CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 10, Mar 29

USCUniversity of
Southern California

Administrivia

- HW4 is due in about two weeks (April 11 at noon).
- Mid-term project check-ins in week of April 15
- Today's plan:
- Finish ensemble methods
- Unsupervised learning:
- PCA

Original Tree
$x .1<0.395$
$b=1$
$x .1<0.555$

Decision Trees and Ensemble methods:
.Recap

Ensemble methods

- Bagging
- Random forests
- Boosting: Basics
- Adaboost
- Gradient boosting

Bagging

Collect T subsets each of some fixed size (say m) by sampling with replacement from training data.

Let $f_{t}(\boldsymbol{x})$ be the classifier (such as a decision tree) obtained by training on the subset $t \in\{1, \ldots, T\}$. Then the aggregrated classifier $f_{a g g}(\boldsymbol{x})$ is given by:

$$
f_{a g g}(\boldsymbol{x})= \begin{cases}\frac{1}{T} \sum_{t=1}^{T} f_{t}(\boldsymbol{x}) & \text { for regression } \\ \operatorname{sign}\left(\frac{1}{T} \sum_{t=1}^{T} f_{t}(\boldsymbol{x})\right)=\text { Majority Vote }\left\{f_{t}(\boldsymbol{x})\right\}_{t=1}^{T} & \text { for classification }\end{cases}
$$

- Reduces overfitting (i.e., variance)
- Can work with any type of classifier (here focus on trees)
- Easy to parallelize (can train multiple trees in parallel)
- But loses on interpretability to single decision tree (true for all ensemble methods..)

Ensemble methods

- Bagging
- Random forests
- Boosting: Basics
- Adaboost
- Gradient boosting

Random forests

Random forests: When growing a tree on a bootstrapped (i.e. subsampled) dataset, before each split select $k \leq d$ of the d input variables at random as candidates for splitting.

When $k=d \rightarrow$ same as Bagging
When $k<d \rightarrow$ Random forests
k is a hyperparameter, tuned via cross-validation

Ensemble methods

- Bagging
- Random forests
- Boosting: Basics
- Adaboost
- Gradient boosting

Boosting: Idea

The boosted predictor is of the form $f_{\text {boost }}(\boldsymbol{x})=\operatorname{sign}(h(\boldsymbol{x}))$, where,

$$
h(\boldsymbol{x})=\sum_{t=1}^{T} \beta_{t} f_{t}(\boldsymbol{x}) \text { for } \beta_{t} \geq 0 \text { and } f_{t} \in \mathcal{F}
$$

The goal is to minimize $\ell(h(\boldsymbol{x}), y)$ for some loss function ℓ.
Q: We know how to find the best predictor in \mathcal{F} on some data, but how do we find the best weighted combination $h(\boldsymbol{x})$?

A: Minimize the loss by a greedy approach, i.e. find $\beta_{t}, f_{t}(\boldsymbol{x})$ one by one for $t=1, \ldots, T$.
Specifically, let $h_{t}(\boldsymbol{x})=\sum_{\tau=1}^{t} \beta_{\tau} f_{\tau}(\boldsymbol{x})$. Suppose we have found $h_{t-1}(\boldsymbol{x})$, how do we find $\beta_{t}, f_{t}(\boldsymbol{x})$?
Find the $\beta_{t}, f_{t}(\boldsymbol{x})$ which minimizes the loss $\ell\left(h_{t}(\boldsymbol{x}), y\right)$.
Different loss function ℓ give different boosting algorithms.

$$
\ell(h(\boldsymbol{x}), y)= \begin{cases}(h(\boldsymbol{x})-y)^{2} & \rightarrow \text { Least squares boosting } \\ \exp (-h(\boldsymbol{x}) y) & \rightarrow \text { AdaBoost }\end{cases}
$$

Boosting: example

Email spam detection:

- given a training set like:
- ("Want to make money fast? ...", spam)
- ("Viterbi Research Gist ...", not spam)
- first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision stumps:
- e.g. contains the word "money" \Rightarrow spam
- reweigh the examples so that "difficult" ones get more attention
- e.g. spam that doesn't contain the word "money"
- obtain another classifier by applying the same base algorithm:
- e.g. empty "to address" \Rightarrow spam
- repeat ...
- final classifier is the (weighted) majority vote of all weak classifiers
$\mathrm{x} .1<0.555$

$b=2$
$x .2<0.205$

Ensemble methods:
 b $=3$

Boosting

0

Ensemble methods

- Bagging
- Random forests
- Boosting: Basics
- Adaboost
- Gradient boosting

AdaBoost

Exponential loss penalizes being far away from the decision boundary a lot more

AdaBoost

AdaBoost minimizes exponential loss by a greedy approach, that is, find $\beta_{t}, f_{t}(\boldsymbol{x})$ one by one for $t=1, \ldots, T$.

