Fall 2021

Lecture 12: Learning with RCN and Statistical Learning Instructor: Vatsal Sharan Scribe: Neel Patel

In previous class, we discussed the definition of efficient PAC learning with Random Classification Noise and Statistical Query learning model. We can describe noisy oracle as follows:

Oracle: EX^{η}

- Draws $X \sim \mathcal{D}$ from \mathcal{X}
- With probability (1η) , return (x, c(x)) otherwise flips the label and return (x, 1 c(x))

We can describe statistical query oracle as follows:

Oracle: Query (ϕ, τ)

- $\phi : \mathcal{X} \times \{0, 1\}$ (Query function) and $\tau \in (0, 1)$ (query tolerance)
- Let $p_{\phi} = \Pr_{X \sim D}[\phi(X, c(X)) = 1]$
- Statistical oracle returns \hat{p}_{ϕ} such that $\hat{p}_{\phi} \in (p_{\phi} \tau, p_{\phi} + \tau)$

1 SQ Learning \implies PAC Learning in presence of RCN

In this section, we will show that if a concept class is efficiently SQ learnable then it is also PAC learnable. We formalize our result in the following theorem.

Theorem 1. If concept class C is efficiently SQ learnable then C is PAC learnable in the presence of random classification noise.

Proof. In order to prove the theorem, we need to show that given access to EX^{η} , we can simulate STAT(c, D) oracle with bounded (low) failure probability. The key idea is that given SQ oracle, we can divide domain \mathcal{X} into two disjoint parts:

- 1. \mathcal{X}_1 : all $x \in \mathcal{X}$ such that $\phi(x, 0) \neq \phi(x, 1)$, data region where output of SQ is dependent on label.
- 2. \mathcal{X}_2 : all $x \in \mathcal{X}$ such that $\phi(x, 0) = \phi(x, 1)$, data region where output of SQ is not dependent on label.

We further define conditional data distributions on these defined regions. Let D_1 be the conditional distribution of x restricted to \mathcal{X}_1 with $p_1 = \Pr_{x \sim D}[x \in \mathcal{X}_1]$ and D_2 be the conditional distribution of

x restricted to \mathcal{X}_2 with $p_2 = \Pr_{x \sim D}[x \in \mathcal{X}_2]$. We first decompose p_{ϕ} :

$$\begin{split} p_{\phi} &= \mathbb{E}_{EX(c,D)}[\phi(x,c(x))] \\ &= \Pr_{EX(c,D)}[x \in \mathcal{X}_1] \cdot \Pr_{EX(c,D)}[\phi = 1 | x \in \mathcal{X}_1] + \Pr_{EX(c,D)}[x \in \mathcal{X}_2] \cdot \Pr_{EX(c,D)}[\phi = 1 | x \in \mathcal{X}_2] \\ &= p_1 \cdot \Pr_{EX(c,D)}[\phi = 1 | x \in \mathcal{X}_1] + \Pr_{EX(c,D)}[\phi = 1 \land x \in \mathcal{X}_2] \end{split}$$

Now, in order to prove the theorem, we need to show that we can approximate all the terms in the above decomposition with a small approximation error using a noisy oracle. Note that ϕ does not depend on the label of x in the region \mathcal{X}_2 . Hence, we can approximate $\Pr_{EX(c,D)}[\phi = 1 \land x \in \mathcal{X}_2]$ using noisy oracle in poly many noisy queries because the event $\phi = 1$ is independent of the labels. More formally, we can use rejection sampling. We sample $(x \sim \mathcal{D}, c(x))$ using noisy oracle, if $x \in \mathcal{X}_2$ and $\phi(x) = 1$ then we accept the sample, and otherwise, we reject the sample. We can compute fraction of accepted sample as an estimate of $\Pr[\phi = 1 \land x \in \mathcal{X}_2]$. Using concentration bounds, we can show that our estimate has error $O(\tau)$ with $O\left(\frac{1}{\tau^2}\log(1/\delta')\right)$ noisy queries.

