CSCI 567 Discussion Linear Algebra

(Slides adapted from Bhavya Vasudeva and Sampad Mohanty's slides for CSCl567 in 2022 Fall)

Mengxiao Zhang

2024.1.12

Outline

- Basic Concepts and Notation
. Matrix Multiplications
- Operations and Properties
- Matrix Calculus

Basic Concepts and
 Notation

Basic Notation

- By $x \in \mathbb{R}^{n}$, we denote a vector with n entries.

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- By $A \in \mathbb{R}^{m \times n}$, we denote a matrix with m rows and n columns.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a^{1} & a^{2} & \cdots & a^{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
--- & a_{1}^{T} & --- \\
-- & a_{2}^{T} & --- \\
& \vdots & \\
--- & a_{m}^{T} & ---
\end{array}\right]
$$

Special Matrices

$$
\begin{gathered}
\begin{array}{c}
\text { Identity matrix } \\
I_{n} \in \mathbb{R}^{n \times n}
\end{array} \\
{\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right] \quad \begin{array}{c}
\begin{array}{c}
\text { Diagonal matrix } \\
\\
=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)
\end{array} \\
\end{array} \quad\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \ddots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & d_{n}
\end{array}\right]}
\end{gathered}
$$

Property: for all $A \in \mathbb{R}^{m \times n}, A I_{n}=A=I_{m} A$

Clearly, $I=$ $\operatorname{diag}(1,1, \ldots, 1)$

Matrix Multiplication

Vector-Vector Product

Inner Product / Dot Product

$$
\begin{gathered}
x^{T} y \in \mathbb{R}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
\frac{y_{1}}{y_{2}} \\
\vdots \\
y_{n}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i} . \\
\text { Intuitio } \\
\left.x^{T} y=\text { (Length of prbjected } x\right) \cdot(\text { Length of } \\
y)
\end{gathered}
$$

Vector-Vector Product

Outer Product

$$
\begin{array}{cc}
x y^{T} \in \mathbb{R}^{m \times n}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right] \\
{\left[\begin{array}{ccccc}
x_{1} & x_{1} & \cdots & x_{1} \\
y_{1} & \vdots & y_{2} & \vdots & \ddots
\end{array} \bar{y}_{n} \vdots\right.} \\
x_{m} & x_{m}
\end{array} \cdots
$$

Matrix-Vector Product

View 1: Write A by rows

Set of inner products with each row vector

Matrix-Vector Product

$$
\begin{gathered}
\text { View 2: Write } A \text { by } \\
\text { columns } \\
y=A x=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
a^{1} & a^{2} & \ldots & a^{n} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
a^{1} \\
1
\end{array}\right] x_{1}+\left[\begin{array}{c}
1 \\
a^{2} \\
1
\end{array}\right] x_{2}+\ldots+\left[\begin{array}{c}
1 \\
a^{n} \\
1
\end{array}\right] x_{n} .
\end{gathered}
$$

Linear combination of column vectors

Vector-Matrix Product

View 1: Write A by columns

Set of inner products with each column vector

Vector-Matrix Product

View 2: Write A by rows

$$
\begin{aligned}
y^{T} & =x^{T} A=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]\left[\begin{array}{ccc}
--- & a_{1}^{T} & -- \\
---a_{2}^{T} & -- \\
\vdots & \\
--a_{m}^{T} & ---
\end{array}\right] \\
& =x_{1}\left[\begin{array}{lll}
--- & a_{1}^{T} & ---
\end{array}\right]+x_{2}\left[\begin{array}{lll}
--- & a_{2}^{T} & --
\end{array}\right]+\ldots+x_{m}\left[\begin{array}{lll}
--- & a_{m}^{T} & ---
\end{array}\right]
\end{aligned}
$$

Linear combination of row vectors

Matrix-Matrix Multiplication

> View 1: Set of inner products

$$
\begin{aligned}
& C \in \mathbb{R}^{m \times n} \quad c_{j}=a_{i}^{T} b_{j}
\end{aligned}
$$

Matrix-Matrix Multiplication

View 2: Sum of outer products

$$
\begin{gathered}
\underline{C}=A B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a^{1} & a^{2} & \cdots & a^{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
--- & b_{1}^{T} & --- \\
--- & b_{2}^{T} & --- \\
\vdots & \\
--- & b_{n}^{T} & ---
\end{array}\right]=a^{1} b_{1}^{T}+a^{2} b_{2}^{T}+\cdots a^{n} b_{n}^{T}=\sum_{i=1}^{n} a^{i} b_{i}^{T} \\
a_{i i} b_{\hat{\imath}}^{\top}
\end{gathered}
$$