Recall $h_{t}(\boldsymbol{x})=\sum_{\tau=1}^{t} \beta_{\tau} f_{\tau}(\boldsymbol{x})$. Suppose we have found h_{t-1}, what should f_{t} be? Greedily, we want to find $\beta_{t}, f_{t}(\boldsymbol{x})$ to minimize

$$
\begin{aligned}
\sum_{i=1}^{n} \exp \left(-y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)\right) & =\sum_{i=1}^{n} \exp \left(-y_{i} h_{t-1}\left(\boldsymbol{x}_{i}\right)\right) \exp \left(-y_{i} \beta_{t} f_{t}\left(\boldsymbol{x}_{i}\right)\right) \\
& =\operatorname{const}_{t} \cdot \sum_{i=1}^{n} D_{t}(i) \exp \left(-y_{i} \beta_{t} f_{t}\left(\boldsymbol{x}_{i}\right)\right)
\end{aligned}
$$

where the last step is by defining the weights

$$
D_{t}(i)=\frac{\exp \left(-y_{i} h_{t-1}\left(\boldsymbol{x}_{i}\right)\right)}{\operatorname{const}_{t}}
$$

const $_{t}$ is a normalizing constant to make $\sum_{i=1}^{n} D_{t}(i)=1$.

AdaBoost

So the goal becomes finding $\beta_{t}, f_{t}(\boldsymbol{x}) \in \mathcal{F}$ that minimize

$$
\begin{aligned}
& \sum_{i=1}^{n} D_{t}(i) \exp \left(-y_{i} \beta_{t} f_{t}\left(\boldsymbol{x}_{i}\right)\right) \\
& =\sum_{i: y_{i} \neq f_{t}\left(\boldsymbol{x}_{i}\right)} D_{t}(i) e^{\beta_{t}}+\sum_{i: x_{i}=f_{t}\left(\boldsymbol{x}_{i}\right)} D_{t}(i) e^{-\beta_{t}} \\
& =\epsilon_{t} e^{\beta_{t}}+\left(1-\epsilon_{t}\right) e^{-\beta_{t}} \quad\left(\text { where } \epsilon_{t}=\sum_{i: y_{i} \neq f_{t}\left(\boldsymbol{x}_{i}\right)} D_{t}(i) \text { is weighted error of } f_{t}\right) \\
& =\epsilon_{t}\left(e^{\beta_{t}}-e^{-\beta_{t}}\right)+e^{-\beta_{t}}
\end{aligned}
$$

Therefore, we should find $f_{t}(\boldsymbol{x})$ to minimize its the weighted classification error ϵ_{t} (what we expect the base algorithm to do intuitively).

AdaBoost

When $f_{t}(\boldsymbol{x})$ (and thus ϵ_{t}) is fixed, we then find β_{t} to minimize

$$
\epsilon_{t}\left(e^{\beta_{t}}-e^{-\beta_{t}}\right)+e^{-\beta_{t}}
$$

Exercise: verify that the solution is given by:

$$
\beta_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)
$$

Hint: e^{x} is a convex function of x.

AdaBoost

How do we update the weights for the next step? The definition of $D_{t+1}(i)$ is actually recursive,

$$
\begin{aligned}
& D_{t+1}(i)=\frac{\exp \left(-y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)\right)}{\operatorname{const}_{t+1}} \\
&=\frac{\exp \left(-y_{i} h_{t-1}\left(\boldsymbol{x}_{i}\right)\right)}{\operatorname{const}_{t+1}} \cdot \exp \left(-y_{i} \beta_{t} f_{t}\left(\boldsymbol{x}_{i}\right)\right) \\
&=\left(D_{t-1}(i) \frac{\operatorname{const}_{t}}{\operatorname{const}_{t+1}}\right) \cdot \exp \left(-y_{t} \beta_{t} f_{t}\left(\boldsymbol{x}_{i}\right)\right) \\
& \Longrightarrow D_{t+1}(i) \propto D_{t}(i) \exp \left(-\beta_{t} y_{i} f_{t}\left(\boldsymbol{x}_{i}\right)\right)= \begin{cases}D_{t}(i) e^{-\beta_{t}} \\
D_{t}(i) e^{\beta_{t}} & \text { if } f_{t}\left(\boldsymbol{x}_{i}\right)=y_{i} \\
\text { else }\end{cases} \\
& \text { exponentially decrease /ircuoase weights } \\
& \text { based on cornetly / incorrectly ebysified points }
\end{aligned}
$$

