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Administrivia

• Exam 2 is on April 26 in class (1pm-3:20pm)
• Similar format to Exam 1
• Syllabus is lecture 6 (multiclass classification & neural networks) onwards

• Project mid-term check-ins next week
• Short report due on Monday April 15 on Gradescope

• Today’s plan:
• Density estimation & Naïve Bayes
• Multi-armed bandits
• Reinforcement Learning



Density estimation
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With clustering using GMMs, our high-level goal was the following:

Given a training set x1, . . . ,xn, estimate a density function p that could have generated this

dataset (via xi

i.i.d.
∼ p).

This is a special case of the general problem of density estimation, an important unsupervised learn-
ing problem.

Density estimation is useful for many downstream applications

• we have seen clustering already, will see more today

• these applications also provide a way to measure quality of the density estimator

Introduction
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Parametric estimation assumes a generative model parametrized by θ:

p(x) = p(x ;θ)

Examples:

• GMM: p(x ;θ) =
∑k

j=1
πjN(x | µj ,Σj) where θ = {πj ,µj ,Σj}

• Multinomial: a discrete variable with values in {1, 2, . . . , k} s.t.

p(x = j ;θ) = θj

where θ is a distribution over the k elements.

Size of θ is independent of the size of the training set, so it’s parametric.

Parametric methods: generative models



As usual, we can apply MLE to learn the parameters θ:

argmax
θ

n∑

i=1

ln p(xi ;θ)

For some cases this is intractable and we can use algorithms such as EM to approximately solve the
MLE problem (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g. multinomial).

Parametric methods: estimation



MLE for multinomials

The log-likelihood is

n∑

i=1

ln p(x = xi ;θ) =
n∑

i=1

ln θxi
=

n∑

i=1

k∑

j=1

1(xi = j) ln θj

=
k∑

j=1

∑

i:xi=j

ln θj =
k∑

j=1

zj ln θj

where zj = |{i : xi = j}| is the number of examples with value j.

The solution is simply

θj =
zj
n

∝ zj ,

i.e. the fraction of examples with value j. (See HW4 Q2.1)
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Can we estimate without assuming a fixed generative model?

Kernel density estimation (KDE) provides a solution.

• the approach is nonparametric: it keeps the entire training set

• we focus on the one-dimensional (continuous) case

Nonparametric methods



• Construct something similar to a histogram: 
• For each data point, create a “bump” (via a Kernel) 
• Sum up or average all the bumps

High-level idea



Kernel needs to satisfy:

• symmetry: K(u) = K(−u)

•

∫
∞

−∞
K(u)du = 1, makes sure p is a density function.

Kernel

KDE with a kernel K: R → R:

p(x) =
1

n

n∑

i=1

K (x− xi)

e.g. K(u) = 1
√

2π
e−

u
2

2 , the standard Gaussian density



Different kernels
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Bandwidth

If K(u) is a kernel, then for any h > 0

Kh(u) :=
1

h
K

(u

h

)

(stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

p(x) =
1

n

n
∑

i=1

Kh (x− xi) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

• xi controls the center of each bump

• h controls the width/variance of the bumps



Bandwidth

Gray curve is ground-truth

• Red: h = 0.05

• Black: h = 0.337

• Green: h = 2

Larger ℎ means larger variance and smoother density



Naive Bayes

Image source

https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/


A simplistic taxonomy of ML

Supervised learning: 
Aim to predict 

outputs of future 
datapoints

Unsupervised 
learning:

Aim to discover 
hidden patterns and 

explore data

Reinforcement 
learning: 

Aim to make 
sequential decisions



Naïve Bayes

• Motivation & setup

• Prediction with Naïve Bayes, and some connections



Suppose (x, y) is drawn from a joint distribution p. The Bayes optimal classifier is

f∗(x) = argmax
c∈[C]

p(c | x)

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is exactly a density estimation problem!

Bayes optimal classifier



How to estimate a joint distribution? Observe we always have

p(x, y) = p(y)p(x | y)

We know how to estimate p(y) by now.

To estimate p(x | y = c) for some c ∈ [C], we are doing density estimation using data {xi : yi = c}.

This is not a 1D problem in general.

Estimation



Naive Bayes assumption: conditioning on a label, features are independent, which means

p(x | y = c) =
d∏

j=1

p(xj | y = c)

Now for each j and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

• use x = (Height, Vocabulary) to predict y = Age

• Height and Vocabulary are dependent

• but conditioned on Age, they are independent!

More often this assumption is unrealistic and “naive”, but still Naive Bayes can work very well
even if the assumption is wrong.

