
CSCI699: Theory of Machine Learning Fall 2021

Lecture 8: Rademacher Complexity & Computational Complexity of Learning

Instructor: Vatsal Sharan Scriber: Emir Ceyani

Today

• Finish Rademacher Complexity

• Introduce a new topic: “Computational Complexity of Learning”

Recap (Rademacher Complexity)

Theorem 1 (Excess risk bounds using Rademacher). Assume that ∀z and ∀h ∈ H, we have
|`(h, z)| ≤ C. Then, the probability at last 1− δ over S ∼ Dn,

1. sup
h∈H

(R(h)− R̂s(h)) ≤ 2Es′ R(` ◦ H ◦ S′
) + c

√
2 log(1δ)

n

2. sup
h∈H

(R(h)− R̂s(h)) ≤ 2R(` ◦ H ◦ S) + 3c

√
2 log(2δ)

n

3. For h∗ = arg min
h∈H

R(h)

R(ERMH(S))−R(h∗) ≤ 2R(` ◦ H ◦ S) + 4c

√
2 log(4δ)

n

Lemma 2 (Contraction Lemma). For each i ∈ [n], let φi : R→ R be a ρ−Lipschitz function, i.e.
|φi(x) − φi(y)| ≤ ρ|x − y|, ∀x, y ∈ R. ∀a ∈ Rn, define φ(a) ∈ Rn as φ(a) = [φ1(a1), . . . , φn(an)].
For a set A, let φ ◦A = {φ(a) : a ∈ A}. then, R(φ ◦A) ≤ ρR(A).

Rademacher Complexity of Linear Classes

Lemma 3. Let S = (x1, . . . , xn) and H2 = {hw(x) =< w, x >: ||w||2 ≤ B2}. Define the operation
H2 ◦ S = {< w, x1 >, . . . , < w, xn >: ||w||2 ≤ B2}. Then, the Rademacher complexity of an

`2-bounded linear model is R ≤ B2
maxi ||xi||2√

n
.

Lemma 4. Let S = (x1, . . . , xn) and H1 = {hw(x) =< w, x >: ||w||1 ≤ B1}. Define the operation
H1 ◦ S = {< w, x1 >, . . . , < w, xn >: ||w||2 ≤ B2}. Then, the Rademacher complexity of an

`1-bounded linear model is, R ≤ B1 max
i
||xi||∞

√
2 log(2d)

n
.

1

1 Takeaways from Rademacher Complexity

1. If the loss function `(h, z) is 1-Lipschitz (e.g. hinge loss or absolute value loss), then by the
contraction lemma,

R(` ◦ H2 ◦ S) ≤ R(H ◦ S)

Now using excess risk bound, it is possible to get generalization bounds directly.

2. Note that the VC-dimension bound for linear predictors in Rd is O(d). The Rademacher
bound does not directly depend polynomially on dimension! Hence, it can be much
smaller than VC dimension.

3. Motivating idea of regularization:

• Notice H2 bound depends on B2 max
i
||xi||2. So, if we want to learn over a small `2-norm

ball, we would have better generalization. In addition, if the best possible weight has
also bounded norm bounded by B2, we also get a small approximation error. Thus, there
is a need to choose the best possible B2

• Also, H1 bound depends on B1 max
i
||xi||∞.

Say xi ∈ {±1}d =⇒ max
i
||xi||∞ = 1 & max

i
||xi||2 =

√
d. Also, w ∈ {−1, 0, 1}d and is

also r-sparse. Then, ||w||2 =
√
r & ||w||1 = r.

Thus , B1 max
2
||xi||∞ = R & B2 max

i
||xi||2 =

√
Rd. If R << d, working over `1 could

be much better than working over `2 ball.

Now, we finish our studies over the statistical complexity of learning and move into computational
complexity of learning.

2 Computational Complexity of Learning

1. What about the running time of the algorithm?

2. What can we learn in polynomial time?

Before answering these questions, let us recall PAC leanability:

Definition 5 (PAC learnability). A hypothesis class H is PAC-learnable if there exists a learning
algorithm with the following property:

∀ε, δ ∈ (0, 1), ∀D ∼ X and ∀h ∈ H, when the algorithm is given nH(ε, δ) samples drawn from D
and labelled by h, the algorithm produces a hypothesis ĥ such that with probability 1− δ, R(ĥ) ≤ ε.

Notice that the probability is over randomness in training set, and any internal algorithmic ran-
domness.

2

Next, we need to answer the question: what does it mean to learn in polynomial time?
Another question is with respect to what parameter do we define polynomial?

Question: Polynomial in size of training set?

This is a bad idea because there may be cases that algorithm receives much more (or much less)
data than it needs to learn, but it runs in polynomial time with respect to the size of original data.
Just using this notion does not take account to how much of the data we use.

To account the cost for training data, let us think that there is an entity (which is a black-box
function) which outputs insightful advises to learner. Here, it’s the datapoints. Formally speaking,
we define an example oracle as follows:

Definition 6 (Example Oracle). For any distribution D over X & hypothesis h(x) : X → Y, we
define Ex(L,D) as an example oracle executing the following steps in order:

• Draws x ∼ D

• Labels y = h(x)

• Outputs (x, h(x))

With this definition in mind, we can define sample complexity as the number of example oracle
calls! Each oracle call costs unit time to the learner.

