
CSCI699: Theory of Machine Learning Fall 2021

Lecture 12: Learning with RCN and Statistical Learning

Instructor: Vatsal Sharan Scribe: Neel Patel

In previous class, we discussed the definition of efficient PAC learning with Random Classification
Noise and Statistical Query learning model. We can describe noisy oracle as follows:

Oracle: EXη

• Draws X ∼ D from X

• With probability (1− η), return (x, c(x)) otherwise flips the label and return (x, 1− c(x))

We can describe statistical query oracle as follows:

Oracle: Query (φ, τ)

• φ : X × {0, 1} (Query function) and τ ∈ (0, 1) (query tolerance)

• Let pφ = Pr
X∼D

[φ(X, c(X)) = 1]

• Statistical oracle returns p̂φ such that p̂φ ∈ (pφ − τ, pφ + τ)

1 SQ Learning =⇒ PAC Learning in presence of RCN

In this section, we will show that if a concept class is efficiently SQ learnable then it is also PAC
learnable. We formalize our result in the following theorem.

Theorem 1. If concept class C is efficiently SQ learnable then C is PAC learnable in the presence
of random classification noise.

Proof. In order to prove the theorem, we need to show that given access to EXη, we can simulate
STAT(c,D) oracle with bounded (low) failure probability. The key idea is that given SQ oracle,
we can divide domain X into two disjoint parts:

1. X1 : all x ∈ X such that φ(x, 0) 6= φ(x, 1), data region where output of SQ is dependent on
label.

2. X2 : all x ∈ X such that φ(x, 0) = φ(x, 1), data region where output of SQ is not dependent
on label.

We further define conditional data distributions on these defined regions. Let D1 be the conditional
distribution of x restricted to X1 with p1 = Pr

x∼D
[x ∈ X1] and D2 be the conditional distribution of
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x restricted to X2 with p2 = Pr
x∼D

[x ∈ X2]. We first decompose pφ:

pφ = EEX(c,D)[φ(x, c(x))]

= Pr
EX(c,D)

[x ∈ X1] · Pr
EX(c,D)

[φ = 1|x ∈ X1] + Pr
EX(c,D)

[x ∈ X2] · Pr
EX(c,D)

[φ = 1|x ∈ X2]

= p1 · Pr
EX(c,D)

[φ = 1|x ∈ X1] + Pr
EX(c,D)

[φ = 1 ∧ x ∈ X2]

Now, in order to prove the theorem, we need to show that we can approximate all the terms in the
above decomposition with a small approximation error using a noisy oracle. Note that φ does not
depend on the label of x in the region X2. Hence, we can approximate Pr

EX(c,D)
[φ = 1 ∧ x ∈ X2]

using noisy oracle in poly many noisy queries because the event φ = 1 is independent of the labels.

More formally, we can use rejection sampling. We sample (x ∼ D, c(x)) using noisy oracle, if x ∈ X2

and φ(x) = 1 then we accept the sample, and otherwise, we reject the sample. We can compute
fraction of accepted sample as an estimate of Pr[φ = 1 ∧ x ∈ X2]. Using concentration bounds, we

can show that our estimate has error O(τ) with O

(
1

τ2
log(1/δ′)

)
noisy queries.

Now, we can similarly compute p1 using rejection sampling and obtain similar error rate: sample
(x ∼ D, c(x)) using noisy oracle, if x ∈ X1 then we accept the sample, and otherwise, we reject the
sample. We can compute fraction of accepted sample as an estimate of p1. Using concentration

bounds, we can show that our estimate has error O(τ) with O

(
1

τ2
log(1/δ′)

)
noisy queries.

Now in order to approximate Pr
EX(c,D)

[φ = 1|x ∈ X1] = Pr
EX(c,D1)

[φ = 1], for the sake of simplicity,

we first assume that η is already known. We can decompose the probability Pr
EXη(c,D1)

[φ = 1] as

follows:

Pr
EXη(c,D1)

[φ = 1] = (1− η) Pr
EX(c,D1)

[φ = 1] + η Pr
EX(c,D1)

[φ = 0]

= (1− η) Pr
EX(c,D1)

[φ = 1] + η(1− Pr
EX(c,D1)

[φ = 1])

= η + (1− 2η) Pr
EX(c,D1)

[φ = 1]

Therefore,

Pr
EX(c,D1)

[φ = 1] =
PrEXη(c,D1)[φ = 1]− η

1− 2η

The above equation establish relation between Pr
EX(c,D1)

[φ = 1] and Pr
EXη(c,D1)

[φ = 1] which allows

us to approximate Pr
EXη(c,D1)

[φ = 1] using noisy oracle. Note that we in order to bound error by

O(τ)in the estimate of Pr
EX(c,D1)

[φ = 1], we need to bound error in Pr
EXη(c,D1)

[φ = 1] by τ(1−2η) +η.

