CSCI567: Machine Learning USC, Spring 2024

Homework 1

Instructor: Vatsal Sharan Due: February 7 by 11:59 pm PST

We would like to thank previous 567 staff, and Gregory Valiant (Stanford) for kindly sharing many of the problems
with us.

A reminder on collaboration policy and academic integrity: Our goal is to maintain an optimal learning envi-
ronment. You can discuss the homework problems at a high level with other groups, but you should not look at any
other group’s solutions. Trying to find solutions online or from any other sources for any homework or project is
prohibited, will result in zero grade and will be reported. To prevent any future plagiarism, uploading any material
from the course (your solutions, quizzes etc.) on the internet is prohibited, and any violations will also be reported.
Please be considerate, and help us help everyone get the best out of this course.

Please remember the Student Conduct Code (Section 11.00 of the USC Student Guidebook). General principles of
academic honesty include the concept of respect for the intellectual property of others, the expectation that individual
work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own
academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected
to understand and abide by these principles. Students will be referred to the Office of Student Judicial Affairs and
Community Standards for further review, should there be any suspicion of academic dishonesty.

Instructions

We recommend that you use LaTeX to write up your homework solution. However, you can also scan handwritten
notes. The homework will need to be submitted on Gradescope. While submitting on Gradescope, please make
sure to select your project partner and correctly mark the pages for the answer to each question.

Theory-based Questions

Problem 1: Perceptron Convergence (20pts)

Recall the perceptron algorithm that we saw in class. The perceptron algorithm comes with strong theory, and you
will explore some of this theory in this problem. We begin with some remarks related to notation which are valid
throughout the homework. Unless stated otherwise, scalars are denoted by small letters in normal font, vectors are
denoted by small letters in bold font, and matrices are denoted by capital letters in bold font.

Problem 1 asks you to show that when the two classes in a binary classification problem are linearly separable
(with definition explained later), then the perceptron algorithm will provably converge. For the sake of this problem,
we define convergence as predicting the labels of all training instances perfectly. The perceptron algorithm is described
in Algorithm It gets access to a dataset of n instances (x;, y;), where x; € R? and y; € {—1,1}. It outputs a linear
classifier w.

Algorithm 1 Perceptron

while not converged do
Pick a data point (x;, y;) uniformly randomly
Make a prediction § = sgn(w?'x;) using current w
if § # y; then
W — W + ¥;X;
end if
end while

Assume there exists an optimal hyperplane W, ||Wop||2 = 1 and some > 0 such that y; - (wg;}[xi) >v,Vi €
{1,2,...,n}. Additionally, assume ||x;||2 < R, Vi € {1,2,...,n} for some R > 0. Following the steps below, show
2

that the perceptron algorithm makes at most —- errors, and therefore the algorithm must converge.

1.1 (7pts) Show that if the algorithm makes a mistake, the update rule moves it towards the direction of the optimal
weights w,. Specifically, denoting explicitly the updating iteration index by k, the current weight vector by wy,, and
the updated weight vector by wy, 41, show that, if y;(w} x;) < 0, we have

W£+1Wopt > waopt + /[Wopt|2- (1)
Ans. Because of the perceptron algorithm’s update rule, we know
Wit1 = Wi + ¥iX; 2)
Now, we take the inner product of both sides of Eq. |Z|With Wopts
WZ+1W0pt = WZ;Wopt + in?WOpt 3)
By the assumption we have for w,, we get

WerlWopt 2 szopt + Y (4)
= W Wopt + V|| Wopt||2 (.. Since |[Wopll2 = 1)
Rubric: (1) Get the idea of using Eq. |Z| (3pt). (2) Get the remaining proof correct (4pt).
1.2 (5pts) Show that the length of updated weights does not increase by a large amount. In particular, show that if
yi(wlx;) <0, then
[Wirill3 < llwi]l3 + R?. (5)

Ans.
[Wrrall3 = W;£+1Wk+1
= (Wi +yix;)" (Wi + ¥ix;) (... Using Eq. [)
= [will3 + 2pwiixi + yixxi (©)
< ||will3 + 2yiwiEx; + R? (... Since ||x;|2 < R, Vi € {1,2,...,n})
< ||will3 + R? (... Since y;wix; < 0)

Rubric: (1) Get the idea of using Eq. [2|and correctly expand the equation (2pt). (2) Correctly using ||x;|2 < R
(1.5pt) (3) Correctly using property of y; w7 x; < 0 (1.5pt)

1.3 (6pts) Assume that the initial weight vector wy = 0 (an all-zero vector). Using results from the previous two
parts, show that for any iteration k£ + 1, with M being the total number of mistakes the algorithm has made for the first
k iterations, we have

YM < |[Wigall2 < RVM.)