Matrix-Matrix Multiplication

Properties

- Associative: $(A B) C=A(B C)$.
. Distributive: $A(B+C)=A B+A C$
- In general, not commutative; it can be the case that $A B \neq B A$.
- Counterexample: $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] . A B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ but $B A=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$

Exercise
$A \underline{v}=\lambda \hat{\imath}$

- Suppose x_{1}, \ldots, x_{N} are all D-dimensional vectors and $X \in \mathbb{R}^{N \times D}$ is a matrix where the $n^{\text {th }}$ row is x_{n}^{T}. Then which of the following identities are correct?
A. $X^{\top} X=\sum_{n=1}^{N} x_{n} x_{n}^{\top}$

$$
X^{\top} \in \mathbb{R}^{D X N}
$$

B. $X^{\top} X=\sum_{n=1}^{N} \underbrace{D \times 1}_{n} x_{n}^{\top} x_{n}$
C. $X X^{\top}=\sum_{n=1}^{N} x_{n} x_{n}^{\top}$
C. $\underline{X X}^{\top}=\sum_{n=1}^{N} x_{n} x_{n}^{\top}$
D. $X X^{\top}=\sum_{n=1}^{N} x_{n}^{\top} x_{n}$

$$
\begin{aligned}
\left.\underline{\left(x^{\top} x\right.}\right)_{i j} & =\sum_{n=1}^{N}\left(x^{\top}\right)_{i n}(x)_{n j} \quad x_{n}=\left[\begin{array}{c}
x_{n 1} \\
\vdots \\
x_{n} \phi
\end{array}\right]\left[\begin{array}{lll}
x_{n 1} & \cdots & \left.x_{n g}\right)
\end{array}\right] \\
& =\sum_{n=1} x_{n i} x_{n j}
\end{aligned}
$$

$$
\left(\sum_{n=1}^{N} x_{n} x_{n}^{\top}\right)_{i j}=\sum_{n=1}^{N}\left(x_{n} x_{n}^{\top}\right)_{i j}=\sum_{n=1}^{N}\left(x_{n i} x_{n j}\right)
$$

$$
\begin{aligned}
\left(x x^{\top}\right)_{i j} & =\sum_{k=1}^{D} x_{i k} \cdot\left(x^{\top}\right)_{k j} \quad \Rightarrow\left[\begin{array}{ccc}
x_{i}^{\top} x_{1} & x_{1}^{\top} x_{2} & \ldots \\
\vdots & x_{i}^{\top} x_{n} \\
\vdots & & \vdots \\
x_{i}^{\top} x_{1} & \cdots & x_{n}^{\top} x_{n}
\end{array}\right] \\
& =\sum_{k=1}^{D} x_{i k} \cdot x_{j k}=x_{i}^{\top} x_{j}
\end{aligned}
$$

Operations and Properties

Transpose

The transpose of a matrix results from 'flipping' the rows and columns.
AEWH
s.

- Properties:
- $\left(A^{\top}\right)^{\top}=A$
$\begin{aligned} & \text { - }\left(A^{\top}\right)^{\top}=A \\ & \text { - } \frac{(A B)^{\top}=B^{\top} A^{\top}}{(A+B)^{\top}=A^{\top}+B^{\top}}\end{aligned} \quad\left(B^{\top} A^{\top}\right)_{i j}=\sum_{d=1}^{D}\left(B^{\top}\right)_{i d} \cdot\left(A^{\top}\right)_{d j}$

$$
=\sum_{x=1}^{1} B_{d i} \cdot A_{j d} .
$$

- If $A=A^{\top}$, then A is a symmetric matrix
- If $A=-A^{\top}$, then A is an anti-symmetric matrix

Trace

The trace of a square matrix is the sum of its diagonal elements

$$
\operatorname{tr} A=\sum_{i=1}^{n} A_{i i}
$$

Properties $\left(A, B, C \in \mathbb{R}^{n \times n}\right)$:

$$
\begin{aligned}
& \operatorname{tr}(A B) \\
= & \sum_{i=1}^{n}(A B)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}-B_{j i}
\end{aligned}
$$

- $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\top}\right)$
- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(\alpha A)=\alpha \cdot \operatorname{tr}(A)$

$$
\begin{aligned}
& =\sum_{j=1}^{n} \sum_{i=1}^{n} B_{j i} A_{i j} \\
& =\sum_{j=1}^{n}(B A)_{j j}=\operatorname{tr}(B A)
\end{aligned}
$$

- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
- $\operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$

Inverse of a Square Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n}$, denoted A^{-1}, is the unique matrix such that $A^{-1} A=I_{n}=A A^{-1}$
- A must be full rank for its inverse to exist
- Properties (suppose that A and B are invertible): $B^{-1} A^{-1} A B$
- $\left(A^{-1}\right)^{-1}=A$
$B^{-1} A^{-1}(A B)=I$
$=B^{-1} I B$
- $(A B)^{-1}=B^{-1} A^{-1}$
(AB) $B^{-1} A^{-1}=I$
$=B^{-1} \beta=1$
- $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}$, denoted by $A^{-\top}$