AdaBoost: Full algorithm

Given a training set S and a base algorithm \mathcal{A}, initialize D_{1} to be uniform
For $t=1, \ldots, T$

- obtain a weak classifier $f_{t}(\boldsymbol{x}) \leftarrow \mathcal{A}\left(S, D_{t}\right)$
- calculate the weight β_{t} of $f_{t}(\boldsymbol{x})$ as

$$
\beta_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)
$$

$$
(\underbrace{\left(\beta_{t}>0 \Leftrightarrow \epsilon_{t}<0.5\right.})
$$

where $\epsilon_{t}=\sum_{i: f_{t}\left(\boldsymbol{x}_{i}\right) \neq y_{i}} D_{t}(i)$ is the weighted error of $f_{t}(\boldsymbol{x})$.

- update distributions

$$
D_{t+1}(i) \propto D_{t}(i) e^{-\beta_{t} y_{i} f_{t}\left(\boldsymbol{x}_{i}\right)}= \begin{cases}D_{t}(i) e^{-\beta_{t}} & \text { if } f_{t}\left(\boldsymbol{x}_{i}\right)=y_{i} \\ D_{t}(i) e^{\beta_{t}} & \text { else }\end{cases}
$$

Output the final classifier $f_{\text {boost }}=\operatorname{sgn}\left(\sum_{t=1}^{T} \beta_{t} f_{t}(\boldsymbol{x})\right)$

Adaboost: Example

Put more weight on difficult to classify instances and less on those already handled well New weak learners are added sequentially that focus their training on the more difficult patterns

10 data points in \mathbb{R}^{2}
The size of + or - indicates the weight, which starts from uniform D_{1}

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset.

Adaboost: Example

Put more weight on difficult to classify instances and less on those already handled well New weak learners are added sequentially that focus their training on the more difficult patterns

D_{2} puts more weights on these misclassified points.

Adaboost: Example

Put more weight on difficult to classify instances and less on those already handled well New weak learners are added sequentially that focus their training on the more difficult patterns

D_{3} puts more weights on these misclassified points.

Adaboost: Example

Put more weight on difficult to classify instances and less on those already handled well New weak learners are added sequentially that focus their training on the more difficult patterns

again 3 misclassified (circled): $\epsilon_{3}=0.14 \rightarrow \beta_{3}=0.92$.

Adaboost: Example

Put more weight on difficult to classify instances and less on those already handled well New weak learners are added sequentially that focus their training on the more difficult patterns

All data points are now classified correctly, even though each weak classifier makes 3 mistakes.

Ensemble methods

- Bagging
- Random forests
- Boosting: Basics
- Adaboost
- Gradient boosting

Gradient Boosting

Recall $h_{t}(\boldsymbol{x})=\sum_{\tau=1}^{t} \beta_{\tau} f_{\tau}(\boldsymbol{x})$. For Adaboost (exponential loss), given $h_{t-1}(\boldsymbol{x})$, we found what $f_{t}(\boldsymbol{x})$ should be.

Gradient boosting provides an iterative approach for general (any) loss function $\ell(h(\boldsymbol{x}), y)$:

- For all training datapoints $\left(\boldsymbol{x}_{i}, y_{i}\right)$ find the gradient
how should
predictions

$$
r_{i}=-\left[\frac{\delta \ell\left(h\left(\boldsymbol{x}_{i}\right), y_{i}\right)}{\delta h\left(\boldsymbol{x}_{i}\right)}\right]_{h\left(\boldsymbol{x}_{i}\right)=h_{t-1}\left(\boldsymbol{x}_{i}\right)} \quad \begin{gathered}
\text { change "locally" to } \\
\text { reduce loss). }
\end{gathered}
$$

- Use the weak learner to find f_{t} which fits $\left(x_{i},\left(r_{i}\right)\right.$ as well as possible:

$$
\begin{aligned}
& \underbrace{f_{t}=\underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{n}\left(r_{i}-f\left(\boldsymbol{x}_{i}\right)\right)^{2}}_{t \in \mathcal{F}} \text {. } \begin{array}{c}
\text { what should be added to } \\
\text { deduce loss }
\end{array} \\
& \text { model which fries to predict ri or } f_{i}
\end{aligned}
$$

- Update $h_{t}(\boldsymbol{x})=h_{t-1}(\boldsymbol{x})+\eta f_{t}(\boldsymbol{x})$, for some step size η.