Hint: use the Cauchy-Schwartz inequality: a’b < ||a||z||b]|2.
Ans. Here, we repeatedly apply results from 1.1 1.2 from & = 1 to k = k. Using 1.1, we will get:
T T ,
Wi 1 Wopt > Wy Wopt +]\/['7||Wopt||2- (8)

Since wy = 0, so we get:
W Wopt > M| wop 2. ®)

Then, we apply Cauchy-Schwartz inequality to get:
My [|Woptlle < [|Wr1l[2]|Woptll2- (10)

Then, we are done with the inequality on the left-hand side.

Next, we use 1.2 and the property wy = 0 to get,
[Wis1ll3 < [lwoll3 + MR* = MR?. (11)

Then, we are done with the inequality on the right-hand side.
Rubric: (1) Inequality on the left-hand side (3pt). (2) Inequality on the right-hand side (3pt).

1.4 (2pts) Use 1.3 to conclude that M < R?/~?2. Therefore the algorithm can make at most k2 /v? mistakes (note
that there is no direct dependence on the dimensionality of the datapoints).

From 1.3, we know:
yM < RV M. (12)

We divide /M for both side, and get: R/y > v/ M, hence get R? /v* > M
Rubric: 2pt for this question.

Additional Note:

We can also use another perspective to prove the convergence. The basic idea is that the angle between wy, and
Wopt Will become smaller and smaller when k£ becomes larger. Additionally, the largest angle we need to “correct” is
no larger than 90 degrees. Hence, there’s a finite number of updates. To get the angle is become smaller and smaller,
we can first calculate the bound of the dot product between wj, and wy; (1.1). Then we use 1.2 to get the squared
norm of wy, increases at most linearly in the number of total updates. By combining the two, we can show that the
cosine of the angle between wy, and w,,; has to decrease by a finite increment due to each update.

Following this idea, we can calculate the cosine between wy, and w,,,; as:

wl v T -
Wi W W Wi W W,
COS(Wk7W0pl) = k+1 "7 opt > k 0P2l +’7|l 0P1H2 > k op[;_’y” 0p[||2 (13)
[Wit1ll2[[Wopt[2 [Will5 + R2||Wopi|2 VER? || Wopt |2
Iterating k& from k& = 0O for the numerator, we get:
My||w
coS(Wi, Wopt) Y Wopll2 a4

> [N 7optli2
\ MRQHWOPt||2

Since cosine is bounded by 1, so we can get the same conclusion.

Problem 2: Learning rectangles (16pts+8pts Bonus)

An axis aligned rectangle classifier is a classifier than assigns the value 1 to a point if and only if it is inside a certain
rectangle. Formally, given real numbers a; < by,az < by, define the classifier f(4, 5, a,,6,) ON an input x with
coordinates (z1,z2) by

1 ifalgxlgblandaggxggbg
—1 otherwise.

f(a11b17a27b2)(x17x2) = {

The function class of all axis-aligned rectangles in the plane is defined as
Foe = {far braz,b0) (@1, 22) 1 a1 < byyan < bo}.

We will assume that the true labels y of the data points (x,y) are given by some axis-aligned rectangle (this is the
realizability assumption discussed in class). The goal of this question is to come up with an algorithm which gets
small classification error with respect to any distribution D over (x, y) with good probability.

The loss function we use throughout the question is the 0-1 loss. It will be convenient to denote a rectangle
marked by corners (a1,b1,ag,b2) as B(ay, b1, a2,b2). Let B* = B(aj,bj,al,bs) be the rectangle correspond-
ing to the function f(4x b a3 b5) Which labels the datapoints (meaning that for all (x,y) drawn from distribution D,
flarbr,az.05)(X) = y). Let S = {(xi, i), € [n]} be a training set of n samples drawn i.i.d. from D. Please see Fig.
[T for an example.

