
CSCI699: Theory of Machine Learning Fall 2021

Lecture 9: Intractability of learning 3-DNF

Instructor: Vatsal Sharan Scribe: Jiahao Wen

1 Proof of hardness of learning 3-term DNF

Intuition: Reduce a NP-complete problem to the problem of learning 3-term DNF. The key
property we want from mapping is that the answer to decision problem is ”Yes” if and only if a set
of labelled examples is consistent with some hypothesis h ∈ H.

Definition 1. Let U = {(a1, y1), ..., (an, yn)} be labelled set of instances. Let h be any hypothesis.
We say that h is consistent with U if ∀ i ∈ [n], h(ai) = yi.

This recipe of showing hardness is quite generally useful. We now state the NP-complete problem
we use.

Problem: Graph 3-Coloring

Given an undirected graph G = (V,E) with vertex set V = 1, . . . , d, is there any assignment from
every vertex v → {R,B,G}, such that for every edge e ∈ E, the endpoints of e are assigned different
colors?

Figure 1: An example of graph 3-Coloring.

It should be noted that graph 3-Coloring is NP-complete.

1



Reduction

Graph G Set UG of positive and negative labelled examples

Polynomial time

We will show that given G, we can construct UG, such that UG is consistent with some h ∈ H if
and only if G is 3-Colorable. Let’s see why this is sufficient.

Define:

• D: uniform on UG.

• Ex(h∗, D): pick a point uniformly at random from UG.

• δ:
1

3
.

• ε:
1

2|UG|
.

Algorithm 1

1: Given instance of 3-Color, construct set UG.

2: Use PAC-learning algorithm A for 3-term DNF with Ex(h∗, D), δ =
1

3
, ε =

1

2|UG|
.

3: Let h be the 3-term DNF returned by A.
4: if h is consistent with UG then
5: return ”Yes”.
6: else
7: return ”No”.
8: end if

Note that D is uniform over set of size |UG|, ε =
1

2|UG|
and R(h) < ε, so we can infer that h is

consistent with set UG.

If A succeeds, it must return consistent hypothesis. Therefore, all that remains is to show we can
construct UG such that there is some consistent hypothesis h ∈ H if and only if G is 3-Colorable.

Constructing UG

UG = U+
G ∪ U

−
G

U+
G : positive examples

U−G : negative examples

To construct U+
G , for every vertex i in the graph, we create a positively labelled example which is 0

2



at the index i and 1 everywhere else. For the example shown in fig. 1, we construct U+
G as follows:

|U+
G | = |V |

(v(1),+1) = ((0, 1, 1, 1, 1, 1),+1)

(v(2),+1) = ((1, 0, 1, 1, 1, 1),+1)

...

(v(6),+1) = ((1, 1, 1, 1, 1, 0),+1)

To construct U−G , for every edge (i, j) in the graph, we create a negatively labelled example which
is 0 at the coordinates i and j and 1 everywhere else. For fig. 1, we have

|U−G | = |E|
(e(1, 2),−1) = ((0, 0, 1, 1, 1, 1),−1)

(e(1, 4),−1) = ((0, 1, 1, 0, 1, 1),−1)

...

(e(5, 6),−1) = ((1, 1, 1, 1, 0, 0),−1)

Part I: 3-Colorable → there exists a consistent 3-term DNF

3-term DNF: φ = TR ∪ TB ∪ TG

• R: set of all vertices colored red.

• B: set of all vertices colored blue.

• G: set of all vertices colored green.

TR: conjunction of all variables whose index doesn’t appear in R. → TR = x2 ∩ x3 ∩ x4 ∩ x5.
Similarly, we can get TB = x1 ∩ x3 ∩ x6 and TG = x1 ∩ x2 ∩ x4 ∩ x5 ∩ x6.

For each i ∈ R, example v(i) must satisfy TR because xi doesn’t appear in TR.

Further, no e(i, j) ∈ U−G can satisfy TR. Both i and j cannot be colored red at the same time,
one of xi or xj must appear in TR. But e(i, j) has 0 values for both xi and xj . So, TR cannot be
satisfied by e(i, j). The same argument follows for TB and TG, and we have therefore shown that
φ = TR ∪ TB ∪ TG is consistent.

