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Administrivia

e Exam 2is on April 26 from 1pm-3:20pm
e Similar instructions as Exam 1
 More info will be posted on Ed later

* Today’s plan:
 Reinforcement Learning
* Trustworthy ML



Multi-armed Bandits
& Reinforcement
Learning: Recap



Multi-armed bandits: Setup

There are K arms (actions/choices/...)

The problem proceeds in rounds between the environment and a learner: for eachtime ¢t =1, ...

e the environment decides the reward for each arm ry 1,..., 7 i

e the learner picks an arm a; € [K]

e the learner observes the reward for arm a;, 1.e., ¢ q,

Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is usually referred to as bandit feedback



The key challenge

All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

e on one hand we want to exploit the arms that we think are good

e on the other hand we need to explore all arms often enough in order to figure out which one
is better

e so each time we need to ask: do I explore or exploit? and how?

We discussed three ways to trade off exploration and exploitation for our simple multi-armed bandit
setting:

e Explore-then-Exploit

o c-Greedy
e Upper Confidence Bound (UCB)



Markov Decision Process

An MDP is parameterized by five elements
e S: a set of possible states
e A: a set of possible actions

e P: transition probability, P, (s, s) is the probability of transiting from state s to state s” after
taking action a (Markov property)

e r: reward function, r,(s) is (expected) reward of action a at state s

Difference from Markov models, the state transition is influenced by the taken action.

Difference from Multi-armed bandit, the reward depends on the state.



Optimal policy and Bellman equation

First goal: knowing all parameters, how do we find the optimal policy
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We first answer a related question: what is the maximum reward one can achieve starting from an arbitrary
state s?

V(s) = maxE thm(st)(st) ’ So = s]
" t=0
—meax<ra —I—’yZP s,s) )
¢ s'eS

V' is called the (optimal) value function.

We can solve it using value iteration.



Value iteration

Value Iteration:

Initialize V;(s) randomly for all s € S
!Aevf%ug LgHWo\ﬂ'OS

/

Vi(s) = max <7’a(s) + Z P, (s, s’)Vk_l(sl)> (Bellman upate)

eA
“ s'eS

For k = 1,2, ... (until convergence)

Knowing V', the optimal policy 7* is simply

7 (s) = argmax (fra(s) + v Z P, (s, 3’)V(3/)>

G/EA S/GS




Markov Decision
Processes:
Continued



Reinforcement Learning

* Markov Decision Process (MDP)

* Learning MDPs



Learning MDPs

Now suppose we do not know the parameters of the MDP
e transition probability P

e reward function r

How do we find the optimal policy?

We discuss examples from two families of learning algorithms:
e model-based approaches

e model-free approaches



Model-based approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s, a1,71, S2, 2,72, ..., ST, ar, T, then the MLE for P and
r are simply

P,(s,s) o< #transitions from s to s’ after taking action a

ro(s) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to find the optimal policy.
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Model-based approaches

How do we collect data s1,a1,71, 82,029,792, ...,8T,07,7T?

Simplest idea: follow a random policy for 7" steps. This is similar to explore—then—exploit, and we know
this is not the best way.

Let’s adopt the e-Greedy idea instead.

A sketch for model-based approaches
Initialize V, P, r randomly

Fort=1,2,...,
e with probability ¢, explore: pick an action uniformly at random
e with probability 1 — ¢, exploit: pick the optimal action based on V'
e update the model parameters P, r

e update the value function V' (via value iteration)




Model-free approaches

Key idea: do not learn the model explicitly. What do we learn then?

stk @5 °~<B ong
Define the () :@2 m) function as
Q(

s,a) =1q(s) + 7 Z P,(s,s" ) maxQ(s’,a’)
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In words, (s, a) is the expected reward one can achieve starting from state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s, a).
Knowing (s, a), the optimal policy at state s is simply argmax, Q(s, a).

Model-free approaches learn the () function directly from samples.



