CSCI699: Theory of Machine Learning	Fall 2021
Lecture 9: Intractability of learning 3-DNF	
Instructor: Vatsal Sharan Scribe: J	liahao Wen

1 Proof of hardness of learning 3-term DNF

Intuition: Reduce a NP-complete problem to the problem of learning 3-term DNF. The key property we want from mapping is that the answer to decision problem is "Yes" if and only if a set of labelled examples is consistent with some hypothesis $h \in \mathcal{H}$.

Definition 1. Let $U = \{(a_1, y_1), ..., (a_n, y_n)\}$ be labelled set of instances. Let h be any hypothesis. We say that h is consistent with U if $\forall i \in [n], h(a_i) = y_i$.

This recipe of showing hardness is quite generally useful. We now state the NP-complete problem we use.

Problem: Graph 3-Coloring

Given an undirected graph G = (V, E) with vertex set V = 1, ..., d, is there any assignment from every vertex $v \to \{R, B, G\}$, such that for every edge $e \in E$, the endpoints of e are assigned different colors?

Figure 1: An example of graph 3-Coloring.

It should be noted that graph 3-Coloring is NP-complete.

Reduction

We will show that given G, we can construct U_G , such that U_G is consistent with some $h \in \mathcal{H}$ if and only if G is 3-Colorable. Let's see why this is sufficient.

Define:

- D: uniform on U_G .
- $E_x(h^*, D)$: pick a point uniformly at random from U_G .

•
$$\delta: \frac{1}{3}$$
.
• $\epsilon: \frac{1}{2|U_G|}$.

Algorithm 1

- 1: Given instance of 3-Color, construct set U_G .
- 2: Use PAC-learning algorithm A for 3-term DNF with $E_x(h^*, D), \delta = \frac{1}{3}, \epsilon = \frac{1}{2|U_C|}$.
- 3: Let h be the 3-term DNF returned by A.
- 4: if h is consistent with U_G then
- 5: return "Yes".
- 6: else
- 7: return "No".
- 8: **end if**

Note that D is uniform over set of size $|U_G|$, $\epsilon = \frac{1}{2|U_G|}$ and $R(h) < \epsilon$, so we can infer that h is consistent with set U_G .

If A succeeds, it must return consistent hypothesis. Therefore, all that remains is to show we can construct U_G such that there is some consistent hypothesis $h \in \mathcal{H}$ if and only if G is 3-Colorable.

Constructing U_G

 $U_G = U_G^+ \cup U_G^ U_G^+$: positive examples U_G^- : negative examples

To construct U_G^+ , for every vertex *i* in the graph, we create a positively labelled example which is 0

at the index i and 1 everywhere else. For the example shown in fig. 1, we construct U_G^+ as follows:

$$\begin{split} |U_G^+| &= |V| \\ (v(1), +1) &= ((0, 1, 1, 1, 1, 1), +1) \\ (v(2), +1) &= ((1, 0, 1, 1, 1, 1), +1) \\ \vdots \\ (v(6), +1) &= ((1, 1, 1, 1, 1, 0), +1) \end{split}$$

To construct U_{G}^{-} , for every edge (i, j) in the graph, we create a negatively labelled example which is 0 at the coordinates i and j and 1 everywhere else. For fig. 1, we have

$$\begin{split} |U_G^-| &= |E| \\ (e(1,2),-1) &= ((0,0,1,1,1,1),-1) \\ (e(1,4),-1) &= ((0,1,1,0,1,1),-1) \\ \vdots \\ (e(5,6),-1) &= ((1,1,1,1,0,0),-1) \end{split}$$

Part I: 3-Colorable \rightarrow there exists a consistent 3-term DNF

3-term DNF: $\phi = T_R \cup T_B \cup T_G$

- R: set of all vertices colored red.
- B: set of all vertices colored blue.
- G: set of all vertices colored green.

 T_R : conjunction of all variables whose index doesn't appear in R. $\rightarrow T_R = x_2 \cap x_3 \cap x_4 \cap x_5$. Similarly, we can get $T_B = x_1 \cap x_3 \cap x_6$ and $T_G = x_1 \cap x_2 \cap x_4 \cap x_5 \cap x_6$.

For each $i \in R$, example v(i) must satisfy T_R because x_i doesn't appear in T_R .