Exercise

- Which identities are NOT correct for real-valued matrices A, B, and C ? Assume that inverse exists and multiplications are legal.
A. $(A B)^{-1}=B^{-1} A^{-1}$

B: $(I+A)^{-1}=I-A$

$$
(I-A)(I+A)=I-A \frac{A}{}+I A-A^{2}=I-A^{2}
$$

C. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

区. $(A B)^{\top}=A^{\top} B^{\top}$

$$
=\underline{B^{\top}} \underline{A}^{\top}
$$

Matrix Calculus

Gradient

- Suppose $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ is a scalar function that takes as input a matrix $A \in \mathbb{R}^{m \times n}$
- The gradient of f with respect to A is the matrix of partial derivatives in $\mathbb{R}^{m \times n}$.

$$
\frac{\partial f}{\partial A_{i j}} \quad \nabla_{A} f(A)=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1 n}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \frac{\vdots}{2} & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

Gradient

- If the input is just a vector $x \in \mathbb{R}^{n}$,

$$
\frac{\partial(f+g)}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}+\frac{\partial g}{\partial x_{1}}
$$

$$
\underline{\nabla_{x} f(x)}=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \quad \sigma g=\left[\begin{array}{l}
\frac{\partial g(x)}{\partial x_{2}} \\
?
\end{array}\right]
$$

- Properties of partial derivatives extend here (can be derived via scalar derivatives):
- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$
- For $t \in \mathbb{R}, \nabla_{x}(t f(x))=t \nabla_{x} f(x)$

Gradient

Visual Example

$$
\nabla_{x} f(x)=\left[\begin{array}{l}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}}
\end{array}\right]
$$

Hessian

- Suppose $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is a scalar function that takes as input a vector $x \in \mathbb{R}^{n}$
- The Hessian of f with respect to x is the second-order partial derivative matrix in $\mathbb{R}^{n \times n}$:
- It is symmetric given the continuity of second-order partial derivative.

Examples: Gradient of a Linear Function

- For $x \in \mathbb{R}^{n}$, let $f(x)=b^{\top} x$ for some known vector $b \in \mathbb{R}^{n}$. Then,

$$
\begin{aligned}
& f\left(x_{1}-\alpha_{n}\right) \quad f(x)=\sum_{i=1}^{n} b_{i} x_{i} \quad\left(\nabla f\left(x_{1}\right)_{i}=\frac{\partial f}{\partial x_{i}}=\underline{b_{i}}\right. \\
& \frac{\partial f(x)}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k} \\
& \nabla_{x} b^{T} x=(b)
\end{aligned}
$$

- This gives:
- Analogous to single variable calculus, where $\frac{\partial(a x)}{\partial x}=a$

Exercise

- Which of the following are correct chain rules: $\left(g, g_{1}, \ldots, g_{d}\right.$ are functions from \mathbb{R} to \mathbb{R} ?

$$
g(\omega)=\omega^{2} \quad f(x)=x^{2}
$$

A. For a composite function $\underline{f(g(w)),}, \frac{\partial f}{\partial w}=\frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial w}$

$$
\frac{\partial f}{\partial g}=2 g(w)=2-w^{2}
$$

B. X For a composite function $f(g(w)), \frac{\partial f}{\partial w}=\frac{\partial f}{\partial g}+\frac{\partial g}{\partial w}$

$$
\frac{\partial S}{\partial \omega}=2-\omega
$$

D. For a composite function $f\left(g_{1}(w), \ldots, g_{d}(w)\right), \frac{\partial f}{\partial w}=\sum_{i=1}^{d} \frac{\partial f}{\partial g_{i}} \cdot \frac{\partial g_{i}}{\partial w}$

$$
f(x-y)=x+1 / y
$$

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\partial\left(w w^{2}+\frac{1}{w^{3}}\right) \\
& =2 w-\frac{3}{w^{4}} .
\end{aligned}
$$

Exercise

$$
(A x)_{i}=\frac{\sum_{j=1}^{n} A_{i j} x_{j}}{\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} A_{i j} x_{j}}
$$

- A function $f: \mathbb{R}^{n \times 1} \mapsto \mathbb{R}$ is defined as $f(x)=x^{\top} A x+\underline{b}^{\top} x$ for some $b \in \mathbb{R}^{n \times 1}$ and $A \in \mathbb{R}^{n \times n}$. What is the derivative $\nabla f(x)$?
A. $\left(A+A^{\top}\right) x+b$
B. $2 A^{\top} x+b$