Q-learning update rule

How to learn the Q function?

Q(s,a) =14(s) +7 ,EE; P,(s,s") gléiﬁ Q(s',a’)
8 '
LS
On experience (s¢, at, ¢, St11), With the current guess on @, 7, +7 max, Q(s;11,a’) Xa

1s like a training example for Q-learning.

¢3
So it’s natural to do the following update: ) ‘
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Q-learning

The simplest model-free algorithm:

Q-learning

Initialize () randomly; denote the initial state by s .

Fort=1,2,...,
e with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax,_, Q(s¢, a)
e execute action a;, receive reward 7, arrive at state S; 1
e update the () function
Q(st,at) — (1 — a)Q(s¢,a:) + « (rt + 7 max Q(Sty1, a))

for some learning rate a.




Q-learning for large state spaces

For a large state space, such as a continuous space:

1. Discretize 20 uwpd |

2. Treat Q-learning as a supervised learning problem, given current (s, a) find Q(s, a)

Input: (s, a;)
Desired output: 7. + ¥ V(S¢11)

where V(s;41) =max Q(S¢41, Q).
a
Can use powerful supervised learning techniques!

Deep neural networks -> Deep Q-learning



Model-based vs model-free RL

Model-based Model-free
What they learn | model parameters P, r, . .. () function
Space O(|S[*IA]) O(|S]]Al)

Data efficiency

usually better

usually worse

Assumptions

need model of world

do not assume model



It’s a




Machine Learning can be brittle

a Snak_e_!

The Blind Men and the Elephant

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:

"God bless me! but the Elephant
Is very like a WALL!”



Challenges in Trustworthy ML

Spurious correlations and distributional shifts
Biases in models and unfairness to demographics
Adversarial examples

Privacy, Interpretability, Ethics, ...



correlations and
distributional shifts



ML models can be very sensitive to changes in
the data distribution

You saw a small example of this in the HW3 Bonus question:
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ML models can latch onto
spurious features to make predictions

Consider the following task:

Waterbird VS. Landbird

Images courtesy of: University of Hawaii at Manoa, Greg Schechter (Flickr)



ML models can latch onto
spurious features to make predictions

Most images of waterbirds are in water,
and landbirds are on land

Waterbirds Landbirds

<
»



ML models can latch onto
spurious features to make predictions

But this isn’t always true!

Waterbirds Landbirds

<
L



ML models can latch onto
spurious features to make predictions

This is known as failure to distributional shifts

Landbirds



A real-world example
CNN models have obtained impressive results for diagnosing X-rays

E.g. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization
of Common Thorax Diseases, Wang et a;. 2017

Source: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing
radiologists, Rajpurkar et al. 2018



But the models may not generalize as well to data from new hospitals because they can
learn to pickup on spurious correlations such as the type of scanner and marks used by

technicians in specific hospitals!

CNN to predict hospital system detects both general and specific image features.

(A) We obtained activation heatmaps from our trained model and averaged over a sample of images to reveal which subregions
tended to contribute to a hospital system classification decision. Many different subregions strongly predicted the correct
hospital system, with especially strong contributions from image corners. (B-C) On individual images, which have been
normalized to highlight only the most influential regions and not all those that contributed to a positive classification, we note that
the CNN has learned to detect a metal token that radiology technicians place on the patient in the corner of the image field of
view at the time they capture the image. When these strong features are correlated with disease prevalence, models can

leverage them to indirectly predict disease.

Source: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-
sectional study, Zech et al. 2018




How to make models robust to spurious correlations?

Very active research area, lots of algorithmic solutions.
* An example is Distributionally Robust Optimization. Here instead of minimizing the
average loss (as we do with ERM), we minimize the worst loss across some known set of
groups within the data.
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Usually, the best solution (if possible) is to collect more representative data.