A
! - —
b + :
| I
U T
1 +
1 1 —
— : 1+
1 | £
: e 1 +
1 1
- 1 H —
: L +
i ! Bg
& |
K B - T
: 1 B =B(a1, 1,a2,b2)
1
O T e >
:— -I* 1 I; X1
Looa @4 bi
v

Figure 1: Learning axis-aligned rectangles in two dimensions, here + (red) denotes datapoints in training set S with
label 1 and — (green) denotes datapoints with label -1. The true labels are given by rectangle B* (solid blue line), with
everything outside B* being labelled negative and inside being labelled positive. Bg (solid black line) is the rectangle
learned by the algorithm in Part (a). By (dashed black line) is defined in Part (c).

2.1 (4pts) We will follow the general supervised learning framework from class. For a function fq, b, a,,b,)» define
the empirical risk with respect to 0-1 loss as ﬁ(f(ahbh%b,z)) = > i1 I fla1.,b1,a2,65) (Xi) # wi}. Given the 0-1 loss,
and the function class of axis-aligned rectangles, we want to find an empirical risk minimizer. Consider the algorithm
which returns the smallest rectangle enclosing all positive examples in the training set. Prove that this algorithm is an
empirical risk minimizer, meaning that it minimize R(f) over all f in F2..

Hint: use the realizability assumption

Let X be the set of all points and S be the set of points used for training. Let A(S) be the algorithm that finds the
smallest rectangle enclosing all positive examples in S. Let 2, be the function class of axis-aligned rectangles.

rec

By realizability, there exists an h* € H2_, such that R(h*) = 0, and since S C X, R(h*) = 0. By def-
inition, A(S) = hay b1 al) Where a)] = Min (s, .zpes £1,0] = MaX (2 ,zp)es T1,ay = MiN(a; xp)es T, by =
h*(2)=1 h* (2)=1 B*(2)=1
mMax (zq,z9)es L.
h*(2)=1

To prove that A(S) is an ERM, we need to show that R(A(S)) = 0.

S|

R(A |S\Z) # ()

=§ Y ASE) AD+ Y HAS)E) £0) |, (15)

h*(z?)=1 h*(27)=0

where z* is the i sample (x%, 2%). For the samples labelled 1, z¢ € [a},b}] and x} € [a), b)), and by definition, A(S)
labels them as 1. Similarly, for the samples labeled 0, z% ¢ [a},b}] and 2% ¢ [a), by] Hence, evaluates to 0 and
A(S) is an ERM.

Rubrics: Full points for correct explanation (why positive points and negative points will be classified correctly).
2 points for incomplete but partially correct argument.

2.2 (4pts) Our next task is to show that the algorithm from the previous part not only does well on the training
data, but also gets small classification error with respect to the distribution D. Let Bg be the rectangle returned by
the algorithm in 2.1 on training set .S, and let ngM be the corresponding hypothesis. First, we will convince our-
selves that generalization is inherently a probabilistic statement. Let a bad training set S’ be a training set such that
R(fERM) > 0.5. Pick some simple distribution D and ground-truth rectangle B*, and give a short explanation for
why there is a non-zero probability of seeing a bad training set.

Let there be a uniform distribution over the unit area rectangle [0,1] x [0,1]. Let B* be the unit rectangle itself.
Now, any sample S’ for which area of Bg: = A(S’) is less than 3 is a bad sample. The probability of selecting such a
sample S is finite and nonzero. For example, S’ could contain n points from [0, 0.25] x [0, 0.25] with probability (=)™

Area(B*) — Area(Bg/)
Area(B*)

E[R(f§"")] = E[I[Bs/(x) # B*(2)]] = P(Bs(x) # B*(x)) = P(x € B*\ Bs/) =

Rubrics: Full points for currently describing some choice of D and B*, and some explanation (need not be fully
formal).

2.3 (8pts) Though there is non-zero probability seeing bad training set, we will now show that with high probability
over the training dataset S, f&%M does get small error. Show that if n > M then with probability at least 1 — J,
R(f§™) <.

The basic intuition here is: if we want the risk for the algorithm (the algorithm is an ERM) on your training data to
be small enough with a certain confidence, we need to sample enough points. To consider the risk, we actually need to
consider the boundary between Bg and Bg.. The more sample we get, the higher chance that the gap is small enough.
And below, we will start by measuring the relationship between the risk and the “acceptable boundary” of the learned
rectangle for a given €. Then, we will explore the sample size n required by the learner to actually hit the ’acceptable
boundary” with a reasonably high probability 1 — 4.