Gradient Boosting

Usually we add some regularization term to prevent overfitting (penalize the size of the tree etc.)

Gradient boosting is extremely successful!!

A variant XGBoost is one of the most popular algorithms for structured data (tables etc. with numbers and categories where each feature typically has some meaning, unlike images or text).
(for e.g. during Kaggle competitions back in 2015, 17 out of 29 winning solutions used XGBoost)

Unsupervised
learning: PCA

A simplistic taxonomy of ML

Principal Component Analysis (PCA)

- Introduction
- Formalizing the problem
- How to use PCA, and examples
- Solving the PCA optimization problem
- Conclusion

Acknowledgement \& further reading

Our presentation is closely based on Gregory Valiant's notes for CS168 at Stanford.
https://web.stanford.edu/class/cs168/l/I7.pdf https://web.stanford.edu/class/cs168/1/l8.pdf

You can refer to these notes for further reading.
Also review our Linear algebra Colab notebooks:

Part 1
Part 2

Dimensionality reduction \& PCA

We'll start with a simple and fundamental unsupervised learning problem: dimensionality reduction.

Goal: reduce the dimensionality of a dataset so that

- it is easier to visualize and discover patterns
- it takes less time and space to process for any downstream application (classification, regression, etc)
- noise is reduced
- ...

There are many approaches, we focus on a linear method: Principal Component Analysis (PCA).

PCA: Motivation

Consider the following dataset:

- 17 features, each represents the average consumption of some food
- 4 data points, each represents some country.

What can you tell?
Hard to say anything looking at all these 17 features.

Alcoholic drinks
Beverages
Carcase meat
Cereals
Cheese
Confectionery
Fats and oils Fish
Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars

Picture from here
See this for more details

PCA: Motivation

PCA can help us! The projection of the data onto its first principal component:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

PCA: Motivation

PCA can help us! The projection of the data onto its first principal component (PC1):

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on the island of Great Britain out of the 4 samples.

Can also interpret components: PC1 tells us that the Northern Irish eat more grams of fresh potatoes and fewer of fresh fruits and alcoholic drinks.

PCA: Motivation

We can find the second (and more) principal components of the data too:

PCA: Motivation

And the components themselves are interpretable too:

Principal Component Analysis (PCA)

- Introduction
- Formalizing the problem
- How to use PCA, and examples
- Solving the PCA optimization problem
- Conclusion

High-level goal
Suppose we have a dataset of n datapoints $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$. $d=17$
The high level goal of PCA is to find a set of k principal components (PCs)/principal vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in$ \mathbb{R}^{d} such that for each \boldsymbol{x}_{i},
for some coefficients $\alpha_{i j} \in \mathbb{R}$.

$$
\left(\begin{array}{l}
\text { "principal food consunption } \\
\rightarrow \sum_{j=1}^{k} \alpha_{i} \boldsymbol{v}_{j} \text { voctirs". } \\
\text { food consumption vactors }
\end{array}\right.
$$

Explain the data as different linear combinations of some PCs

Preprocessing the data

- Before we apply PCA, we usually preprocess the data to center it:

Let $\overline{\boldsymbol{x}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$
Centered datapoints $\tilde{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}$
For the lecture, we will assume data is centered, $\sum \boldsymbol{x}_{i}=0$

- In many applications, it is also important to scale each coordinate properly. This is especially true if the coordinates are in different units or scales.

For all $j \in[d]$, divide the j th coordinate of each point by $\sqrt{\sum_{i=1}^{n} \boldsymbol{x}_{i}^{j^{2}}}$

Figure 3: Scaling the x-axis yields a different best-fit line.

