
CSCI567: Machine Learning USC, Spring 2024

Homework 2
Instructor: Vatsal Sharan Due: February 21st by 11:59 pm PT

A reminder on collaboration policy and academic integrity: Our goal is to maintain an optimal learning envi-
ronment. You can discuss the homework problems at a high level with other groups, but you should not look at any
other group’s solutions. Trying to find solutions online or from any other sources for any homework or project is
prohibited, will result in zero grade and will be reported. To prevent any future plagiarism, uploading any material
from the course (your solutions, quizzes etc.) on the internet is prohibited, and any violations will also be reported.
Please be considerate, and help us help everyone get the best out of this course.

Please remember the Student Conduct Code (Section 11.00 of the USC Student Guidebook). General principles of
academic honesty include the concept of respect for the intellectual property of others, the expectation that individual
work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own
academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected
to understand and abide by these principles. Students will be referred to the Office of Student Judicial Affairs and
Community Standards for further review, should there be any suspicion of academic dishonesty.

Total points: 70 points (and 5 Bonus Points)

Notes on notation:

• Unless stated otherwise, scalars are denoted by small letter in normal font, vectors are denoted by small letters
in bold font and matrices are denoted by capital letters in bold font.

• ||.|| means L2-norm unless specified otherwise i.e. ||.|| = ||.||2

Instructions
We recommend that you use LaTeX to write up your homework solution. However, you can also scan handwritten
notes. We will announce detailed submission instructions later. Skeleton code for the programming questions has
been provided alongside the homework announcement, in the form of Jupyter notebooks. All plots and discussion
(e.g. “comment on...”, “discuss...”, etc.) requested in the coding questions should be included in the submitted PDF,
not (only) in the Jupyter notebooks.

1

Theory-based Questions

Problem 1: Support Vector Machines (19pts)
Consider a dataset consisting of points in the form of (x, y), where x is a real value, and y ∈ {−1, 1} is the class label.
There are only three points (x1, y1) = (−1, −1), (x2, y2) = (1,−1), and (x3, y3) = (0, 1), shown in Figure 1.

Figure 1: Three data points considered in Problem 1

1.1 (2pts) Can these three points in their current one-dimensional feature space be perfectly separated with a linear
classifier? Why or why not?

1.2 (3pts) Now we define a simple feature mapping ϕ(x) = [x, x2]T to transform the three points from one-
dimensional to two-dimensional feature space. Plot the transformed points in the new two-dimensional feature space.
Is there a linear model wTx + b for some w ∈ R2 and b ∈ R that can correctly separate the three points in this new
feature space? Why or why not?

1.3 (2pts) Given the feature mapping ϕ(x) = [x, x2]T , write down the 3×3 kernel/Gram matrix K for this dataset.

1.4 (4pts) Now write down the primal and dual formulations of SVM for this dataset in the two-dimensional feature
space. Note that when the data is separable, we set the hyperparameter C to be +∞ which makes sure that all slack
variables (ξ) in the primal formulation have to be 0 (and thus can be removed from the optimization).

1.5 (5pts) Next, solve the dual formulation exactly (note: while this is not generally feasible, the simple form of
this dataset makes it possible). Based on that, calculate the primal solution.

1.6 (3pts) Plot the decision boundary (which is a line) of the linear model w∗Tx + b∗ in the two-dimensional
feature space, where w∗ and b∗ are the primal solution you got from the previous question. Then circle all support
vectors. Finally, plot the corresponding decision boundary in the original one-dimensional space (recall that the deci-
sion boundary is just the set of all points x such that w∗Tϕ(x) + b∗ = 0).

Problem 2: Kernel Composition (6pts)
Prove that if k1, k2 : Rd × Rd → R are both kernel functions, then k(x,x′) = k1(x,x

′)k2(x,x
′) is a kernel function

too. Specifically, suppose that ϕ1 and ϕ2 are the corresponding mappings for k1 and k2 respectively. Construct the
mapping ϕ that certifies k being a kernel function.