To prove this follow the following steps. Let a; > aj be such that the probability mass (with respect to D) of the
rectangle By = B(a}, a1, a3, b}) is exactly e/4. Similarly, let by, az, b2 be numbers such that the probability mass
(with respect to D) of the rectangles Bo = B(by,b7,a5,03), Bs = B(a}, b}, a3, a2), By = Bla}, b}, b, b}) are all
exactly e/4.

e Show that Bg C B*.

As @} = min (e, zp)es ©1 > MIN (2g 20)ex T1 = af, V] = MaX (2 2p)es T1 < MAX (o7, 20)ex 1 = b, ah =
h* (z)=1 h* (2)=1 B (2)=1 B () =1

MiN (o) z0)es T2 > Ml (2 0)ex To = a5, by = MAX (2, 25)e5 To < MAX (z;.29)ex Lo = b5, hence Bg C B*.
h* (a)=1 h (o) =1 ¥ (2)=1 ¥ (2)=1

Rubrics: 2pt for a formal correct argument involving union bound.
1pt for an informal but correct argument.

* Show that if S contains (positive) examples in all of the rectangles By, Bz, B, By then R(f¥%#M) < ¢. (Hint:

think about the geometric relationship between B; and Bg, i € {1,2,3,4})
If S contains positive samples in all of the rectangles B;,: = 1,2, 3,4, then B* = By U By U B3 U By U Bg

R(f§™) = E[I[Bs(x) # B*(x)]] = P(Bs(z) # B*(z))
:P(J)EB*\Bs) SP(Z‘EBluBQUBguB4)
<%l Pz €B)

4.5 ¢
4

Rubrics: 2pt for a formal correct argument involving union bound.
1pt for an informal but correct argument.

» Foreachi € {1,...,4} upper bound the probability that S does not contain an example from B;.
Let there be n samples in S. Let event F; mean sample .S contains no points from B;. We know that for a sample
point x,
Px ¢ B;)=1-—

] o

Hence,
P(BsNB;,=¢)=PNze S ,z¢ B
€.,
= 1—— n
-9

< 6—71,5/4

(Fl—z<e™)
Rubrics: 2pt for formal and correct proof, 1pt for informal and correct proof or partially correct answer

* Use the union bound to conclude the argument.
From previous parts, we know that R(f£f*) < e when we have a sample S which contains points from all of
B, Bs, B3, By, i.e we have a good sample.

P(R(fE7M) <€) > P(S is a good sample)
=1 — P(3B;, no points in S in B;)

4
>1- Z P(B; contains no points in S)
i=1

Z 1 o 4(6777,6/4)

But we wanted P(R(f¥FM) < ¢) >1—4.

So, we must have,

1—4(e ™/ >1-94
— § > 4(e7 /%)
— ene/4 > 4/(5

ne
= > In(4/9)
41n(4/9)

— n>———="-:.
€

Rubrics: 2pt for good/bad sample argument. 1pt for arguing P(R(f£7M)) > 1 — 4e~"“/* and beyond. Partial
credits for incorrect/incomplete solutions

2.4 (8pts) Repeat the previous question for the function class of axis-aligned rectangles in R?. Specifically, the
current function class is Farec = {f(a1,b1,a2.b0,....a0,b0) (T1, T2, - -+, Tq) = a; < biyi € {1,2,...,d}} and a datapoint
x € R? is predicted to be 1 by J(a1.b1,a,baesaasba) (T1, T2, o, 2q) if a; < @y < by foralli € {1,2,...,d} and —1
otherwise. Realizability is still assumed. To show this, try to generalize all the steps in the above question to higher
dimensions, and find the number of training samples n required to guarantee that R(f£7M) < e with probability at
least 1 — 4.

In d-dimensions, let us have 2d hyper-rectangles By, Bs, ... Bog such that the probability of selecting a sample from
any of them be .

(a) Show that Bg C B*.

As af = min (e, eyes T > My, epex T = af, b = MaX (@, epes T < MaAX (2, egpex T; = b,

h*(z)=1 h*(z)=1 h*(z)=1 h* (z)=1
hence Bgs C B*.
b) If S contains a point from all of the B;, then we need to show that R(fg RM) <e

¢) Let = be a sample point from S.