Objective function for PCA
Key difference from supervised learning problems:
No labels given, which means no ground-truth to measure the quality of the answer!
However, we can still write an optimization problem based on our high-level goal.
For clarity, we first discuss the special case of $k=1$.
Optimization problem for finding the $1^{\text {st }}$ principal component \boldsymbol{v}_{1} :

$$
\left.v_{1}=\operatorname{argmin} \sum_{i=1}^{n}(\text { (distance between ti \& line spanned by } v)^{2}\right)
$$

Figure 4: The geometry of the inner product with a unit length vector, \mathbf{w}.

$$
\begin{array}{r}
\left(\text { dist }\left(x_{i} \mapsto \text { line spanned by } v\right)\right)^{2}+\left\langle x_{i}, v\right\rangle^{2}=\left\|x_{i}\right\|_{2}^{2} \\
\forall x_{i}^{\top} v
\end{array}
$$

$\|+i\|_{2}^{2}$ is a const ant, independent of choice of v
original objective is equivalent to

An example:

Figure 5: For the good line, the projection of the points onto the line keeps the two clusters separated, while the projection onto the bad line merges the two clusters.

Objective function for larger values of \boldsymbol{k}

The generalization of the original formulation for general k is to find a k-dimensional subspace S such that the points are as close to it as possible:

$$
S=\underset{k \text {-dim subspaces } S}{\operatorname{argmin}} \sum_{i=1}^{n}\left(\text { distance between } \boldsymbol{x}_{i} \text { and subspace } S\right)^{2}
$$

By the same reasoning as for $k=1$, this is equivalent to,

$$
S=\underset{k-\text { dim subspaces } S}{\operatorname{argmax}} \sum_{i=1}^{n}\left(\text { length of } \boldsymbol{x}_{i} \text { 's projection on } S\right)^{2}
$$

It is useful to think of the subspace S as the span of k orthonormal vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{d}$.
Recall, vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are orthonormal if:

1. $\left\|\boldsymbol{v}_{i}\right\|_{2}=1 \quad \forall i \in[k]$
2. $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0 \quad \forall i \neq j$

$$
\begin{aligned}
& \text { e.g. } \\
& \text { standard basis vectirs } \\
& e_{1}=(1,0,0, \ldots, 0) \\
& e_{2}=(0,1,0, \ldots .0)
\end{aligned}
$$

Definition: Span of a collection $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{d}$ is all their linear combinations $\left\{\sum_{j=1}^{k} \lambda_{j} \boldsymbol{v}_{j}: \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}\right\}$
Example,

- $k=1$, span is line through the origin.
- $k=2$, if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are linearly independent, the span is a plane through the origin, and so on.

Fact about orthonormal vectors
(length of $x_{i}{ }^{\prime}$ projection on $\left.\operatorname{span}\left(1, \ldots, v_{k}\right)\right)^{2}=\sum_{j=1}^{k}\left\langle x_{i}, v_{j}\right\rangle^{2}-2$

Combining (1) \& (2)

Formal problem solved by PCA:
Given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ and a parameter $k \geq 1$, compute orthonormal vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{d}$ to maximize,

$$
\sum_{i=1}^{n} \sum_{j=1}^{k}\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{j}\right\rangle^{2}
$$

Equivalent view:

- Pick \boldsymbol{v}_{1} to be the variance maximizing direction.
- Pick \boldsymbol{v}_{2} to be the variance maximizing direction, orthogonal to \boldsymbol{v}_{1}.
- Pick \boldsymbol{v}_{3} to be the variance maximizing direction, orthogonal to \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, and so on.

Principal Component Analysis (PCA)

- Introduction
- Formalizing the problem
- How to use PCA, and examples
- Solving the PCA optimization problem
- Conclusion

Using PCA for data compression and visualization

Input: n datapoints $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$, \#components k we want

Step 1 Perform PCA to get top k principal components $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{d}$.

Step 2 For each datapoint \boldsymbol{x}_{i}, define its " \boldsymbol{v}_{1}-coordinate" as $\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{1}\right\rangle$, its " \boldsymbol{v}_{2}-coordinate" as $\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{2}\right\rangle$. Therefore we associate k coordinates to each datapoint \boldsymbol{x}_{i}, where the j-th coordinate denotes the extent to which \boldsymbol{x}_{i} points in the direction of \boldsymbol{v}_{j}.