2

Programming-based Questions
A reminder of the instructions for the programming part. To solve the programming based questions, you need to
first set up the coding environment. We use python3 (version ≥ 3.7) in our programming-based questions. There are
multiple ways you can install python3, for example:

• You can use conda to configure a python3 environment for all programming assignments.
• Alternatively, you can also use virtualenv to configure a python3 environment for all programming assignments

After you have a python3 environment, you will need to install the following python packages:

• numpy
• matplotlib (for you plotting figures)
• scikit-learn (only for Problem 5)

Note: You are not allowed to use other packages, such as tensorflow, pytorch, keras, scipy, etc. to help you im-
plement the algorithms you learned. If you have other package requests, please ask first before using them. Note that
you will be using scikit-learn in the provided code for Problem 5; but you are not allowed to use scikit-learn for the
remaining problems. Along with this PDF, we have provided skeleton code for each problem to get you started; please
see the homework announcement. The skeleton code contains all imports you should need. If you feel the need to
import another package, please refer to the guidelines above.

You can find all the necessary starter code and data at https://vatsalsharan.github.io/spring24/
hw2_code.zip.

Problem 3: Regularization (26pts + 5pts Bonus)
This problem is a continuation of the linear regression problem from the previous homework (HW1 Problem 5). Let
us recall the setup. Given d-dimensional input data x1, . . . , xn ∈ Rd with real-valued labels y1, . . . , yn ∈ R, the goal
is to find the coefficient vector w that minimizes the sum of the squared errors. The total squared error of w can be
written as f(w) =

∑n
i=1 fi(w), where fi(w) = (wTxi − yi)

2 denotes the squared error of the ith data point. We
will refer to f(w) as the objective function for the problem.

Last homework, we considered the scenario where the number of data points was much larger than the number of
dimensions and hence we did not worry too much about generalization. (If you remember, the gap between training
and test accuracies in 5.1 of the last HW was not too large). We will now consider the setting where d = n, and
examine the test error along with the training error.

The provided skeleton code generates the training data and test data for you, and contains skeleton functions/loops
as well as plotting code. For each problem subpart, you will need to fill in each TODO item under the corresponding
header in the ipynb (e.g. for 3.1 below, fill in all TODOs under the 3.1 header in the ipynb file).

3.1 (2pts) We will first setup a baseline, by finding the test error of the linear regression solution w = X−1y
without any regularization. This is the closed-form solution for the minimizer of the objective function f(w). (Note
the formula is simpler than what we saw in the last homework because now X is square as d = n). Report the training
error and test error of this approach, averaged over 10 trials. For better interpretability, report the normalized error
f̂(w) rather than the value of the objective function f(w), where we define f̂(w) as

f̂(w) =
∥ Xw − y ∥2

∥ y ∥2
.

Note on averaging over multiple trials: We’re doing this to get a better estimate of the performance of the algo-
rithm. To do this, simply run the entire process (including data generation) 10 times, and find the average value of
f̂(w) over these 10 trials.

3.2 (7pts) We will now examine ℓ2 regularization as a means to prevent overfitting. The ℓ2 regularized objective
function is given by the following expression:

m∑
i=1

(wTxi − yi)
2 + λ∥w∥22.

3

https://docs.conda.io/en/latest/
https://virtualenv.pypa.io/en/stable/
https://vatsalsharan.github.io/spring24/hw2_code.zip
https://vatsalsharan.github.io/spring24/hw2_code.zip

As discussed in class, this has a closed-form solution w = (XTX+ λI)−1XTy. Using this closed-form solution,
present a plot of the normalized training error and normalized test error f̂(w) for λ = {0.0005, 0.005, 0.05, 0.5, 5, 50, 500}.
As before, you should average over 10 trials. Discuss the characteristics of your plot, and also compare it to your an-
swer to (3.1).

