
CSCI699: Theory of Machine Learning Fall 2021

Lecture 16

Instructor: Vatsal Sharan Scribe: Di Zhang

Theorem 1 (convergence of SGD). Let f be a convex, ρ-Lipschitz function. Let w∗ = argmin
w∈Rd

f(x)

and ∥w∗ − w1∥ = B (where w1 is the initialization). Suppose we run SGD for T steps with step

size η =

√
B2

ρ2T
and ∥vt∥ ≤ ρ for all t. Let w =

1

T

T∑
t=1

wt. Then,

E[f(w)]− f(w∗) ≤ Bρ√
T
.

Proof. Let v1:t denote the sequence v1, . . . , vt. By convexity,

Ev1:T [f(w)− f(w∗)] ≤ Ev1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
.

By the iterative update Lemma,

Ev1:T

[
1

T

T∑
t=1

⟨wt − w∗, vt⟩

]
≤ Bρ√

T
.

So we only need to show

Ev1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
≤ Ev1:T

[
1

T

T∑
t=1

⟨wt − w∗, vt⟩

]
.

Ev1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
=

1

T

T∑
t=1

Ev1:T [f(wt)− f(w∗)]

=
1

T

T∑
t=1

Ev1:t−1 [f(wt)− f(w∗)] .

SGD requires Evt [vt | wt] = ∇f(wt).

Since wt only depends on v1:t−1,

Evt [vt | v1:t−1] = ∇f(wt).

1

Ev1:T

[
1

T

T∑
t=1

f(wt)− f(w∗)

]
≤ 1

T

T∑
t=1

Ev1:t−1 [⟨wt − w∗,Evt [vt | v1:t−1]⟩]

=
1

T

T∑
t=1

Ev1:t−1 [Evt [⟨wt − w∗, vt⟩ | v1:t−1]]

=
1

T

T∑
t=1

Ev1:t−1 [⟨wt − w∗, vt⟩]

(law of iterated expectations)

=
1

T

T∑
t=1

Ev1:T [⟨wt − w∗, vt⟩]

= Ev1:T

[
1

T

T∑
t=1

⟨wt − w∗, vt⟩

]
,

and we are done.

Some more points about the convergence rate,

• Same convergence rate as GD!

• The convergence rate does not improve with the β-smoothness assumption.

• For strongly convex functions, the convergence rate goes from
1√
T

to
1

T
, we can’t get the

e−T/K rates.

So some tradeoffs in terms of cost per iteration and number of iterations.

1 Learning with SGD

Suppose we are interested in minimizing the risk

R(w) = Ez∼D[ℓ(w, z)].

Using ERM, we sample n datapoints and minimize training error. Use generalization bounds to
ensure small test error.

SGD gives a different way to look at this,

∇R(wt) = ∇Ez∼D[ℓ(wt, z)] = Ez∼D[∇ℓ(wt, z)︸ ︷︷ ︸
gradient at z

].

If we set vt = ∇ℓ(wt, z) (for z ∼ D),
E[vt] = ∇R(wt).

SGD for minmizing R(w)

2

1. Initialize w1

2. For t = 1, . . . , T :

3. z ← EX(c,D)

4. Get vt = ∇ℓ(wt, z)

5. Update wt+1 = wt − ηvt

6. Output w =
1

T

T∑
t=1

wt

Corollary 2. Consider a convex, ρ-Lipschitz function ℓ(w, z). Let w∗ = argmin
w∈H

R(w). Let

∥w∗ − w1∥ ≤ B. Then if we run SGD for T iterations with η =

√
B2

ρ2T
where T ≥ B2ρ2

ϵ2
, then the

output w satisfies,
E[R(w)] ≤ min

w∈H
R(w) + ϵ.

Note: SGD is also implementable in the SQ model (we need to extend SQ model to allow real-
valued queries).

2 Online Learning

In PAC learning/statistical learning we ask the learn to do well under probabilistic assumptions on
data (train/test data are drawn from the same distribution). We developed a theory of generaliza-
tion to understand how much an algorithm’s test accuracy can differ from its training accuracy.

In online learning, we make no probabilistic assumptions on the data. The goal is to predict well
on datapoints as we see them.

Example: Weather forecasting

• We’re interested in predicting rain/no rain.

• Every night, make prediction about next day, based on current conditions.

• Next day, we see whether or not it rained.

Note that there’s no train/test split. Every example is both a training example and a test example.
Formally:

At every time step t,

• Learner receives an input xt ∈ X .

• Makes prediction pt ∈ Y.

• Sees true label yt ∈ Y. Suffers loss ℓ(pt, yt).

For most of our discussion, think Y = {0, 1}, ℓ(pt, yt) = 1 {pt ̸= yt}.

3

Realizability

As we did in PAC learning/statistical learning, we begin with the realizability assumption on the
sequence, which says that there is some hypothesis in the hypothesis classes which correctly labels
all datapoints.

Definition 3 (Mistake bound model). Let H be a hypothesis class and A be a online learning
algorithm. Given any sequence S = (x1, h

∗(x1)), . . . , (xT , h
∗(xT)) of T labelled datapoints where

h∗ ∈ H, let MA(S) be the number of mistakes A makes on the sequence S. We denote by MA(H)
to the supremum of MA(S) over all possible S.

If there exists an algorithm A that satisfies a mistake bound of the form MA(H) ≤ B < ∞, we
say H is online learnable in the mistake bound model.

Note: B should be independent of length of sequence T . As T → ∞, average number of mistakes
(≤ B/T)→ 0.

In PAC learning, we saw that the ERM algorithm which chooses any consistent hypothesis over the
training set does well, as long as the size of the training set is large enough that the generalization
error is small. We start by defining an analogous algorithm for the online learning setup.

Alg: Consistent

1. Initialize V1 = H

2. For t = 1, . . . , T :

3. Receive xt

4. Choose any h ∈ Vt

5. Predict pt = h(xt)

6. Receive yt = h∗(xt), loss 1(pt ̸= yt)

7. Update vt+1 = {h ∈ Vt : h(xt) = yt}

Proposition 4. Let H be a finite hypothesis class. The above algorithm gets a mistake bound

Mconsistent(H) ≤ |H| − 1.

Can we do better? Yes, by quite a lot. If we refine the above algorithm to make its predictions pt
in a smarter way than choosing any consistent hypothesis, then we can improve exponentially on
the above mistake bound.

Alg: Halving

1. Initialize V1 = H

2. For t = 1, . . . , T :

4

3. Receive xt

4. Predict pt = argmax
r∈{0,1}

| {h ∈ Vt : h(xt) = r} | (if tie, pt = 1)

5. Receive yt = h∗(xt), loss 1(pt ̸= yt)

6. Update vt+1 = {h ∈ Vt : h(xt) = yt}

Proposition 5. Let H be a finite hypothesis class. Then halving algorithm satisfies the mistake
bound MHalving(H) ≤ log2(|H|).

Proof. Whenever the algorithm errors, |Vt+1| ≤
|Vt|
2

. If M is the number of mistakes

|VT+1| ≤ |H|2−M

as |VT+1| ≥ 1 =⇒ M ≤ log2(|H|).

5

	Learning with SGD
	Online Learning

