
CSCI699: Theory of Machine Learning Fall 2021

Lecture 11: Learning Under Random Noise & Statistical Query Learning

Instructor: Vatsal Sharan Scribe: Fatih Erdem Kizilkaya

Recap:

The last time, we saw that

– Under some cryptographic assumptions (such as the existence of a trapdoor one way function)
there exist learning problems that are hard even improperly.

– Agnostically learning even the class of halfspaces is hard over some complexity assumptions
(hardness of refuting random k-XOR).

– However, halfspaces are efficiently agnostically learnable under the uniform distribution {±1}d
or the unit sphere, or the Gaussian distribution over Rd.

– Agnostic learning allows “worst-case noise”, which makes it quite demanding. For example,
see the following theorem:

Theorem 1. There is no efficient proper learning for agnostically learning rectangles in Rd
and conjunctions, unless RP = P.

Today: We discuss two closely related models that are more resilient to “worst-case noise”. Then,
we show that conjunctions are efficiently learnable for these models.

1 Learning with Random Classification Noise (RCN)

Given a set of examples X with corresponding binary labels Y, suppose that each label is flipped
with probability η (white-noise model), i.e., only the labels are noisy. We can model this setting
using the following oracle:

Example Oracle: Given a hypothesis c(x) : X → Y and a distribution D over X , the oracle
EXη(c,D) is defined as follows:

– Draw an example x ∼ D from X

– With probability 1− η, return (x, c(x))

– With probability η, return (x, 1− c(x))

Criterion for Success: With probability 1− δ, we want to find a hypothesis h such that:

error(h; c,D) = Prx∼D[c(x) 6= h(x] ≤ ε

where c is the hypothesis that returns the true labels.
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We also restrict η to lie in [0, 1/2) since learning is impossible when η = 1/2. As η approaches 1/2
learning becomes harder, so we will give more time to the learning algorithm by allowing it to run
in factors of 1/(1− 2η).

Definition 2 (PAC Learning with RCN). Let C be a concept class and H be a hypothesis class
over X d. We say that C is efficiently PAC learnable with RCN if there exists a learning algorithm
A such that for all c ∈ C, and for all distributions D over X d, and for all ε, δ ∈ (0, 1/2) if A is given
access to EXη(c,D) and inputs ε, δ and η0 ∈ (η, 1/2), then A outputs h such that error(h; c,D) ≤ ε
with probability 1− δ (probability includes randomness in noisy labels).

We say that C is efficiently PAC learnable with RCN if A also runcs in time poly(d, 1/ε, 1/δ, 1/(1− 2η0)).

Algorithm for Learning Conjunctions

The algorithm we saw for learning conjunctions in Lecture 8 fails miserably under random noise.

We now give a robust algorithm that relies on aggregate statistics instead of a single example.

Suppose that l is a literal (x̄i or xi). We define

– P0(l) = Pra∼D[l is 0 in assignment a],

– Pbad(l) = Pra∼D[l is 0 in assignment a and the true label of a is c(a) = 1].

Note that if l is in conjunction c(x), then Pbad(l) = 0. We say that

– l is significant if P0(l) ≥ ε/8d,

– l is harmful if Pbad(l) ≥ ε/8d.

where d is the number of variables.

Claim: If h is conjunction of all significant literals that are not harmful, then error(h; c,D) ≤ ε/2.

Proof. We can decompose error(h; c,D) into (i) and (ii) as follows:

error(h; c,D) = Pra∼D[h(a) = 1 ∧ c(a) = 0]︸ ︷︷ ︸
(i)

+ Pra∼D[h(a) = 0 ∧ c(a) = 1]︸ ︷︷ ︸
(ii)

(i) This probability corresponds to the events where c(x) has a literal l that h(x) does not have
(and l is set to 0 in assignment a). Note that l cannot be a harmful literal by definition. Moreover,
since h is conjunction of all significant literals that are not harmful, l must be insignificant. Then,
since we have 2d literals (including negations), we get (i) ≤ 2d · ε/8d = ε/4.

(ii) This probability corresponds to the events where h(x) has a literal l that c(x) does not have
(and l is set to 0 in assignment a). By definition, l is a significant literal that is not harmful. So
similarly, we get (ii) ≤ 2d · ε/8d = ε/4.

Thus, error(h; c,D) = (i) + (ii) ≤ ε/2.

Note that we are still in the noiseless case. That’s why we bound error(h; c, d) by ε/2 instead of ε.
We need the remaining gap for estimating P0(l) and Pbad(l) for each literal l based on samples from
EXη(c,D), which can be done by taking a large set and get concentration with Chernoff’s bound
(left as an exercise).
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2 Statistical Query Learning

Suppose that we do not have access to the example oracle. Instead, consider the following oracle.

Statistical Query Oracle: Given a hypothesis c(x) : X → Y and a distribution D over X , the
oracle STAT(c,D) is defined as follows:

– A query to STAT(c,D) is a pair (φ, τ) where φ : X × {0, 1} → {0, 1} and τ ∈ (0, 1).

– Let Pφ = Prx∼D[φ(x, c(x)) = 1]

– STAT(c,D) returns P̂φ satisfying P̂φ ∈ [Pφ − τ, Pφ + τ ].

Examples: Consider a spam classification task. The following might be a statistical query that
we ask to the oracle:

“What fraction of e-mails labelled as spam (label is 1) have the words Urgent and Free but not
the word USC, and the numbers of words is less than or equal to 20?”

We can also estimate P0(l) from our conjunction algorithm by query φl where

φl(x, y) =

{
1 if l is 0 in a

0 otherwise

since Pφl = Ex∼D[φl(x, c(x))] = P0(l).

Similarly, we can estimate Pbad(l) from our conjunction algorithm by query φ′l where

φ′l(x, y) =

{
1 if l is 0 in a and y = 1

0 otherwise

since Pφ′l = Ex∼D[φ′l(x, c(x))] = Pbad(l).

Definition 3 (SQ Learning). Let C be a concept class and H be a hypothesis class. We say that
C is efficiently PAC learnable from statistical queries (SQ) using H, if there exists an algorithm A,
and polynomials p(·, ·), q(·, ·) and r(·, ·) such that for all c ∈ C, and for all distributions D over X d,
and for all ε ∈ (0, 1/2), if algorithm A is given access to STAT(c,D) and input ε then

– For each query (φ, θ) made by algorithm A, the predicate φ can be evaluated in time q(1/ε)
and 1/τ is bounded by r(1/ε, d).

– Algorithm A runs in time p(1/ε, d).

– Algorithm A outputs hypothesis h ∈ H such that error(h; c,D) ≤ ε.

Remark. Notice that there is no confidence parameter δ in definition of SQ learning. We used δ
before to take care of the probability of seeing a set of “bad examples”. However, the example oracle
EX(c,D) has been replaced by statistical query oracle STAT(c,D), which is deterministic.

3



Theorem 4. If a concept class C is efficiently SQ learnable using a hypothesis class H, then C is
efficiently PAC learnable using H.

Proof. Left as an exercise. (Hint: Implement STAT(c,D) using EX(c,D).)

Remark. If a concept class C is efficiently SQ learnable, then C is efficiently PAC learnable with
differential privacy.

Theorem 5. If a concept class C is efficiently SQ learnable, then C is efficiently PAC learnable
with RCN.

Theorem 6. The class of conjunctions is efficiently learnable in the SQ model. Therefore, it is
efficiently learnable with RCN.

Proof. Our conjunction learning algorithm can be implemented in the SQ model.

4


	Learning with Random Classification Noise (RCN)
	Statistical Query Learning