Our notion of polynomial time is polynomial in the instance size. We will typically think of the
instance space as being X d. where X is {±}d or Rd. Therefore, we want the algorithm to run in
time polynomial in the feature dimension d.

However, in reality, we want to also allow the runtime to depend polynomially on the in represen-
tation size of the hypothesis class.

Question: What is the representation size of hypothesis class?

Answer: The number of bits required to write down any hypothesis in hypothesis class.
For example, in a feed-forward neural network with instance size d,

representation size = #edges×#bits required to store each weight

However, for all hypothesis classes we consider in class,

representation size = poly(instance size of datapoints)

Therefore for all problems that we consider,

poly(representation size, instance size) = poly(instance size)

Therefore, we only consider polynomial in instance size.

3

Definition 7 (Efficient PAC Learning). A hypothesis class H is PAC-learnable if there exists a
learning algorithm A with the following property:

∀ε, δ ∈ (0, 1), ∀D ∼ X d(where X is typically 0, 1 ∈ R) and ∀h∗ ∈ H, if A is given access to example
oracle Ex(h∗,D), with probability 1− δ, it outputs a hypothesis h ∈ H with R(ĥ) ≤ ε.

H is efficiently PAC learnable if running time of A is polynomial in d,
1

ε
,
1

δ
.

Next, our focus will be on learning Boolean functions, with input domain X d = {0, 1}d.

Conjunctions

The class of all conjunctions on d Boolean literals (x1, x2, . . . xd). As an example,

x1 ∧ x̄3 ∧ x4

represents the hypothesis class which is 1 if and only if x1 = 1, x3 = 0, and x4 = 1.

Question: Can we design a polynomial (d,
1

ε
,
1

δ
) time algorithm for learnable conjuctions?

Theorem 8. The class of conjunctions on Boolean literals is efficiently PAC learnable.

Algorithm 1 Algorithm to learn Boolean Conjunctions

Proof. 1: Set h = x1 ∨ x̄1 ∨ x2 ∨ x̄2 . . . xd ∨ x̄d
2: for i = 1 to n do do
3: (ai, yi)← Ex(h∗, D)
4: if ti = 1 then
5: Drop each x̄j from h if (ai)y = 1
6: Drop each xj from h if (ai)y = 0
7: end if
8: end for

Claim: The algorithm given above is an ERM over the class of conjunctions.

We need to show that the algorithm gets 0 misclassification error over training examples (a1, y1), . . . , (an, yn)

Claim: The set of literals appearing in h at any time, contains the set of literals in target hypothesis
h∗.

Proof. In the beginning, h contains all possible conjunctions. We remove a literal from h if it was
get to 0 in an example. Such a literal cannot appear in h∗.

As the set of literals appearing in h at any time, contains the set of literals in target hypothesis h∗:
h(a) = 1 =⇒ h∗(a) = 1, ∀a ∈ {0, 1}d. h correctly classifies all training data labelled as 0.

Moreover, after getting any new data point ai with yi = 1, h updates to predict 1 on the datapoint
and it will never be updated predict 0 on ai, as literals are only removed. Thus Algorithm 2 is an
ERM.

4

Now, we use ERM result for finite hypothesis classes as |H| ≤ 22d. The result for learnability
of finite hypothesis classes implies that we can learn with error ε with failure probability δ with

O(
d log(1δ)

ε
) samples.

Intractability of learning 3-Term Disjunctive Normal Forms(DNFs)

3-Term-DNFd = {T1 ∨ T2 ∨ t3|Tiis a conjunction on {x1, . . . xd}}

Theorem 9. 3-Term-DNF formulae are not efficiently PAC-learnable unless RP=NP.

Before proving the theorem, let us recap the fundamental concepts in computational complexity.

2.1 Computational Complexity Review

Definition 10 (NP). A decision problem C is in NP if there exists a polynomial-time algorithm
A such that for every instance x of C,

• If x evaluates to“yes”, then ∃y, |y| ≤ poly(|x|), A(x, y) = 1

• If x evaluates to “no”, then ∀y, |y| ≤ poly(|x|), A(x, y) = 0

Intuition A: verifier , y: certificate / witness

Consider 3SAT

3SATd =(x1 ∨ x̄2 ∨ x5)∧
(x5 ∨ x6 ∨ x̄7)∧
...

(xd−2 ∨ x̄d−1 ∨ xd)

Certificate y: Satisfying assignment. it is easy to check if an assignment is valid, There always
exists a certificate if instance is satisfiable, no certificate if not.

Definition 11 (RP). A decision problem C is in RP if there exists a randomized polynomial-time
algorithm A such that for every instance x of C,

• If x evaluates to ”yes”, A outputs ”yes” w.p. ≥ 2

3

• If x evaluates to ”no”, A outputs ”no” w.p. 1.

Intuition C is in RP if there exists a polynomial-time algorithm with one-sided error. 3SAT instance

is satisfiable, output TRUE w.p. ≥ 2

3
. otherwise, always output FALSE.

It is widely believed that RP 6= NP.

5

Definition 12 (NP-Completeness). A decision problem C is in NP-Complete if,

• C is in NP

• Every decision problem C ′ in nP can be reduced to C in polynomial time.

6

	Takeaways from Rademacher Complexity
	Computational Complexity of Learning
	Computational Complexity Review