Step 3 We now have a new "compressed" dataset where each datapoint is k-dimensional. For visualization, we can plot the point \boldsymbol{x}_{i} in \mathbb{R}^{k} as the point $\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{1}\right\rangle,\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{2}\right\rangle, \ldots,\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{k}\right\rangle\right)$.

$$
\begin{aligned}
& \text { Going back to high-leval coal: } \\
& x_{i} \dot{\sim} \sum_{i=1}^{k}<x_{i}, V_{j} \gg v_{j}
\end{aligned}
$$

Visualization example: Do Genomes Encode Geography?

Dataset: genomes of 1,387 Europeans (each individual's genotype at 200,000 locations in the genome) $n=1387, d \approx 200,000$
Project the datapoints onto top 2 PCs
Plot shown below; looks remarkably like the map of Europe!
\Rightarrow latitude

Compression example: Eigenfaces

Dataset: 256×256 ($\approx 65 \mathrm{~K}$ pixels) dimensional images of about 2500 faces, all framed similarly
$n=2500, d \approx 65,000$

We can represent each image with high accuracy using only 100-150 principal components!

The principal components (called eigenfaces here) are themselves interpretable too!

Figure 2. Seven of the eigenfaces calculated from the input images of Figure 1.

Principal Component Analysis (PCA)

- Introduction
- Formalizing the problem
- How to use PCA, and examples
- Solving the PCA optimization problem
- Conclusion

How to solve the PCA optimization problem?
Consider $k=1$,

$$
\begin{aligned}
& V_{1}=\underset{v i\| \|_{2=1}}{\operatorname{argmax} \quad \sum_{i=1}^{n}\left\langle x_{i}, u\right\rangle^{2}} \\
& x=\left[\begin{array}{c}
-y_{1}{ }^{\top}- \\
\vdots \\
-y_{2}^{\top}
\end{array}\right] \in \mathbb{R}^{n+d}
\end{aligned}
$$

\therefore for any $v \in \mathbb{R}^{d}, \quad x v=\left[\begin{array}{c}x_{1}^{\top} v \\ x_{2}^{\top} v \\ \vdots \\ x_{n}^{\top} v\end{array}\right] \in \mathbb{R}^{n}$

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}^{\top} v\right)^{2} & =\left\|x_{v}\right\|_{2}^{2} \\
& =\left(x_{v 1}\right)^{\top}\left(x_{v}\right) \\
& =v^{\top} \underbrace{x^{\top} x}_{A} y \\
\therefore \quad \text { for } \quad A & =x^{\top} x \in \mathbb{R}^{d+d} A^{2} \\
v_{1} & =\underset{v:\left\|_{v}\right\|_{2}=1}{\operatorname{argma}} \quad v^{\top} A_{v}
\end{aligned}
$$

$x^{\top} x$: covariance of data (data is centered)

$$
\left.A=\left[\begin{array}{ccc}
\mid & 1 & \\
x_{1} & x_{2} & \cdots \\
1 & x_{n} \\
1 & 1 & \\
\hline
\end{array}\right]\left[\begin{array}{r}
-y_{1}{ }^{\top}- \\
-+_{2}^{\top}- \\
\vdots \\
-i_{n}{ }^{7}
\end{array}\right] \quad \begin{array}{ccc}
A_{11}: \text { varionce of } & 1 s t \\
\left(A_{11}=\sum_{i=1}^{n}\right. & x_{i}, & 2
\end{array}\right)
$$

The diagonal case

Let's solve $\operatorname{argmax}_{v:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}$ for the special case where \boldsymbol{A} is a diagonal matrix.

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right) \quad \text { where } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0
$$

Any $d \times d$ matrix \boldsymbol{A} can be thought of as a function that maps points in \mathbb{R}^{d} back to points in \mathbb{R}^{d} : $\boldsymbol{v} \mapsto \boldsymbol{A} \boldsymbol{v}$.

The matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ maps (x, y) to $(2 x, y)$:

Points on circle $\left\{(x, y): x^{2}+y^{2}=1\right\}$ are mapped to the ellipse $\left\{(x, y):\left(\frac{x}{2}\right)^{2}+y^{2}=1\right\}$.