We can again use rejection sampling to estimate Pr
EXη(c,D1)

[φ = 1] similar to earlier cases and using
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concentration bounds, we can show that the estimation error of Pr
EX(c,D1)

[φ = 1] is bounded by O(τ)

with O

(
1

τ2(1− 2η)2
log(1/δ′)

)
noisy queries.

We can repeat this for all SQ queries made by the SQ learning algorithm. We can set δ′ = δ/m
and by union bound, we can bound the failure probability by δ. However, now we have to get rid
of our earlier assumption that we know η.

Suppose, we know that η0 ≥ η (we can always assume that η ≤ 1/2 − α). Now, consider a small
∆ > 0, and construct ∆-net for all possible values of η, i.e.

Γ =
{
i ·∆ : o ≤ i ≤ η0

4

}
Try all values of η̂ ∈ Γ. We know that at least one of the values of η̂ will have a small error say
ε/100.

Note that we only need to estimate true error Pr
EX(c,D)

[h(x) 6= c(x)]. Let hi be the hypotheses

produced in i-th iteration while passing through Γ set: let γi = Pr
EXη(c,D)

[hi(x) 6= c(x)]

γi = (1− η) Pr
EX(c,D)

[h(x) 6= c(x)] + η(1− Pr
EX(c,D)

[h(x) 6= c(x))

Therefore,

Pr
EX(c,D)

[h(x) 6= c(x)] =
γi

1− 2η
− η

1− 2η
.

Hence, we can estimate γi accurately for all i, and we choose best hi then we get our required
error bound. By some cumbersome algebra, we can show that error is bounded by O(τ) in

O

(
1

∆τ2(1− 2η)2
log(m/δ)

)
noisy queries. Concluding the proof.

2 Statistical Query Learnability and SQ Dimension

In this section, we characterize the learnability using SQ algorithms. We first define uncorrelated
functions:

Definition 2. Two functions f, g defined on the same domain are uncorrelated if Pr
x∼D

[f(x) = g(x)].

Now, we are ready to define SQ dimension.

Definition 3. The SQ-dimension of a class C wrt. a distribution D over X is the size of the largest
subset C′ ⊂ C such that for all f, g ∈ C′

| Pr
x∼D

[f(x) = g(x)]− 1/2| < 1/|C ′|

Definition 4 (Weak Learning). An algorithm A is a weak learner with advantage γ for class C if:
for any dist. D and any target c ∈ C, given access to EX(c,D), w.p. (1− δ), produces a hypotheses
with error(h; c,D) ≤ γ.
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In the next lecture, we will show that weak learning implies strong PAC learning. Now, we are
ready to characterize SQ learnability for the SQ dimension.

Theorem 5. If SQ-DIMD = poly(d), then you can efficiently “weak learn” C over D (get error
rate ≤ 1/2− 1/poly(d)) using SQ-learning algorithm.

Proof. Let s =SQ-DIMD(c), let H ⊆ C be maximal subset such that ∀hi, hj ∈ H, we have∣∣∣∣Pr
D

[hi(x) = hj(x)]− 1

2

∣∣∣∣ < 1

1 + s
.

Therefore, |H| ≤ s. We try every hi ∈ H and use SQ-oracle to estimate its error.

Claim: At least one hi or (complement or negation of hi) must be a weak leaner.

Now, if target c satisfied: ∣∣∣∣Pr
D

[hi(x) = c(x)]− 1

2

∣∣∣∣ < 1

s+ 1
∀ hi ∈ H

then we can include c in the set c in the set H which is a contradiction! Hence, there exists one
weak learner in H.

Theorem 6. If SQ-DIMD > poly(d) then you cannot efficiently learn C over D by SQ-algorithms.

We will prove this theorem in the next class, however, we can use this theorem to show PARITY
functions are not efficiently SQ learnable.

Proposition 7. PARITIES are not efficiently SQ-Learnable.

Proof. We can show that any two parity functions are uncorrelated for uniform distribution over
{0, 1}d. Consider any two distinct PARITY functions Cw1(x) and Cw2(x): C(x) = Cw1(x)−Cw2(x)
(in modulo addition) is also a parity. Now, when each xi is 1 with probability 1/2, independently,
Pr
x∼U

[C(x) = 0] = Pr
x∼U

[C(x) = 1] = 1/2. This implies that Pr
x∼U

[C(x) = 0] = 1/2. Hence, PARITY

functions are not efficiently SQ-learnable.

We can show that PARITIES are efficiently PAC learnable. This shows that there exists a concept
class that is efficiently PAC learnable but not SQ learnable. Hence, efficient PAC learning does not
imply efficient SQ learnability.

Proposition 8. PARITIES are efficiently PAC learnable.

Proof. First, note that since |C| = 2d, an ERM algorithm will get error ε woth O

(
d log 1/δ

ε

)
. Now

we show that ERM can be implemented in polynomial time. Given examples from any distribution
D, {(a1, b1), . . . , (an, bn)}. It is easy to observe that ERM can be obtained by solving system of
linear equation over field F2.
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