Waterbirds VS. Landbirds



Lesson: Don’t assume model is generalizing

By now, you understand generalization when test distribution = train distribution
However, this can be frequently violated for real-world applications

Important to test the model on different kinds of data, and understand limitations of
models trained on certain data






ML models can show biases against certain

sub-populations
You saw a small example of this in the HW4 word embedding question:
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Fig. from the book Fairness And ML: Limitations and Opportunities



Unfairness could arise in various ways

Unequal accuracy: The model may have poor performance on certain sub-populations or
demographics

Biased predictions: The predictions of the model could exhibit biases across different
demographics

Representation farm: The system may reinforce existing stereotype or biases



Unfairness could arise in various ways

* Unequal accuracy: The model may have poor performance on certain sub-populations or

demographics



Unequal accuracy: The GenderShades project

Models can do well on average but not on sub-populations

http://gendershades.org/



http://gendershades.org/

http://gendershades.org/

ion tools

perform on various demographics?
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http://gendershades.org/

Ans: Not very well

y 9
TYPEI  TYPENIl TYPENl TYPEIV TYPEV  TYPEVI
=. 1.7% 1.1% 3.3% 0% 232%  25.0%
TE=E 51% 7.4% 8.2% 8.3% 33.3% 46.8%

- TFACE™  11.9% 9.7% 8.2% 13.9% 32.4% 46.5%



Ans: Not very well




Mitigating harm due to unequal accuracy

The problem of unequal accuracy of sub-groups bears similarities to the problem of ensuring
the algorithm does well on distributional shifts (original distribution -> distribution with more
weight on a particular demographic)

As for distributional shifts and spurious correlations, getting more representative data is the
best solution

Algorithmic approaches also exist, similar to what we discussed for distributional shifts
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Unfairness could arise in various ways

* Biased predictions: The predictions of the model could exhibit biases across different

demographics



Bias in predictions: The COMPAS software

* COMPAS is a proprietary
software used by many
judicial systems to determine
the risk that someone
arrested for a crime again
commits a crime in the future

e Used for decisions such as for
deciding bail

Current Charges
O Homicide & Weapons ] Assautt ' Oason .
] Robbery [ Burglary L] property/Larceny O Fraud
(J brug Trafficking/Sales [ prug Possession/Use O pbuyouil ) other

(J sex Offense with Force () sex Offense w/o Force

1. Do any current offenses involve family viclence?
& no D Yes

2 mmwuseatte—guyrepmsenswmstsemammoﬂem?
([ Misdemeanor [ Non-violent Felony &) Violent Felony

3. Was this person on probation or at the time of the current offense?
4 Probation (] Parole [ Both [ Neither

4, Based on the screener’s observations, Is this person a suspected or admitted gang member?
O no 4 Yes

5. Number of charges or holds?
MoO10020304+

6. Is the current top charge felony property or fraud?
N0 ves

Criminal History

Exclude the current case for these questions.



Biases iIn COMPAS

El Y B Donate

VEITTERIED

There's software used across the country to predict future criminals. And it's biased against blacks.

machine-bias-risk-assessments-in-criminal-sentencin



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

El Y B Donate

Biases iIn COMPAS

“In forecasting who would re-offend, the algorithm made mistakes with black and white defendants at

roughly the same rate but in very different ways.
* The formula was particularly likely to falsely flag black defendants as future criminals, wrongly labeling

them this way at almost twice the rate as white defendants.
* White defendants were mislabeled as low risk more often than black defendants.”

There's software used across the country to predict future criminals. And it's biased against blacks.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Two Shoplifting Arrests

SUAWES RIVELLI ERT CANNON
LOW RISK 3  MEDIUMRISK @

After Rivelli stole from a CVS and was caught with heroin in his
car, he was rated a low risk. He later shoplifted $1,000 worth of
tools from a Home Depot.

Two DUI Arrests

GREGORY LUGO MALLORYAHINI AMS
LOW RISK 1 MEDIUMRISK @

Lugo crashed his Lincoln Navigator into a Toyota Camry while
drunk. He was rated as a low risk of reoffending despite the fact
that it was at least his fourth DUL

Two Drug Possession Arrests

BERNARD, PARKER
- e
LOW RISK 3 HiGHrisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.

