)e
−αt +

∑
i:yi 6=ht(xi)

Dt(i)e
αt

= (1− εt)e−αt + εte
αt Recall: αt =

1

2
log(

1− εt
εt

)

zt+1 = (1− εt)
√

εt
1− εt

+ εt

√
1− εt
εt
− 2
√
εt(1− εt)

Define γt =
1

2
− εt Note that γt ≥ γ:

zt+1 = 2
√

(1/2− γt)(1/2 + γt)

=
√

1− 4γ2t

≤ (e−4γ
2
t)

1
2 = e2γ

2
t ≤ e−2γ2

Therefore

T+1∏
t=1

zt ≤ e−2Tγ
2 ≤ 1

2n
if T ≥ 1

2γ2
log(2n)

8

This shows that the training error is small. What can we say about test error?

We will use our generalization bound to show that the test error is also small. Suppose that
WL(weak learning algo) always outputs a hypothesis from some class H whose VC-dim is d. Let

LC(H, T) =

{
sign(

T∑
i=1

αihi(x)) : hi ∈ H di ∈ R

}

Exercise: Show that VC-dim(LC(H, T)) ≤ c.T.d. log(T) for some constant c. (Hint: As in HW1,
Compute the growth function and use Sauer’s Lemma.)

Therefore, due to the VC-theorem,

If n ≥ c

ε

(
log(

1

δ
) + Td log(T) log(1/ε)

)
then the hypothesis produced by Ada Boost has error ≤ ε,

with probability (1− δ).

Putting in the bound of T , if n ≥ c

ε

(
log(1/δ) +

1

2γ2
log(2n)d log

(
1

2γ2
log(2n)

)
log(1/ε)

)
, we will

get error ≤ ε w.p. 1− δ.

This is satisfied for n ≥ c

ε

(
d

γ2
poly

(
log(d,

1

γ2
,
1

ε
)

)
+ log(1/δ)

)
(in general, n ≥ a log(n) is satisfied

for n ≥ O(a log(a))). This completes the proof of our theorem.

“Overfitting” and AdaBoost

In the proof of the previous theorem, the VC bound degrades with the number of steps T , i.e.
we expect poor generalization if we continue with boosting . However, in practice what is often
observed is that that the test error for boosting can go down even after training error is already
zero [9].

Figure 2: Training and test errors of AdaBoost

9

This has subsequently been explained, and it has been shows that AdaBoost maximizes some notion
of “margin” after getting perfect accuracy on training set. Informally, in the linear case the margin
is the minimum distance of any datapoint from the separating hyperplane.

Figure 3: Margin of a classifier. Adaboost prefers classifiers with larger margin, among classifiers
which get similar accuracy.

The training/test curves in Fig. 2 are also seen with deep neural networks. Recent work aims to
explain this by showing that neural networks also maximize margin [10, 11].

5 Kernels: A Brief Introduction

We consider one final algorithmic framework, kernels. To motivate kernels, let us consider linear
regression with `2 regularization:

min
w∈Rd

n∑
i=1

(
wTxi − yi

)2
+ λ||w||22.

A linear model on the original datapoints may not always be expressive enough. Therefore, we
may choose to worker with a richer set of features, which we can accomplish by mapping each data
point x ∈ Rd to features φ(x) ∈ Rm. For example,

x =

(
x1
x2

)
, φ(x) =

 x21√
2x1x2
x22

 .

The regression problem then becomes,

min
w∈Rm

n∑
i=1

(
wTφ(xi)− yi

)2
+ λ||w||22.

Let us consider two different algorithms for solving this.

10

1. Gradient descent: The gradient is given by

∇w(SRM) = 2
n∑
i=1

(
wTφ(xi)− yi

)
φ(xi) + 2λw.

Therefore GD steps take the form,

wt+1 = wt − η

(
2

n∑
i=1

(
wTφ(xi)− yi

)
φ(xi) + 2λw

)
.

If we start with initialization w1 = 0, then at any t, wt =

n∑
i=1

αiφ(xi) for some αi ∈ R.

Therefore, the predictor is a linear combination of data points.In addition, note that
the prediction at any point x is given by,

〈wt, φ(x)〉 =
n∑
i=1

αi〈φ(xi), φ(x)〉.

Therefore, the prediction only depends on the inner products between feature
vectors.

2. Suppose we find closed form solution instead of doing GD. Let

Φ∈Rn×m =


φ(x1)
φ(x2)

...
φ(xn)

 , y =

y1...
yn

 .

Then the objective is,
min
w∈Rd

||Φw − y||22 + λ||w||22

∇w|w=w∗

(
(Φw − y)T (Φw − y) + λwTw

)
= 0.

Taking the gradient and setting it to zero to find the solution,

2ΦT
(

Φw∗ − y
)

+ 2λw∗ = 0

w∗ =
(
− 1

λ

)
ΦT
(

Φw∗ − y
)

=⇒ w∗ = ΦTα

for some α ∈ Rn, i.e.
(
w∗ =

n∑
i=1

αiφ(xi)
)

, as with GD before. We can also find α by plugging

w = ΦTd back into the SRM objective,

min
α
||ΦΦTα− y||22 + λ||ΦTα||22

Let K = ΦΦT ∈ Rn×n, given by
φ(x1)
φ(x2)

...
φ(xn)


 . . .
φ(x1) φ(x2) . . . φ(xn)

. . .