Now, we can similarly compute p_1 using rejection sampling and obtain similar error rate: sample $(x \sim \mathcal{D}, c(x))$ using noisy oracle, if $x \in \mathcal{X}_1$ then we accept the sample, and otherwise, we reject the sample. We can compute fraction of accepted sample as an estimate of p_1 . Using concentration bounds, we can show that our estimate has error $O(\tau)$ with $O\left(\frac{1}{\tau^2}\log(1/\delta')\right)$ noisy queries.

Now in order to approximate $\Pr_{EX(c,D)}[\phi = 1 | x \in \mathcal{X}_1] = \Pr_{EX(c,D_1)}[\phi = 1]$, for the sake of simplicity, we first assume that η is already known. We can decompose the probability $\Pr_{EX^{\eta}(c,D_1)}[\phi = 1]$ as follows:

$$\begin{aligned} \Pr_{EX^{\eta}(c,D_1)}[\phi=1] &= (1-\eta) \Pr_{EX(c,D_1)}[\phi=1] + \eta \Pr_{EX(c,D_1)}[\phi=0] \\ &= (1-\eta) \Pr_{EX(c,D_1)}[\phi=1] + \eta (1-\Pr_{EX(c,D_1)}[\phi=1]) \\ &= \eta + (1-2\eta) \Pr_{EX(c,D_1)}[\phi=1] \end{aligned}$$

Therefore,

$$\Pr_{EX(c,D_1)}[\phi=1] = \frac{\Pr_{EX^{\eta}(c,D_1)}[\phi=1] - \eta}{1 - 2\eta}$$

The above equation establish relation between $\Pr_{EX(c,D_1)}[\phi = 1]$ and $\Pr_{EX^{\eta}(c,D_1)}[\phi = 1]$ which allows us to approximate $\Pr_{EX^{\eta}(c,D_1)}[\phi = 1]$ using noisy oracle. Note that we in order to bound error by $O(\tau)$ in the estimate of $\Pr_{EX(c,D_1)}[\phi = 1]$, we need to bound error in $\Pr_{EX^{\eta}(c,D_1)}[\phi = 1]$ by $\tau(1-2\eta) + \eta$. We can again use rejection sampling to estimate $\Pr_{EX^{\eta}(c,D_1)}[\phi = 1]$ similar to earlier cases and using concentration bounds, we can show that the estimation error of $\Pr_{EX(c,D_1)}[\phi=1]$ is bounded by $O(\tau)$

with
$$O\left(\frac{1}{\tau^2(1-2\eta)^2}\log(1/\delta')\right)$$
 noisy queries.

We can repeat this for all SQ queries made by the SQ learning algorithm. We can set $\delta' = \delta/m$ and by union bound, we can bound the failure probability by δ . However, now we have to get rid of our earlier assumption that we know η .

Suppose, we know that $\eta_0 \ge \eta$ (we can always assume that $\eta \le 1/2 - \alpha$). Now, consider a small $\Delta > 0$, and construct Δ -net for all possible values of η , i.e.

$$\Gamma = \left\{ i \cdot \Delta : o \le i \le \frac{\eta_0}{4} \right\}$$

Try all values of $\hat{\eta} \in \Gamma$. We know that at least one of the values of $\hat{\eta}$ will have a small error say $\epsilon/100$.

Note that we only need to estimate true error $\Pr_{EX(c,D)}[h(x) \neq c(x)]$. Let h_i be the hypotheses produced in *i*-th iteration while passing through Γ set: let $\gamma_i = \Pr_{EX^{\eta}(c,D)}[h_i(x) \neq c(x)]$

$$\gamma_i = (1 - \eta) \Pr_{EX(c,D)}[h(x) \neq c(x)] + \eta (1 - \Pr_{EX(c,D)}[h(x) \neq c(x))]$$

Therefore,

$$\Pr_{EX(c,D)}[h(x) \neq c(x)] = \frac{\gamma_i}{1 - 2\eta} - \frac{\eta}{1 - 2\eta}.$$

Hence, we can estimate γ_i accurately for all i, and we choose best h_i then we get our required error bound. By some cumbersome algebra, we can show that error is bounded by $O(\tau)$ in $O\left(\frac{1}{\Delta\tau^2(1-2\eta)^2}\log(m/\delta)\right)$ noisy queries. Concluding the proof.