P(E) = Pc ¢ B) =1 - o

For z to not lie in any of the B;, we have

d)

P(R(fE7M) < €) = P(not bad sample)

= 1 — P(S does not contain point from any B;)
> 1= N2 P(E;)

> 1— E:;i%defne/Zd

—1— 2de—ne/2d

We want P(R(fEEM) <€) to be atleast 1 — §. Hence,

1—2de /?d>1_§

—> 6 > 2de "/

— ene/?d > 2(]/(5

— > m(2d/s)
2(1 = 1N 4C

(2d) In(2d/0)

€

= n >

Rubrics: same as 2.3

Programming-based Questions

Before you start to conduct homework in this part, you need to first set up the coding environment. We use python3
(version > 3.7) in our programming-based questions. There are multiple ways you can install python3, for example:

* You can use conda to configure a python3 environment for all programming assignments.
 Alternatively, you can also use |virtualenv| to configure a python3 environment for all programming assignments

After you have a python3 environment, you will need to install the following python packages:

e numpy
» matplotlib (for you plotting figures)

Note: You are not allowed to use other packages, such as tensorflow, pytorch, keras, scikit-learn, scipy, etc. to
help you implement the algorithms you learned. If you have other package requests, please ask first before using them.

Problem 3: k-nearest neighbor classification and the ML pipeline (25pts)

In class, we talked about how we need to do training/test split to make sure that our model is generalizing well. We
also discussed how we should not reuse a test set too much, because otherwise the test accuracy may not be an accurate
measure of the accuracy on the data distribution. In reality, a ML model often has many hyper-parameters which need
to be tuned (we will see an example in this question). We don’t want to use the test set over and over to see what the
best value of this hyper-parameter is. The solution is to have a third split of the data, and create a validation set. The
idea is to use the validation set to evaluate results from the training set and tune any hyper-parameters. Then, use the
test set to double-check your evaluation after the model has “passed” the validation set. Please see this nice explana-
tion for more discussion: https://developers.google.com/machine-learning/crash-course/
validation/another—-partitionl

With this final piece, we are now ready to build a real ML pipeline. It usually conducts three parts. (1) Load and
pre-process the data. (2) Train a model on the training set and use the validation set to tune hyper-parameters. (3)
Evaluate the final model on the test set and report the result.

In this problem, you will implement the k-nearest neighbor (k-NN) algorithm to conduct classification tasks.
We provide the bootstrap code and you are expected to complete the classes and functions. You can find both
the code template and dataset on https://vatsalsharan.github.io/fall22/knn_hwl.zipl Here the
dataset we use is a subset of Breast Cancer Wisconsin (Diagnostic). More explanations are available on https:
//archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.

k-NN algorithm

The k-nearest neighbor (k-NN) algorithm is one of the simplest machine learning algorithms in the supervised learning
paradigm. The idea behind £-NN is simple, and we explain it first for the case of £ = 1. The 1-NN algorithm predicts
the label of any new datapoint x by finding its closest neighbor x’ in the training set, and then predicts the label of x

https://docs.conda.io/en/latest/
https://virtualenv.pypa.io/en/stable/
https://developers.google.com/machine-learning/crash-course/validation/another-partition
https://developers.google.com/machine-learning/crash-course/validation/another-partition
https://vatsalsharan.github.io/fall22/knn_hw1.zip
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

to be the same as the label of x’. For general k, the k-NN algorithm predicts the label by taking a majority vote on the
k nearest neighbors.

We now describe the algorithm more rigorously. Given a hyper-parameter k, training instances (x;, ;) (x; € R?
and y; is the label), and a test example x, the k-NN algorithm can be executed based on the following steps,
Calculate the distances between the test example and each of the training examples.

Take the k nearest neighbors based on the distances calculated in the previous step.
Among these k nearest neighbors, count the number of the data points in each class.

Sl

Predict the label g of x to be the most frequent class among these neighbors (we describe how to break any ties
later).

You are asked to implement the missing functions in knn.py following each of the steps.

Part 3.1 Report 4-nearest neighbor accuracy (8pts)

Euclidean distance calculation Compute the distance between the data points based on the following equation:

d(x,x') =[x = x'||ls = (16)

Task: Fill in the code for the function compute_12_distances .

k-NN classifier Implement a £-NN classifier based on the above steps. Your algorithm should output the predictions
for the test set. Note: You do not need to worry about ties in the distance when finding the k nearest neighbor set.
However, when there are ties in the majority label of the k nearest neighbor set, you should return the label with
the smallest index. For example, when k& = 4, if the labels of the 4 nearest neighbors happen to be 0, 0, 1, 1, your
prediction should be the label 0.