The following questions explore the concept of implicit regularization. This is a very active topic of research, with the
idea being that optimization algorithms such as SGD can themselves act like regularizers (in the sense that they prefer
the solutions to the regularized problems instead of just the original problem). There’s no one correct answer we’re
looking for in many of these questions, and idea is to make you think about what is happening and report your findings.

3.3 (7pts) Run stochastic gradient descent (SGD) on the original objective function f(w), with the initial guess of
w set to be the all 0’s vector. Run SGD for 1,000,000 iterations for each different choice of the step size, {0.00005,
0.0005, 0.005}. Report the normalized training error and the normalized test error for each of these three settings,
averaged over 10 trials. How does the SGD solution compare with the solutions obtained using ℓ2 regularization?
Note that SGD is minimizing the original objective function, which does not have any regularization. In Part (3.1) of
this problem, we found the optimal solution to the original objective function with respect to the training data. How
does the training and test error of the SGD solutions compare with those of the solution in (3.1)? Can you explain
your observations? (It may be helpful to also compute the normalized training and test error corresponding to the true
coefficient vector w∗, for comparison.)

3.4 (10pts) We will now examine the behavior of SGD in more detail. For step sizes {0.00005, 0.005} and
1,000,000 iterations of SGD,

(i) Plot the normalized training error vs. the iteration number. On the plot of training error, draw a line parallel to
the x-axis indicating the error f̂(w∗) of the true model w∗.

(ii) Plot the normalized test error vs. the iteration number. Your code might take a long time to run if you compute
the test error after every SGD step—feel free to compute the test error every 100 iterations of SGD to make the
plots.

(iii) Plot the ℓ2 norm of the SGD solution vs. the iteration number.

Comment on the plots. What can you say about the generalization ability of SGD with different step sizes? Does the
plot correspond to the intuition that a learning algorithm starts to overfit when the training error becomes too small,
i.e. smaller than the noise level of the true model so that the model is fitting the noise in the data? How does the
generalization ability of the final solution depend on the ℓ2 norm of the final solution?

(Bonus) 3.5 (5pts) We will now examine the effect of the starting point on the SGD solution. Fixing the step size at
0.00005 and the maximum number of iterations at 1,000,000, choose the initial point randomly from the d-dimensional
sphere with radius r = {0, 0.1, 0.5, 1, 10, 20, 30} (to do this random initialization, you can sample from the standard
Gaussian N(0, I), and then renormalize the sampled point to have ℓ2 norm r). Plot the average normalized training
error and the average normalized test error over 10 trials vs r. Comment on the results, in relation to the results from
part (3.2) where you explored different ℓ2 regularization coefficients. Can you provide an explanation for the behavior
seen in this plot?

Deliverables for Problem 3: Completed ipynb notebook with each TODO filled in. Training and test error for
part 3.1. Plots for part 3.2, 3.4 and 3.5. Training and test error for different step sizes for part 3.3. Explanation for
parts 3.2, 3.3, 3.4, 3.5. All discussion and plots requested should be included in the submitted PDF—not (only) the
jupyter notebook.

4

Problem 4: Logistic Regression (11 pts)
In this problem we will consider a simple binary classification task. We are given d-dimensional input data x1, · · · , xn ∈
Rd along with labels y1, · · · , yn ∈ {−1, +1}. Our goal is to learn a linear classifier sign(wTx) to classify the dat-
apoints x. We will find w by minimizing the logistic loss. The total logistic loss for any w can be written as
f(w) = 1

n

∑n
i=1 fi(w), where fi(w) = log

(
1 + exp(−yiw

Txi)
)

denotes the logistic loss of the ith data point
(xi, yi). We will refer to f(w) as the objective function for the problem.

The provided skeleton code generates the training and test data. The data consists of points drawn from a Gaussian
distribution with mean [0.12, 0.12, ..., 0.12] ∈ Rd for the class labelled as +1. Similarly, points are drawn from a
Gaussian distribution with mean [−0.12,−0.12, ...,−0.12] ∈ Rd for the class labelled as −1. The data is then split
such that 80% of the points are in the training data and the remaining 20% form the test data.