 .

11

Therefore the objective becomes,

min
α
||Kα− y||22 + λαTKα

We can solve for α as follows,

∇α(||Kα− y||22 + λαTKα) = 0

⇐⇒ 2KT (Kα− y) + 2λKα = 0

⇐⇒ KT ((K + λI)α− y) = 0

⇐⇒ (K + λI)α = y

⇐⇒ α = (K + λI)−1y

=⇒ w∗ = ΦTα = ΦT (K + λI)−1y.

Note that compared to finding the regularized least squares solution (ΦTΦ + λI)−1ΦT y, it
could be more computationally efficient to find the above solution. This is because the above
solution requires finding (K+λI)−1 ∈ Rn×n which takes O(n3) time, whereas the regularized
least squares solution requires finding (ΦTΦ + λI)−1 ∈ Rm×m → O(m3) which takes O(m3)
time. For m� d, the regularized least squares solution is more expensive to compute.

Therefore, for both these algorithms, we have the property that the predictor is a linear combination
of the feature vectors of the datapoints, and because of this the predictions only depend on the
inner product between the feature vectors. A kernel is a function which is defined as the inner
product of two feature vectors.

Definition 8 (Kernel). A function k : Rd → R is called a kernel function if and only if there exists
φ : Rd → Rm, such that for any x, x′ ∈ Rd,

k(x, x′) = φ(x)Tφ(x′)

.

Let us see some examples of kernels.

Example 9. Examples of kernel functions:

1. For φ(x) =

 x21√
2x1x2
x22


φ(x)tφ(x′) = x21x

′2
1 + 2x1x2x

′
1x
′
2 + x22x

′2
2 = (x1x

′
1 + x2x

′
2)

2 = (xTx′)2

Therefore k(x, x′) = (〈x, x′〉)2, just the square of the original inner product.

2. As a different type of example, for two strings s1 and s2 let

k(s1, s2) = |{all characters which appear at least once in both s1and s2}|.

For example if s1 =“university” and s2 =“california”, then k(s1, s2) = 2. This function is a
kernel, which we can verify via the following feature mapping,

φ(s1) =


1(‘a’ appears in s1)
1(‘b’ appears in s1)

...
1(‘z’ appears in s1)

 , φ(s2) =


1(‘a’ appears in s2)
1(‘b’ appears in s2)

...
1(‘z’ appears in s2)

 .

12

For many interesting feature maps, it can be much more efficient to compute the kernel function
rather than explicitly computing the inner products between the feature vectors. This will even
be true for the string similarity kernel above, if the set of possible characters is very large but the
length of the words is small. Later, we will see that the feature map corresponding to some kernel
functions may even be infinite. Therefore, kernels can allow us to efficiently work with rich feature
maps.

The following theorem provides an equivalent characterization of kernels, and can be useful for
showing that a function is/is not a kernel.

Theorem 10 (Mercer’s theorem). Any function k is a kernel if and only if the matrix K, Kij =
k(xi, xj), is positive semi-definite (K < 0) for any n data points x1, . . . , xn (and any n). (Recall
that K < 0 if and only if vTKv ≥ 0 ∀ v).

The following properties can also be useful to verify that a function is a kernel.

Theorem 11. Properties of kernels:

1. For any f : Rd → R, k(x, x′) = f(x)f(x′) is a kernel

2. If k1(·, ·) and k2(·, ·) are kernels then the following are also kernels,
a) αk1(·, ·) + βk2(·, ·) if α, β ≥ 0
b) k1(·, ·) · k2(·, ·)

Try to verify these properties by constructing corresponding feature mappings.

6 Further reading

The discussion for SGD closely mirrors Chapter 14 of [12], and boosting is discussed in Chapter
10. There are many resources online for kernels, for example you can refer to Percy Liang’s lecture
notes.

References

[1] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

[2] Annie Marsden, Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Efficient convex opti-
mization requires superlinear memory. In Conference on Learning Theory, pages 2390–2430.
PMLR, 2022.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

13

https://web.stanford.edu/class/cs229t/notes.pdf
https://web.stanford.edu/class/cs229t/notes.pdf

[5] Moritz Hardt and Benjamin Recht. Patterns, predictions, and actions: A story about machine
learning. arXiv preprint arXiv:2102.05242, 2021.

[6] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

[7] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[8] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of computing, 8(1):121–164, 2012.

[9] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A
new explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–
1686, 1998.

[10] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

[11] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Ad-
vances in Neural Information Processing Systems, 33:17176–17186, 2020.

[12] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

14

	Strong convexity
	Stochastic Gradient Descent (SGD)
	Learning with SGD, Discussion
	Boosting
	Kernels: A Brief Introduction
	Further reading