Task: Fill in the code for the function predict_labels .

Report the error rate We want you to report the error rate for the classification task. The error rate is defined as:

of ly classified 1
error rate — 1ot wrongly classified examples (17)
of total examples

Task: Fill in the code for the function compute_error_rate .

Report Item: Report the error rate of your k nearest neighbor algorithm in the validation set when k& = 4 using
Euclidean distance.

Ans. The validation error rate is 7.69% (0.07692307692307693)

Rubric: 8pt for this question.

Part 3.2 Data transformation (2+2pts)

We are going to add one more step (data transformation) in the data_processing part and see how it works. Data trans-
formations and other feature engineering steps often play a crucial role to make a machine learning model work. Here,
we take two different data transformation approaches. This link might be helpful: https://en.wikipedia.
org/wiki/Feature_scaling.

Normalizing the feature vector This one is simple but sometimes may work well. Given a feature vector x, the
x

(1]
be the all-zero vector (in practice, a useful trick is to add a very very small value to the norm of x, so that we do not
need to worry about the division by zero error).

. If a vector is an all-zero vector, define the normalized vector to also

normalized feature vector is given by X =

https://en.wikipedia.org/wiki/Feature_scaling
https://en.wikipedia.org/wiki/Feature_scaling

Min-max scaling for each feature The above normalization is independent of the rest of the data. On the other
hand, min-max normalization scales each sample in a way that depends on the rest of the data. More specifically, for
each feature in the training set, we normalize it linearly so that its value is between 0 and 1 across all samples, and
in addition, the largest value becomes exactly 1 while the smallest becomes exactly 0. Then, we will apply the same
scaling parameters we get from training data to our testing instances.

Task: Fill in the code for the function data_processing_with_transformation .

Report Item: Report the error rate of your k nearest neighbor algorithm in the validation set for £ = 4 using Euclidean
distance when data is using (1) Normalized featured vector, and (2) Min-max scaling featured vector.

Ans. The validation error rate is 4.40% (0.04395604395604396) when using normalization.

The validation error rate is 5.49% (0.054945054945054944) when using min-max scaling.

Rubric: 2pt for each error rate.

Part 3.3 Different distance measurement (3pts)

In this part, we will change the way that we measure distances. We will work with the original (unnormalized) data
for simplicity, and continue the experiments from Part 4.1.

Cosine distance calculation Compute the distance between data points based on the following equation:

1, if||x]l2=0o0r|x'||l2=0

d(x,x') = x - x'

1 otherwise.

[1xl2[x"[]2

Similar to when we are normalizing the feature vector, a useful trick in practice is to add a very very small value
to the norm of x, so that we do not need to worry about the division by zero issues.

Task: Fill in the code for the function compute_cosine_distances and change distance function used in the main func-
tion in the code to get results.

Report Item: Report the error rate of your k nearest neighbor algorithm in the validation set for k¥ = 4 using cosine
distance for original data without data transformation.

Ans. The validation error rate is 4.40% (0.04395604395604396)

Rubric: 3pt for getting the error rate right.

Part 3.4 Tuning the hyper-parameter & (10pts)

Again, follow Part 3.1, however, this time we conduct experiments with & = {1,2,4,6,8,10, 12,14, 16, 18} on the
original dataset without data transformation.

Task: Fill in the code for the function find_best_k . Recall that the choice of best hyperparameter is based on validation
set.

Report Item: (1) Report and draw a curve based on the error rate of your model on the training set for each k. What
do you observe? (2pts) (2) Report and draw a curve based on the error rate of your model on the validation set for
each k. What is your best k? (2pts) (3) What do you observe by comparing the difference between the two curves?
(2pts) (4) What’s the final test set error rate you get using your best-k? (1pt) (5) Comment on these results from the
perspective of overfitting, generalization and the reason of hyper-parameter tuning (3pts). Ans.

(1)

Observation: (a) Training error is zero when k equals zero since the algorithm will always find its own label. Yet,
the training error will not be zero when k increases.

10

Training Set Error

Error rate (%)

Figure 2: My kNN model’s error rate on the training set using different &.

Validation Set Error

13 4

12 4

11 4

10 +

Error rate (%)

Figure 3: My NN model’s error rate on the validation set using different k.

@)

We observe that k = 6 gets the best result of a 5.49% error rate on the validation set.