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} \bar{x}_{i} x_{j} A_{i j}^{\downarrow}+\sum_{i=1}^{n} b_{i} x_{i}
$$

C. $2 A x+b$

$$
\left(\frac{\partial f}{\partial \alpha_{i}}=\left(\left(A+A^{\top} \mid x\right)_{i}+b_{i}\right.\right.
$$

D. $2 A x+x$

$$
2 x_{i-A_{i i}}+\sum_{j=1}^{n} \xrightarrow[\left(A_{i j}+A_{i j}+A_{i j}\right) x_{j}]{x_{i}}
$$

Gradient of a Quadratic Function

- For $x \in \mathbb{R}^{n}$, let $f(x)=x^{\top} A x$ for some known matrix $A \in \mathbb{R}^{n \times n}$. Then,

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

- Using previous slides, product rule for $f(x)=g(x)^{\top} x$, with $g(x)=A^{\top} x$:

$$
\begin{aligned}
\nabla_{x} f(x) & =\nabla_{x}^{T} g(x) x+\nabla_{x} x^{T} g(x) \\
& =\left(A^{T}\right)^{T} x+I^{T} A^{T} x \\
& =\left(A+A^{T}\right) x
\end{aligned}
$$

- This gives the Hessian:

$$
\nabla_{x}^{2} f(x)=A+A^{T}
$$

Exercise

- A function $f: \mathbb{R}^{n \times 1} \mapsto \mathbb{R}$ is defined as $f(w)=\ln \left(1+e^{-w^{\top} x}\right)$ for some $x \in \mathbb{R}^{n \times 1}$. What is the derivative $\nabla_{w} f(w)$?

$$
g(w)=e^{-h(w)} \quad h(w)=\omega^{\top} x
$$

A. $-\frac{w}{1+e^{w^{\top} x}}$

$$
f(w)=\ln (1+g(w))
$$

B. $-\frac{x}{1+e^{w^{\top} x}}$
C. $-\frac{w}{1+e^{-w^{\top} x}}$
D. $-\frac{x}{1+e^{-w^{\top} x}}$

$$
\frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial h} \cdot \frac{\partial h}{\partial w}
$$

$$
\frac{1}{1+g(\omega)} \cdot-e^{-h(\omega)} \cdot x
$$

$$
=\frac{1}{1+e^{-\omega^{\top} x}} \cdot-e^{-\omega^{\top} x} \cdot x=\frac{-x}{1+e^{\omega^{\top} x}}
$$

Convexity

- A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, a scaler function that takes as input a vector $x \in \mathbb{R}^{n}$, is convex if for any $x_{1}, x_{2} \in \mathbb{R}^{n}$ and any $t \in[0,1]$

$$
f\left(\underline{t x_{1}+(1-t) x_{2}}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

- Feasible domain \mathbb{R}^{n} can be replaced by any subset of \mathbb{R}^{n}
- Decide whether $f(x)$ is convex:
- By definition
- If $f(x)$ is second-order differentiable,
- $\nabla_{x}^{2} f(x)$ is positive semi-definite $\Leftrightarrow f(x)$ is convex
- A function f is concave if $-f$ is convex.

Exercise

- Suppose $a \in \mathbb{R}^{n \times 1}$ is an arbitrary vector. Which one of the following functions in NOT convex:
A. $f(x)=\sum_{i=1}^{n}\left|x_{i}\right|$

$$
x \quad y \quad l a \in[0,1]
$$

$$
|a|+|b| \geqslant|a+b|
$$

B. $f(x)=\sum_{i=1}^{n} a_{i} x_{i}$

$$
t f(x)+(1-t)
$$

$$
x=(1,0)
$$

$$
\geqslant \sum_{i=1}^{n} \mid \underline{x_{i}+(1-t) y_{i} \mid}
$$

C. $f(x)=\min _{i \in\{1,2, \ldots, n\}} a_{i} x_{i}$
D. $f(x)=\sum_{i=1}^{n} \exp \left(x_{i}\right)$

$$
\left.c_{i}\right) \text { Hf(x) }=\left[\quad \operatorname{diag}\left(e^{x_{i}} \ldots e^{x_{n}}\right)\right.
$$

Exercise

- For a differential function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, which of the following statements are correct
A. If x^{\star} is a minimizer of f, then $\nabla f\left(x^{\star}\right)=0$
B. If x^{\star} is a maximizer of f, then $\nabla f\left(x^{\star}\right)=0$
C. If $\nabla f\left(x^{\star}\right)=0$, then x^{\star} is a minimizer of f.
D. If $\nabla f\left(x^{\star}\right)=0$, then x^{\star} is a maximizer of f.

Questions?