2 Statistical Query Learnability and SQ Dimension

In this section, we characterize the learnability using SQ algorithms. We first define uncorrelated functions:

Definition 2. Two functions f, g defined on the same domain are uncorrelated if $\Pr_{x \sim D}[f(x) = g(x)]$.

Now, we are ready to define SQ dimension.

Definition 3. The SQ-dimension of a class C wrt. a distribution D over \mathcal{X} is the size of the largest subset $C' \subset C$ such that for all $f, g \in C'$

$$|\Pr_{x \sim D}[f(x) = g(x)] - 1/2| < 1/|C'|$$

Definition 4 (Weak Learning). An algorithm A is a weak learner with advantage γ for class C if: for any dist. D and any target $c \in C$, given access to EX(c, D), w.p. $(1-\delta)$, produces a hypotheses with $error(h; c, D) \leq \gamma$. In the next lecture, we will show that weak learning implies strong PAC learning. Now, we are ready to characterize SQ learnability for the SQ dimension.

Theorem 5. If SQ- $DIM_D = poly(d)$, then you can efficiently "weak learn" C over D (get error rate $\leq 1/2 - 1/poly(d)$) using SQ-learning algorithm.

Proof. Let $s = \text{SQ-DIM}_D(c)$, let $\mathcal{H} \subseteq \mathcal{C}$ be maximal subset such that $\forall h_i, h_j \in \mathcal{H}$, we have

$$\left|\Pr_{D}[h_{i}(x) = h_{j}(x)] - \frac{1}{2}\right| < \frac{1}{1+s}$$

Therefore, $|\mathcal{H}| \leq s$. We try every $h_i \in \mathcal{H}$ and use SQ-oracle to estimate its error.

Claim: At least one h_i or (complement or negation of h_i) must be a weak leaner.

Now, if target c satisfied:

$$\left|\Pr_{D}[h_{i}(x) = c(x)] - \frac{1}{2}\right| < \frac{1}{s+1} \ \forall \ h_{i} \in \mathcal{H}$$

then we can include c in the set c in the set \mathcal{H} which is a contradiction! Hence, there exists one weak learner in \mathcal{H} .

Theorem 6. If SQ- $DIM_D > poly(d)$ then you cannot efficiently learn C over D by SQ-algorithms.

We will prove this theorem in the next class, however, we can use this theorem to show PARITY functions are not efficiently SQ learnable.

Proposition 7. PARITIES are not efficiently SQ-Learnable.

Proof. We can show that any two parity functions are uncorrelated for uniform distribution over $\{0,1\}^d$. Consider any two distinct PARITY functions $C_{w_1}(x)$ and $C_{w_2}(x)$: $C(x) = C_{w_1}(x) - C_{w_2}(x)$ (in modulo addition) is also a parity. Now, when each x_i is 1 with probability 1/2, independently, $\Pr_{x \sim U}[C(x) = 0] = \Pr_{x \sim U}[C(x) = 1] = 1/2$. This implies that $\Pr_{x \sim U}[C(x) = 0] = 1/2$. Hence, PARITY functions are not efficiently SQ-learnable.

We can show that PARITIES are efficiently PAC learnable. This shows that there exists a concept class that is efficiently PAC learnable but not SQ learnable. Hence, efficient PAC learning does not imply efficient SQ learnability.

Proposition 8. PARITIES are efficiently PAC learnable.

Proof. First, note that since $|\mathcal{C}| = 2^d$, an ERM algorithm will get error ϵ woth $O\left(\frac{d \log 1/\delta}{\epsilon}\right)$. Now we show that ERM can be implemented in polynomial time. Given examples from any distribution $D, \{(a_1, b_1), \ldots, (a_n, b_n)\}$. It is easy to observe that ERM can be obtained by solving system of linear equation over field \mathbb{F}_2 .