A naïve assumption



Height: ≤3’, 3’-4’, 4’-5’, 5’-6’, ≥6’

Vocabulary: ≤5K, 5K-10K, 10K-15K, 15K-20K, ≥20K

Age: ≤5, 5-10, 10-15, 15-20, 20-25, ≥25

MLE estimation: e.g.

p(Age = 10-15) =
#examples with age 10-15

#examples

p(Height = 5’-6’ | Age = 10-15)

=
#examples with height 5’-6’ and age 10-15

#examples with age 10-15

Example: Discrete features



For a label c ∈ [C],

p(y = c) =
|{i : yi = c}|

n

For each possible value ! of a discrete feature j,

p(xj = ! | y = c) =
|{i : xi,j = !, yi = c}|

|{i : yi = c}|

Discrete features: More formally



If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

p(xj = x | y = c) =
1√

2πσc,j

exp

(

−
(x− µc,j)2

2σ2
c,j

)

where µc,j and σ2
c,j are the empirical mean and variance of feature j among all examples with

label c.

• or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

p(xj = x | y = c) =
1

|{i : yi = c}|
∑

i:yi=c

Kh(x− xi,j)

Continuous features
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After learning the model

p(x, y) = p(y)
d
∏

j=1

p(xj | y)

the prediction for a new example x is

argmax
c∈[C]

p(y = c | x) = argmax
c∈[C]

p(x, y = c)

= argmax
c∈[C]



p(y = c)
d
∏

j=1

p(xj | y = c)





= argmax
c∈[C]



ln p(y = c) +
d

∑

j=1

ln p(xj | y = c)



 .

Naïve Bayes: Prediction



For discrete features, plugging in previous MLE estimation gives

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]



ln p(y = c) +
d

∑

j=1

ln p(xj | y = c)





= argmax
c∈[C]



ln |{i : yi = c}|+
d

∑

j=1

ln
|{i : xi,j = xj , yi = c}|

|{i : yi = c}|





Example: Discrete features



Observe again for the case of continuous features with a Gaussian model, if we fix the variance for

each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]



ln |{i : yi = c}|+
d

∑

j=1

(

ln

(

1√
2πσ

)

−
(xj − µc,j)2

2σ2

)





= argmax
c∈[C]



ln |{i : yi = c}|−
d

∑

j=1

µ2
c,j

2σ2
+

d
∑

j=1

µc,j

σ2
xj





= argmax
c∈[C]



wc0 +
d

∑

j=1

wcjxj



 = argmax
c∈[C]

w
T
cx (linear classifier!)

where we denote wc0 = ln |{i : yi = c}|−
∑d

j=1
µ2

c,j

2σ2 and wcj =
µc,j

σ2 .

What is Naïve Bayes learning?



Moreover, by a similar calculation you can verify

p(y = c | x) ∝ e
w

T
c
x

This the softmax function, the same model we used for the probabilistic interpretation of logistic

regression!

So what is different then? They learn the parameters in different ways:

• both via MLE, one on p(y = c | x), the other on p(x, y)

• solutions are different: logistic regression has no closed-form, naive Bayes admits a simple
closed-form

Connection to logistic regression



Logistic regression Naive Bayes

Model conditional p(y | x) joint p(x, y)

Learning MLE (can also be viewed as minimizing logistic loss) MLE

Accuracy usually better for large n usually better for small n

Connection to logistic regression



Multiarmed bandits



A simplistic taxonomy of ML

Supervised learning: 
Aim to predict 

outputs of future 
datapoints

Unsupervised 
learning:

Aim to discover 
hidden patterns and 

explore data

Reinforcement 
learning: 

Aim to make 
sequential decisions



• Motivation & setup

• Exploration vs. Exploitation

Multi-armed bandits



Problems we have discussed so far:

• start with a fixed training dataset

• learn a predictor from the data or discover some patterns in the data

But many real-life problems are about learning continuously:

• make a prediction/decision

• receive some feedback

• repeat

Broadly, these are called online decision making problems.

Decision making



Amazon/Netflix/Instagram recommendation systems:

• a user visits the website (or views a post etc.)

• the system recommends some products/movies/posts

• the system observes whether the user clicks on the recommendation

Playing games (Go/Atari/StarCraft/...) or controlling robots:

• make a move

• receive some reward (e.g. score a point) or loss (e.g. fall down)

• make another move...

Examples



Imagine going to a casino to play a slot machine

• it robs you, like a “bandit” with a single arm

Of course there are many slot machines in the casino

• like a bandit with multiple arms (hence the name)

• if I can play 10 times, which machines should I play?

Multiarmed bandits: Motivation



This simple model and its variants capture many real-life applications:

• recommendation systems, each product/movie/news story is an arm
(Netflix employs a variant of bandit algorithm)

• game playing, each possible move is an arm
(AlphaGo has a bandit algorithm as one of the components)

Applications



There are K arms (actions/choices/...)