(3) Two major difference between the training error curve versus validation error curve are: (a) In general, the
training error rate is growing when k increases. This happens because you can identify an exact match if you have
k = 1. Yet, when k grows, the influence of the “exact match” instance is getting lower and lower (its weight is amor-
tized). (b) Different from the training error rate curve, validation error rate curve is more like a convex function with
a global minimum.

(4) Using the best k, the final test error rate is 7.10% (0.07100591715976332).

(5) In this question, we learn what is “overfitting”. Specifically, if we set the k that leads to the best training
performance, we will select k& = 1. However, as we see in the two figures. k = 1 actually gives the worst results on
the validation set. This highlights the importance of having a separate validation set to set up the hyperparameter in
your model (in our case, the hyperparameter is k).

Rubrics for grading:

* two correct figures for training/validation set error rate v.s. k (1.5pt for each figure)
e report best k (1.5pt)

* mentioned training error is O for £ = 1 or training error is not 0 for k& # 1 (0.5pt)

* the shape of each curve (0.5 pt for each shape)

e report test set result (1pt)

* discussing overfitting/generalization related concept (3pt) and the importance of hyperparameter tuning on the
validation set (it is fine to not have this).

We do not need to care too much about where these concepts are reported when grading.

Part 3.5 (Opts)
Report Item: Include your filled-in code in the submitted pdf file.

Problem 4: Linear Regression (20pts)

We will consider the problem of fitting a linear model. Given d-dimensional input data xy, - - - ,X,, € R with real-
valued labels 1, - - - , y, € R, the goal is to find the coefficient vector w that minimizes the sum of the squared errors.
The total squared error of w can be written as F(w) = > " | f;(w), where f;(w) = (wTx; — y;)? denotes the

squared error of the ith data point. We will refer to F'(w) as the objective function for the problem.

The data in this problem will be drawn from the following linear model. For the training data, we select n data
points Xi, - - - , Xy, each drawn independently from a d-dimensional Gaussian distribution. We then pick the “true”
coefficient vector w* (again from a d-dimensional Gaussian), and give each training point x; a label equal to (w*) 'x;

plus some noise (which is drawn from a 1-dimensional Gaussian distribution).

The following Python code will generate the data used in this problem.

d = 100 # dimensions of data

n = 1000 # number of data points

X = np.random.normal (0,1, size=(n,d))
w_true = np.random.normal (0,1, size=(d,1))

y = X.dot (w_true) + np.random.normal (0,0.5,size=(n,1))

4.1 (6pts) Least-squares regression has the closed form solution wys = (XTX)~1XTy, which minimizes the
squared error on the data. (Here X is the n x d data matrix as in the code above, with one row per data point, and y is
the n-vector of their labels.) Solve for wy, s on the training data and report the value of the objective function F(wp,g).
For comparison, what is the total squared error F'(w) if you just set w to be the all 0’s vector? Using similar Python

12

code, draw n = 1000 test data points from the same distribution, and report the total squared error of wy g on these
test points. What is the gap in the training and test objective function values? Comment on the result.

Note: Computing the closed-form solution requires time O(nd? + d*), which is slow for large d. Although gra-
dient descent methods will not yield an exact solution, they do give a close approximation in much less time. For the
purpose of this assignment, you can use the closed-form solution as a good sanity check in the following parts.

Denote wy is all zero weight vector.

1. F(wys) = 217.48452613173998 on training data.
2. F(wg) = 78885.82819617869 on training data.
3. F(wLs) = 294.0683698939916 on testing data.

Then non-zero training loss is because of the added noise when generating y. Yet, given the small value (around
0.2 difference per data point), we can indicate that the model fits the training data well. The gap between training error
versus testing error is around 77, which is around 35% of the training loss. This gap mainly comes from the difference
between training data and testing data. However, since both training and testing data come from similar distribution
(Wirye), the gap is not big.

Rubrics: All answer in the question is just a reference since the data is generated randomly. However, Answer(1)
should be close to 200, Answer(2) should be larger than 10000, and Answer(3) should be larger than 240, but not too
large.

* Reasonable reported value for (1) (2) (3) (1pt for each)
* Report the generalization gap (1pt)
e Comment on where the generalization gap comes from (2pt)

Part 4.2 (7pts) In this part, you will solve the same problem via gradient descent on the squared-error objective
function F(w) = >_"" | f;(w). Recall that the gradient of a sum of functions is the sum of their gradients. Given a
point w;, what is the gradient of f at w;?