In this part you will implement and run stochastic gradient descent to solve for the value of w that approximately
minimizes f(w) over the training data. Recall that in stochastic gradient descent, you pick one training datapoint at
random from the training data, say (xi, yi), and update your current value of w according to the gradient of fi(w).
Run stochastic gradient descent for 5000 iterations using step sizes {0.0005, 0.005, 0.05}.

4.1 (7pts) As the algorithm proceeds, compute the value of the objective function on the train and test data at each
iteration. For this part, you will need to fill in sigmoid and sgd functions in the skeleton code. For now, you only
need to compute and return the tr obj vals (training objective values) and obj vals (test objective values). Run
the following lines to plot the objective function value on the training data vs. the iteration number for all 3 step sizes.
On the same graph, you will plot the objective function value on the test data vs. the iteration number for all 3 step
sizes. (The deliverable is a single graph with 6 lines and a suitable legend). How do the objective function values on
the train and test data relate with each other for different step sizes? Comment in 3-4 sentences.

4.2 (2pts) So far in the problem, we’ve minimized the logistic loss on the data. However, remember from class
that our actual goal with binary classification is to minimize the classification error given by the 0/1 loss, and logistic
loss is just a surrogate loss function we work with. We will examine the average 0-1 loss on the test data in this part
(note that the average 0-1 loss on the test data is just the fraction of test datapoints that are classified incorrectly). In
sgd, compute and return the average 0-1 loss on the test data (loss01 vals), and use the following lines of code
to plot these values vs. the iteration number for all 3 step sizes on the same graph. Also report the step size that had
the lowest final 0-1 loss on the test set and the corresponding value of the 0-1 loss.

4.3 (2pts) Comment on how well the logistic loss act as a surrogate for the 0-1 loss.

Deliverables for Problem 4: Completed ipynb notebook with each TODO filled in. Plot (with 6 lines) and
associated discussion for 4.1. Plot (with 3 lines) and associated discussion for 4.2. Discussion for 4.3. All discussion
and plots requested should be included in the submitted PDF—not (only) the jupyter notebook.

5

Problem 5: Classifier Comparison (8 pts)
In this part, we will compare the behaviour of Logistic Regression to SVMs with Linear and Radial Basis Function
(RBF) kernels. You can find the code in the zip file for the programming questions.

Take some time to understand the code. Running the code will create 3 datasets: MOON, CIRCLES and LIN-
EARLY SEPARABLE, train 6 classifiers on each dataset, and generate a graph with 6 × 7 grid of scatter plots. The
first column displays the data while the remaining columns display the learned decision boundary of 6 classifiers. The
number in the bottom right of each plot shows the classifier accuracy. Odd rows correspond to the training data while
even rows correspond to the test data for each dataset. For the following questions, explain your observations in 2-3
lines.

5.1 (2pts) Notice that MOON and CIRCLES are not linearly separable. Do linear classifiers do well on these?
How does SVM with RBF kernel do on these? Comment on the difference.

5.2 (2pts) Try various values of the penalty term C for the SVM with linear kernel. On the LINEARLY SEPARABLE
dataset, how does the train and test set accuracy relate to C? On the LINEARLY SEPARABLE dataset, how does the
decision boundary change?

5.3 (2pts) Try various values of the penalty term C for the SVM with RBF kernel. How does the train and test set
accuracy relate to C? How does the decision boundary change?

5.4 (2pts) Try various values of C for Logistic Regression (Note: C is the inverse regularization strength). Do
you see any effect of regularization strength on Logistic Regression? Hint: Under what circumstances do you expect
regularization to affect the behavior of a Logistic Regression classifier?

Deliverables for Problem 5: Answers for parts 5.1-5.4. All answers should be included in the submitted PDF—
not (only) the code.

6