The problem proceeds in rounds between the environment and a learner: for each time t = 1, . . . , T

• the environment decides the reward for each arm rt,1, . . . , rt,K

• the learner picks an arm at ∈ [K]

• the learner observes the reward for arm at, i.e., rt,at

Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is usually referred to as bandit feedback

Formal setup



Evaluating performance

What should be the goal here?

Maximizing total rewards
∑T

t=1 rt,at
seems natural.

But the absolute value of rewards is not meaningful, instead we should compare it to some bench-

mark. A classic benchmark is

max

a∈[K]

T∑

t=1

rt,a

i.e. the largest reward one can achieve by always playing a fixed arm

So we want to minimize

max

a∈[K]

T∑

t=1

rt,a −

T∑

t=1

rt,at

This is called the regret: how much I regret not sticking with the best fixed arm in hindsight?



How are the rewards generated by the environments?

• they could be generated via some fixed distribution

• they could be generated via some changing distribution

• they could be generated even completely arbitrarily/adversarially

We focus on a simple setting:

• rewards of arm a are i.i.d. samples of Ber(µa), that is, rt,a is 1 with prob. µa, and 0 with prob.
1− µa, independent of anything else.

• each arm has a different mean (µ1, . . . , µK); the problem is essentially about finding the best
arm argmaxa µa as quickly as possible

Environments



Let µ̂t,a be the empirical mean of arm a up to time t:

µ̂t,a =
1

nt,a

∑

τ≤t:aτ=a

rτ,a

where
nt,a =

∑

τ≤t

I[aτ == a]

is the number of times we have picked arm a.

Concentration: µ̂t,a should be close to µa if nt,a is large

Empirical means



Multi-armed bandits

• Motivation & setup

• Exploration vs. Exploitation



Greedy:

Pick each arm once for the first K rounds.

For t = K + 1, . . . , T , pick at = argmaxa µ̂t−1,a.

What’s wrong with this greedy algorithm?

Consider the following example:

• K = 2, µ1 = 0.6, µ2 = 0.5 (so arm 1 is the best)

• suppose the algorithm first picks arm 1 and sees reward 0, then picks arm 2 and sees reward 1

(this happens with decent probability)

• the algorithm will never pick arm 1 again!

Exploitation only



All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

• on one hand we want to exploit the arms that we think are good

• on the other hand we need to explore all arms often enough in order to figure out which one
is better

• so each time we need to ask: do I explore or exploit? and how?

We next discuss three ways to trade off exploration and exploitation for our simple multi-armed
bandit setting.

The key challenge



Explore–then–Exploit:

Input: a parameter T0 ∈ [T ]

Exploration phase: for the first T0 rounds, pick each arm for T0/K
times

Exploitation phase: for the remaining T − T0 rounds, stick with the
empirically best arm argmaxa µ̂T0,a

Parameter T0 clearly controls the exploration/exploitation trade-off

A natural first attempt



It’s pretty reasonable, but the disadvantages are also clear:

• not clear how to tune the hyperparameter T0

• in the exploration phase, even if an arm is clearly worse than others based on a few pulls, it’s
still pulled T0/K times

• clearly it won’t work if the environment is changing

Explore-then-Exploit: Issues



ε-Greedy Pick each arm once for the first K rounds.

For t = K + 1, . . . , T ,

• with probability ε, explore: pick an arm uniformly at random

• with probability 1− ε, exploit: pick at = argmaxa µ̂t−1,a

A slightly better algorithm

• always exploring and exploiting
• applicable to many other problems
• first thing to try usually

• need to tune !
• same uniform exploration

Pros Cons

Is there a more adaptive way to explore?



A simple modification of “Greedy” leads to the well-known:

Upper Confidence Bound (UCB) algorithm

For t = 1, . . . , T , pick at = argmaxa UCBt,a where

UCBt,a := µ̂t−1,a + 2

√

ln t

nt−1,a

• the first term in UCBt,a represents exploitation, while the second (bonus) term represents
exploration

• the bonus term is large if the arm is not pulled often enough, which encourages exploration
(adaptive due to the first term)

• a parameter-free algorithm, and it enjoys optimal regret!

More adaptive exploration



Upper confidence bound

Why is it called upper confidence bound?

One can prove that with high probability,

µa ≤ UCBt,a

so UCBt,a is indeed an upper bound on the true mean.

Another way to interpret UCB, “optimism in face of uncertainty”:

• true environment (best mean) is unknown due to randomness (uncertainty)

• have an upper bound (optimistic guess) on the expected reward of each environment, and pick
best one according to upper bound (optimism)

This principle is useful for many other bandit problems.