Part II: 3-term DNF → 3-colorable

φ = TR ∪ TB ∪ TG

For a vertex i, if v(i) satisfies TR, color i red. Similar with TB and TG. (Break any ties arbitrarily.)

Since formula is consistent, every v(i) must satisfy at least one of TR, TG, TB. So every vertex is
assigned a color.

Claim 2. The coloring is valid 3-Coloring.

3



Proof. If i and j(i 6= j) are assigned the same colors (say red), both v(i) and v(j) satisfy TR.

v(i) = (1, . . . , 0, . . . , 1, . . . , 1)

v(j) = (1, . . . , 1, . . . , 0, . . . , 1)

e(i, j) = (1, . . . , 0, . . . , 0, . . . , 1)

Since i-th bit of v(i) is 0 and i-th bit of v(j) is 1, we can infer that neither xi nor x̄i appears in
TR. We can see e(i, j) and v(j) only differs in i-th coordinate. If v(j) satisfies TR, so does e(i, j).
Then e(i, j) should be labelled positive. So e(i, j) /∈ U−G and (i, j) /∈ E.

2 Using 3-CNF formulae to avoid intractability

So far, we restricted the learning algorithm to output a hypothesis from the same class it was
learning.

What if we allow the algorithm to output a hypothesis from a different, more expressive class?

Distributive law:

(u ∩ v) ∪ (w ∩ x) = (u ∪ w) ∩ (u ∪ x) ∩ (v ∪ w) ∩ (v ∪ x)

We can represent any 3-term DNFd φ = T1∪T2∪T3 by a 3−CNFd φ = ∩u∈T1,v∈T2,w∈T3(u∪v∪w).
This is a 3-CNF (conjunctive normal form).

Theorem 3. The class of 3-CNF formulae is efficiently PAC-learnable.

Proof. We will reduce the problem of PAC learning 3-CNF formulae to the problem of PAC learning
conjunctions.

Oracle for 3-CNF Oracle for conjunctions

Transform output back to 3-CNF Give to PAC learning algorithm for conjunctions

Idea: Regard 3-CNF formulae as a conjunction over a new and larger variable set.

Transformation: For every triple of literals, u, v, w over the original variable set {x1, . . . , xd}.
The new variable set contains a variable yu,v,w = u ∪ v ∪ w. When u = v = w, yu,v,w = u. So all
original variable are in the new set. The number of variables should be (2d)3, O(d3).

Transforming oracles: For any assignment a ∈ {0, 1}d to original variable, we can in O(d3) time
compute assignment to new variable set {yu,v,w}.

Note that any 3-CNF over x1, . . . , xd is equivalent to a conjunction over {yu,v,w}. (Replacing any
clause u ∪ v ∪ w by yu,v,w.)

4



Then we can run algorithm for conjunctions. We can transform the output h′ of the algorithm back
to a 3-CNF h, by expanding any occurrence of yu,v,w by (u ∪ v ∪ w).

Claim 4. If h∗ and D are the target 3-CNF formula and the distribution over {0, 1}d, and h∗′ and
D′ are the corresponding conjunction over yu,v,w and the corresponding distribution over yu,v,w,
then if h′ has errors ≤ ε with respect to h∗′ and D′, then h has errors ≤ ε with respect to h∗ and D.

Proof. We simply note that our transformation of instances is one → one.

If a1 → a′1 and a2 → a′2

a1 6= a2 =⇒ a′1 6= a′2.

Therefore, our transformation preserves the error with respect to the original and transformed
instances.

This completes our polynomial time reduction.

Important takeaway: The choice of representation/hypothesis can make the difference between
efficient algorithms and intractability. Going to more expressive hypothesis class (3-term DNF →
3-CNF) makes learning efficient! Statistically, learning over a richer hypothesis class can never help
if you know your target hypothesis lies in smaller class, but computationally, the picture is very
different!

5


	Proof of hardness of learning 3-term DNF
	Using 3-CNF formulae to avoid intractability