Further, no $e(i,j) \in U_G^-$ can satisfy T_R . Both *i* and *j* cannot be colored red at the same time, one of x_i or x_j must appear in T_R . But e(i,j) has 0 values for both x_i and x_j . So, T_R cannot be satisfied by e(i,j). The same argument follows for T_B and T_G , and we have therefore shown that $\phi = T_R \cup T_B \cup T_G$ is consistent.

Part II: 3-term DNF \rightarrow 3-colorable

 $\phi = T_R \cup T_B \cup T_G$

For a vertex i, if v(i) satisfies T_R , color i red. Similar with T_B and T_G . (Break any ties arbitrarily.)

Since formula is consistent, every v(i) must satisfy at least one of T_R, T_G, T_B . So every vertex is assigned a color.

Claim 2. The coloring is valid 3-Coloring.

Proof. If i and $j(i \neq j)$ are assigned the same colors (say red), both v(i) and v(j) satisfy T_R .

$$v(i) = (1, \dots, 0, \dots, 1, \dots, 1)$$

$$v(j) = (1, \dots, 1, \dots, 0, \dots, 1)$$

$$e(i, j) = (1, \dots, 0, \dots, 0, \dots, 1)$$

Since *i*-th bit of v(i) is 0 and *i*-th bit of v(j) is 1, we can infer that neither x_i nor \bar{x}_i appears in T_R . We can see e(i, j) and v(j) only differs in *i*-th coordinate. If v(j) satisfies T_R , so does e(i, j). Then e(i, j) should be labelled positive. So $e(i, j) \notin U_G^-$ and $(i, j) \notin E$.

2 Using 3-CNF formulae to avoid intractability

So far, we restricted the learning algorithm to output a hypothesis from the same class it was learning.

What if we allow the algorithm to output a hypothesis from a different, more expressive class?

Distributive law:

$$(u\cap v)\cup (w\cap x)=(u\cup w)\cap (u\cup x)\cap (v\cup w)\cap (v\cup x)$$

We can represent any 3-term $DNF_d \phi = T_1 \cup T_2 \cup T_3$ by a $3 - CNF_d \phi = \bigcap_{u \in T_1, v \in T_2, w \in T_3} (u \cup v \cup w)$. This is a 3-CNF (conjunctive normal form).

Theorem 3. The class of 3-CNF formulae is efficiently PAC-learnable.

Proof. We will reduce the problem of PAC learning 3-CNF formulae to the problem of PAC learning conjunctions.

Idea: Regard 3-CNF formulae as a conjunction over a new and larger variable set.

Transformation: For every triple of literals, u, v, w over the original variable set $\{x_1, \ldots, x_d\}$. The new variable set contains a variable $y_{u,v,w} = u \cup v \cup w$. When u = v = w, $y_{u,v,w} = u$. So all original variable are in the new set. The number of variables should be $(2d)^3$, $O(d^3)$.

Transforming oracles: For any assignment $a \in \{0, 1\}^d$ to original variable, we can in $O(d^3)$ time compute assignment to new variable set $\{y_{u,v,w}\}$.

Note that any 3-CNF over x_1, \ldots, x_d is equivalent to a conjunction over $\{y_{u,v,w}\}$. (Replacing any clause $u \cup v \cup w$ by $y_{u,v,w}$.)

Then we can run algorithm for conjunctions. We can transform the output h' of the algorithm back to a 3-CNF h, by expanding any occurrence of $y_{u,v,w}$ by $(u \cup v \cup w)$.

Claim 4. If h^* and D are the target 3-CNF formula and the distribution over $\{0,1\}^d$, and $h^{*'}$ and D' are the corresponding conjunction over $y_{u,v,w}$ and the corresponding distribution over $y_{u,v,w}$, then if h' has errors $\leq \epsilon$ with respect to $h^{*'}$ and D', then h has errors $\leq \epsilon$ with respect to h^* and D.

Proof. We simply note that our transformation of instances is one \rightarrow one.

If
$$a_1 \to a'_1$$
 and $a_2 \to a'_2$
 $a_1 \neq a_2 \implies a'_1 \neq a'_2$.

Therefore, our transformation preserves the error with respect to the original and transformed instances. $\hfill \square$

This completes our polynomial time reduction.

Important takeaway: The choice of representation/hypothesis can make the difference between efficient algorithms and intractability. Going to more expressive hypothesis class (3-term DNF \rightarrow 3-CNF) makes learning efficient! Statistically, learning over a richer hypothesis class can never help if you know your target hypothesis lies in smaller class, but computationally, the picture is very different!