Reinforcement 
Learning



Reinforcement Learning

• Motivation

• Markov Decision Process (MDP)

• Learning MDPs



Multi-armed bandit is among the simplest decision making problems with limited feedback.

Often, it can be too simple to capture real-life problems. One important aspect it fails to capture is
the “state” of the learning agent, which has impacts on the reward of each action.

• e.g. for Atari games, after making one move, the agent moves to a different state, with possible
different rewards for each action

Motivation



Reinforcement learning (RL) is one way to deal with this issue.

Huge recent success when combined with deep learning techniques

• Video games, AlphaGo, Reinforcement Learning from Human Feedback (RLHF) for Chat-
bots, self-driving cars, etc.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov models and multi-armed bandits.

Reinforcement Learning
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An MDP is parameterized by five elements

• S: a set of possible states

• A: a set of possible actions

• P : transition probability, Pa(s, s′) is the probability of transiting from state s to state s′ after
taking action a (Markov property)

• r: reward function, ra(s) is (expected) reward of action a at state s

Difference from Markov models, the state transition is influenced by the taken action.

Difference from Multi-armed bandit, the reward depends on the state.

Markov Decision Process



There can be different ways of measuring reward, for example:

• Fix some finite horizon (say 100 time steps) and sum total the rewards obtained in this horizon.

• Discount future rewards by discount factor γ ∈ (0, 1). Reward of 1 from tomorrow is only
counted as γ for today, more generally reward n time steps away is discounted by γ

n.

Discounting is most popular and well-studied.

• It models the fact that the process could stop at any time step

• It has a preference for solutions which are rewarding over short time scales

• It is like a smoothed version of a fixed horizon.

Measuring reward



Example

3 states, 2 actions



A policy π : S → A indicates which action to take at each state.

If we start from state s0 ∈ S and act according to a policy π, the discounted rewards for time
0, 1, 2, . . . are respectively

rπ(s0)(s0), γrπ(s1)(s1), γ2rπ(s2)(s2), · · ·

where s1 ∼ Pπ(s0)(s0, ·), s2 ∼ Pπ(s1)(s1, ·), · · ·

If we follow the policy forever, the total (discounted) reward is

E

[

∞
∑

t=0

γtrπ(st)(st)

]

where the randomness is from st+1 ∼ Pπ(st)(st, ·).

Note: the discount factor allows us to consider an infinite learning process

Policy



First goal: knowing all parameters, how do we find the optimal policy

argmax
π

E

[

∞
∑

t=0

γtrπ(st)(st)

]

?

We first answer a related question: what is the maximum reward one can achieve starting from an arbitrary

state s?

V (s) = max
π

E

[

∞
∑

t=0

γtrπ(st)(st)
∣

∣

∣
s0 = s

]

= max
a∈A

(

ra(s) + γ
∑

s′∈S

Pa(s, s
′)V (s′)

)

V is called the (optimal) value function.

It satisfies the above Bellman equation: |S| nonlinear equations with |S| unknowns, how do we solve it?

Optimal policy and Bellman equation



Value Iteration:

Initialize V0(s) randomly for all s ∈ S

For k = 1, 2, . . . (until convergence)

Vk(s) = max
a∈A

(

ra(s) + γ
∑

s′∈S

Pa(s, s
′)Vk−1(s

′)

)

(Bellman upate)

Knowing V , the optimal policy π∗ is simply

π∗(s) = argmax
a∈A

(

ra(s) + γ
∑

s
′∈S

Pa(s, s
′)V (s′)

)

Value iteration



Does Value Iteration always find the true value function V ? Yes!

|Vk(s)− V (s)| =

∣

∣

∣

∣

∣

max
a∈A

(

ra(s) + γ
∑

s′∈S

Pa(s, s
′)Vk−1(s

′)

)

−max
a∈A

(

ra(s) + γ
∑

s′∈S

Pa(s, s
′)V (s′)

)
∣

∣

∣

∣

∣

≤ γmax
a∈A

∣

∣

∣

∣

∣

∑

s′∈S

Pa(s, s
′) (Vk−1(s

′)− V (s′))

∣

∣

∣

∣

∣

≤ γmax
a∈A

∑

s′∈S

Pa(s, s
′) |Vk−1(s

′)− V (s′)|

≤ γmax
s′

|Vk−1(s
′)− V (s′)| ≤ · · · ≤ γk max

s′
|V0(s

′)− V (s′)|

So the distance between Vk and V is shrinking exponentially fast.

Convergence of value iteration



Reinforcement Learning

• Motivation

• Markov Decision Process (MDP)

• Learning MDPs