So what direction \boldsymbol{v} should maximize $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}$ for diagonal \boldsymbol{A} ?
It should be the direction of maximum stretch: (assuming $\lambda_{1}>\lambda_{2} \geqslant \ldots \lambda d \geqslant 0$)
$v=e_{1}$ (where $e_{1}=(1,0, \ldots 0)$ is (st stand and bans vector)
Proof:

$$
v^{\top} A v=v^{\top}\left(A_{v}\right)=\left(\begin{array}{lll}
V_{1} & \cdots . . & v_{d}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} v_{1} \\
\lambda_{2} \|_{2} \\
\vdots \\
\lambda_{d} v_{d}
\end{array}\right)=\sum_{i=1}^{d} v_{i}{ }^{2} \lambda_{i}
$$

Since v is a unit vector, $\sum_{i=1}^{d} v_{i}{ }^{2}=1$
\therefore Since λ_{1} is largest, to maximize set $V_{1}=1$

$$
\therefore \quad \vec{v}=e_{1}
$$

Diagonals in disguise

Consider

$$
\begin{aligned}
\boldsymbol{A} & =\left(\begin{array}{ll}
\frac{3}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right) \nearrow \\
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
\end{aligned}
$$

The previous figure, rotated 45 degrees.

How do we formalize the concept of a rotation in high dimensions as a matrix operation?
Answer: Orthogonal matrix (also called orthonormal matrix).
An orthonormal matrix is a matrix Q s.t. for all columns $\theta_{1}, \ldots, \theta_{d}$,

$$
\begin{array}{ll}
\left\|Q_{i}\right\|_{2}^{2}=1 & \forall i \\
\theta_{i}^{\top} Q_{j}=0 & H i \pm j
\end{array}
$$

Key properties:
(1) $Q^{\top} Q=I \quad\left(Q^{-1}=Q^{\top}\right)$
(2) $\left\|Q_{v}\right\|_{2}^{2}=\|v\|_{2}^{2}$
(3) If Q is orthogonal, $Q T$ is

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
-Q_{1}^{\top}- \\
-Q_{2}^{\top} \\
\vdots \\
-Q_{d}^{\top}-
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & \\
Q_{1} & Q_{2} & 1 \\
1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & & \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\left\|Q_{v}\right\|_{2}^{2} & =\left(Q_{v}\right)^{\top} Q_{v}=v^{\top} \underbrace{Q^{\top}} Q v \\
& =v^{\top} v=\|v\|_{2}^{2}
\end{aligned}
$$

(3) Exercise! also oxthugon al

Recall that we want to find $\boldsymbol{v}_{1}=\operatorname{argmax}_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}$.
Now consider \boldsymbol{A} that can be written as $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{D} \boldsymbol{Q}^{\mathrm{T}}$ for an orthogonal matrix \boldsymbol{Q} and diagonal matrix \boldsymbol{D} with diagonal entries $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \lambda_{d} \geq 0$.

What is the direction which gets stretched the maximum?
(Informal answer) The maximum possible stretch by \boldsymbol{D} is λ_{1}. The direction of maximum stretch under \boldsymbol{D} is \boldsymbol{e}_{1}. Therefore, direction of maximum stretch under $\boldsymbol{D} \boldsymbol{Q}^{\mathrm{T}}$ is \boldsymbol{v} s.t. $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{v}=\boldsymbol{e}_{1} \Longrightarrow \boldsymbol{v}=$ $\left(\boldsymbol{Q}^{\mathrm{T}}\right)^{-1} \boldsymbol{e}_{1}=\boldsymbol{Q} \boldsymbol{e}_{1}$.

Maim: for $A=O D Q^{\top}$

$$
\begin{aligned}
& \text { arymat } v^{\top} A_{v}=\theta_{1} \\
& v:\|v\|_{2}=1
\end{aligned}
$$

Proof: for $y_{1}=0 e_{1}$

$$
\begin{aligned}
v_{1}^{\top} A v_{1}=\left(\theta_{1}\right)^{\top} A\left(\theta e_{1}\right) & =e_{1}^{\top} \underbrace{\theta^{\top}} \theta D Q^{\top} \theta e_{1} \\
& =e_{1}^{\top} D e_{1} \\
& =\lambda_{1} .
\end{aligned}
$$

θ \& θ^{\prime} preserve length $\therefore \theta^{\top} \theta\left(\ell r^{\top} \theta\right)$ ar unit vectors.

$$
\therefore v^{\top} A v \leq \lambda 1 . \quad \therefore v_{1}=\text { aet maximizes } v^{\top} A v .
$$