Two Petty Theft Arrests
s

BRISHA BORDEN
LOW RISK 3 HIGHRISK 8

Borden was rated high risk for future crime after she and a friend
took a kid's bike and scooter that were sitting outside. She did not
reoffend.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Bias in predictions: Predicting disease severity

Quoting from the paper: B Diabetes severity: HbA1c
- Referred for screen | Defaulted into program:
* Health systems rely on commercial prediction algorithms | |
to identify and help patients with complex health needs.
1 @\a&h ?“h(m = ,
* A widely used algorithm affecting millions of patients, _ 3 o A
exhibits significant racial bias: At a given risk score, Black g L LA,
patients are considerably sicker than White patients, as < “,/VT %
evidenced by signs of uncontrolled illnesses. g /,'/
v P LT
* Remedying this disparity would increase the percentage of =0 < /Yxx S
Black patients receiving additional help from 17.7 to 46.5%. :// iy
* Bias arises because the algorithm predicts health care costs Th.L 3 o wWhit pc.FCWfs
rather than illness, but unequal access to care means that } ,
we spend less money caring for Black patients than for 0 1o 20 % 40 50 0 70 80 90 100
White patients. =5 Meesupevatnt chd(c - Percentile of Algorithm Risk Score
T Ql_q_&;\l\e e p‘%ﬂ;d\‘@v’ ('“-”k/ ’ Dissecting racial bias in an algorithm used

to manage the health of populations,

heallirtcae ot wied 0% protg) Obermeyer et al., Science 2019



How to obtain fair classifiers?

Observation: No fairness by just excluding sensitive attributes
Why? Sensitive attribute can often be reconstructed from other features

Zip code has a lot of information about race



Ensuring fairness in classification: Group & Individual fairness notions
Two broad classes of fairness notions in classification:
Individual fairness: Algorithm treats similar individuals similarly

Group fairness: Algorithm is “unbiased” on protected groups (such as race, gender etc.)



Individual fairness

Define a metric d(x, x") for the similarity between any two individuals x and x'.

YM‘V‘Q.‘%T"”' STiA SIRRCE Mantron

eg:.d(,x)=N1x—x"1,

If classifier predicts p(x) as the probability of label being one for x, if

lp(x) —p(x")| < pd(x,x'),

then predictions of the classifier are individually fair with parameter u.

Two Shoplifting Arrests o
. If these two individuals

are similar, then their
risk scores should be
similar.

.\ <o A
s oo
| —
ERT CANNON

BUAMES RIVELLI
LOW RISK 3 MEDIUM RISK

6

After Rivelli stole from a CVS and was caught with heroin in his

car, he was rated a low risk. He later shoplifted $1,000 worth of . . . .
- Fairness Through Awareness. Cynthia Dwork, Moritz Hardt, Toniann
Pitassi, Omer Reingold, Richard Zemel. 2011




Group fairness

Group fairness notions require that the models predictions obey certain properties over
protected groups (e.g. by race, gender).

Many different notions have been proposed
e Statistical parity
* Equalized odds

e (Calibration across groups



Statistical parity

Binary classification setup (e.g. admitting a student to a degree program)
* Classifier f

* Datapoint (x,y)

* Sensitive attribute a € {0,1}

Statistical parity: P;r[f(x) =1|la=1] = P;r[f(x) =1|a=0]

In words: Predictions are independent of sensitive attribute
E.g., admit equal fraction of men or women into program
Can be too strong if labels and sensitive attribute are not independent.