Now use gradient descent to find a coefficient vector w that approximately minimizes the least squares objective
function over the training data. Run gradient descent three times, once with each of the step sizes 0.00005, 0.0005,
and 0.0007. You should initialize w to be the all-zero vector for all three runs. Plot the objective function value for 20
iterations for all 3 step sizes on the same graph. You can also have more graphs on separate step size if the curves with
all 3 step sizes are hard to read. Comment in 3-4 sentences on how the step size can affect the convergence of gradient
descent (feel free to experiment with other step sizes). Also report the step size among {0.00005, 0.0005, 0.0007} that
had the best final objective function value and the corresponding objective function value.

(1) The gradient of f is 2(wTx; — y;)x;. Hence, the gradient of Fis Y | 2(wTx; — y;)x;.

(2) Figured demonstrates our experimental results for using different step sizes for our gradient descent algorithm
to get the weight vector, and Figure 5] shows a closer look on the two step sizes that gets better results.

(3) From these figures, we found that: If the step size is small, it would take more iterations to converge to the
minimum point. However, if the step size is too large, like the case of step size being 7e — 4, gradient decent method
might oscillate and never converge. In our test, the best step size is 5e — 4 and the corresponding objective function
value (F') is 217.4862794029114.

Rubrics: (1)’s should be an exact match, (3)’s best value should be very close to what they reported in 4.1. For
grading this question,

 Correct gradient function (1pt) (reporting either f’s gradient function or F”’s gradient function is fine)
Plots (3pt)
e Comment on step size is too large (1pt)

e Comment on step size comparison of 5¢ — 4 and 5e — 5 (1pt)
e Comment on best value and best step size (1pt)

13

1e9 Squared Error over Iterations for Different Learning Rates

—— Learning Rate: 5e-05
1.0 4 Learning Rate: 0.0005
—— Learning Rate: 0.0007

0.8

0.6 4

Squared Error

0.2

0.01

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

Figure 4: The objective function value for solving Question 5 using gradient descent. Note that the y-axis scale is in
1e9.

Squared Error over Iterations for Different Learning Rates

—— Learning Rate: 5e-05
60000 - Learning Rate: 0.0005

50000 4

40000 1

30000 4

squared Error

20000 -

10000 4

0.0 25 5.0 75 10.0 12.5 15.0 17.5
Iteration

Figure 5: A closer look for Figure] for step size 5e — 5 and 5e — 4.

4.3 (7pts) In this part, you will run stochastic gradient descent to solve the same problem. Recall that in stochastic
gradient descent, you pick one training datapoint at a time, say (X;, y;), and update your current value of w according
to the gradient of f;(w) = (wTx; — y;)%

Run stochastic gradient descent using step sizes {0.0005, 0.005,0.01} and 1000 iterations. Plot the objective func-
tion value vs. the iteration number for all 3 step sizes on the same graph. Comment 3-4 sentences on how the step
size can affect the convergence of stochastic gradient descent and how it compares to gradient descent. Compare the
performance of the two methods. How do the best final objective function values compare? How many times does
each algorithm use each data point? Also report the step size that had the best final objective function value and the

corresponding objective function value.

Figure[f plots our experimental results for stochastic gradient descents.

(1) Similar to gradient descent, if the step size is small, it would take more iterations to converge, for example, the
step size being 5e — 4 cases is not yet converged. If the step size is too large, like in the case of step size being le — 2,
the stochastic gradient descent method might oscillate and never converge.

(2) The best value we get is using a step size of 5e—3 and we get an objective function value of 439.9294535824(093.
Comparing this value to what we got from 4.2, we observe that gradient descent gets better results. However, in 4.2,
we use 20 times for each data point (since 20 iterations) to perform updating. Here, we only use 1 time of each data
point (on average) to perform updating.

14

Stochastic Gradient Descent

250000

200000

150000 4

Squared Error

100000

50000 -

T T T T T T
0 200 400 600 800 1000
teration

Figure 6: The objective function value for solving Question 5 using stochastic gradient descent.

Rubrics: (2)’s the best value should be close to 500. For grading this question, use the rubrics:
* Plots (2pt)

e Comment on step size effect (2pt)

* Comment on comparison between gradient descent and stochastic gradient descent (2pt)

e Comment on best value and best step size (1pt)

4.4 (Opts) Include the code for all the previous parts in the submitted pdf file.

15