General covariance matrices
Consider any covariance $A=x^{\top} x$
Linear algebra fact: Any symmetric A can be written as $A=Q D Q T$ for orthogonal matrix $Q \&$ diagonal matrix D.
If $A=x^{\top} x, A$ is symmetric \& D always has non-negative entries. Why?

$$
v^{\top} A v=v^{\top} x^{\top} x v=\left\|x_{v}\right\|_{2}^{2} \geqslant 0
$$

If $D_{i i}<0$, then $v=Q e_{i}, y^{\top} Q D Q^{\top} v=D_{i i}<0$
When $k=1$, the solution to $\operatorname{argmax}_{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}$ is the first column of \boldsymbol{Q}, where $\boldsymbol{A}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}^{\prime}=$ $Q D Q^{\mathrm{T}}$ with \boldsymbol{Q} orthogonal and \boldsymbol{D} diagonal with sorted entries.

General values of \boldsymbol{k}

What is the solution to the PCA objective for general values of k ?

$$
\sum_{i=1}^{n} \sum_{j=1}^{k}\left\langle\boldsymbol{x}_{i}, \boldsymbol{v}_{j}\right\rangle^{2}
$$

Solution: Pick the first k columns of \boldsymbol{Q}, where the covariance $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=\boldsymbol{Q} \boldsymbol{D} \boldsymbol{Q}^{\mathrm{T}}$ with \boldsymbol{Q} orthogonal and \boldsymbol{D} diagonal with sorted entries.

Since \boldsymbol{Q} is orthogonal, the first k columns of \boldsymbol{Q} are orthogonal vectors. These are called the top k principal components (PCs).

Eigenvalues \& eigenvectors

How to compute the top k columns of \boldsymbol{Q} in the decomposition $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=\boldsymbol{Q} \boldsymbol{D} \boldsymbol{Q}^{\mathrm{T}}$?
Solution: Eigenvalue decomposition!

Definition: An eigenvector of matrix \boldsymbol{A} is a vector \boldsymbol{v} that is stretched in the same direction by \boldsymbol{A}, i.e.,

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

for some $\lambda \in \mathbb{R}$. Here λ is the eigenvalue corresponding to the eigenvector \boldsymbol{v}.

Eigenvectors: axes of stretch in geometric intuition
Eigenvalues: stretch factors

When we write $A=x^{\top} x$ as $A=Q D Q T$
\rightarrow rows of $Q^{\top}($ columns of $Q)$ are eigenvector of A
\rightarrow diagonal entries of D are correspordiry eigenvalues.
Proof:
ith column of Q is given by $Q_{e i} \quad\left(\left.\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ Q_{1} & \alpha_{2} & \ldots & \alpha_{d} \\ 1 & 1 & 1 & \vdots \\ 0 \\ 0\end{array} \right\rvert\,\right)$

$$
A(Q e i)=Q D \underbrace{Q^{\top}} Q e_{i}=Q \underbrace{D e^{i}}_{i}=Q \lambda_{i e_{i}}=\lambda_{i}\left(Q e_{1}\right)
$$

\therefore ith column of Q is an eigenvector with eigenvalue λ_{i}. PCA boils down to computing the k eigenvectors of the covariance matrix $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ that have the largest eigenvalues.

Principal Component Analysis (PCA)

- Introduction
- Formalizing the problem
- How to use PCA, and examples
- Solving the PCA optimization problem
- Conclusion

How many PCs to use?

For visualization, we usually choose k to be small and just pick the first few principal components.
In other applications such as compression, it is a good idea to plot the eigenvalues and see. A lot of data is close to being low rank, so the eigenvalues may decay and become small.

We can also choose the threshold based on how much variance we want to capture. Suppose we want to capture 90% of the variance in the data. Then we can pick k such that i.e.

$$
\frac{\sum_{j=1}^{k} \lambda_{j}}{\sum_{j=1}^{d} \lambda_{j}} \geq 90 \%
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{d}$ are sorted eigenvalues.

Note: $\sum_{j=1}^{d} \lambda_{j}=t \underbrace{\operatorname{trace}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right.})$, so no need to actually find all eigenvalues.

$$
\text { sam of diagonal entries of } x^{\top} x
$$

When and why does PCA fail?

1. Data is not properly scaled/normalized.
2. Non-orthogonal structure in data: PCs are forced to be orthogonal, and there may not be too many orthogonal components in the data which are all interpretable.
3. Non-linear structure in data.