E.g. if women are more likely to be qualified for that degree program than men



Equalized odds

Same binary classification setup (e.g. admitting student to degree program)

* Classifier f Recall {5 (ay ( - # dhop.s: \
 Datapoint (x,y) PEMS (alatlf e | & dosshiod oy |

* Sensitive attribute a € {0,1} 4 e(cdzgelers labatlad oy |

Equalized odds:

Prif(x)=1la=1y=1]=Pr[f(x) =1]a=0,y =1]
Prif(x) =0la=1y=0] =Pr[f(x) = Dla =0,y = 0]

In words: Recall for both y = 1 and y = 0 is the same for both groups

Also equivalent to saying: Conditioned on label, prediction is independent
of sensitive attribute



Equalized odds

E.g. Professor Snape has to admit students to his Advanced
Potions class.

100 students apply from Gryffindor (80% are qualified) E V ‘[ ¢ ‘

Xewose, Seo i Prof. Svope
e aualiee unqualified ase. Seo if pe s
Accepted 60 5 = -Fai‘l-. CLthoQZlﬁg to StabvsHcad fa%;{ Y

Rejected 20 15 > fain atconding to szualied odds
Total 80 20

100 students apply from Slytherin (40% are qualified)

_ Qualified Unqualified

Accepted 30 15
Rejected 10 45
Total 40 60

Equalized odds:
Prif()=1la=1y=1=Prif@® =1la=0y=1]
Prif(x) =0la=1y=0]=Prlf(x) =1]a =0y =0]



Calibration across groups

Calibration: A model f for binary classification is
calibrated if

le;l;[y=1lf(X)=a]=a

Informally, this says that “predictions mean
what they should”

=1

Fraction of examples where Y

Calibration Plot

1.0 1

0.8

0.4 1

0.2 1

004 -

Overconfident
Well-calibrated
0.'0 0.’2 0.'4 0.’6 0.'8 1.’0

Model’s output P(y=1 | x; 6)



Calibration across groups

Multi-calibration: A model f for binary classification is

calibrated for groups defined by sensitive attribute a if

Priy=11f() =a,a=1]

)

Prly=1|f(x) = a,a = 0]

)

a,

a.

Informally, this says that “predictions mean what they

should for each group”

7.54

N
o
1

Mean HbA1c (%)

d
o
I

5.5+

B Diabetes severity: HbA1c

e
o
L

Referred for screen Defaulted into programi

o 10 20 30 4 s 60 70 8 S0 100
Percentile of Algorithm Risk Score




Group fairness notions: Can we satisfy them all?

We saw three notions: statistical parity, equalized odds, calibration across groups
Can we satisfy all of them together? No!

In our example from Hogwarts, the model was fair in terms of equalized odds but unfair in terms of
statistical parity. This tension between different notions arises in real data too.

COMPAS: Unfair because black defendants who COMPAS: Fair because probability of
did not recommit crime are assigned higher recommitting crime is similar for a given
score (i.e. does not obey equalized odds) risk score, for both groups (i.e. is calibrated)

2,000 <

— Black defendants
— White defendants

C

Reoffended
. Did not reoffend

:

Number of defendants
Likelihood of recidivism

Medium/High
Risk category

0-
Medium/High 0% 4

1 2 3 4 5 6 7 8 9 10
Risk score

https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c



https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c

Unfairness could arise in various ways

* Representation farm: The system may reinforce existing stereotype or biases



Bias in representation: Machine Translation

English - detected

She is a doctor.
He is a nurse.

©

=

* Hindi does not have gendered pronouns

X

Hindi

I U Sided &l
g T gl

vah ek doktar hai.
vah nars hai.

D © G

Open in Google Translate -«

Hindi - detected

Ig U SiaT &l
gg g Bl

vah ek doktar hai.
vah nars hai.

0

X

English v

He is a doctor.
she's a nurse.

rl:] ‘9 G @ Verified

Open in Google Translate + Feedback

* Machine translation model seems to pick on existing stereotypes (likely from its training

data), and rely on them
* Some efforts to mitigate such biases: https://research.google/blog/a-scalable-approach-to-

reducing-gender-bias-in-google-translate/, but problems remain



https://research.google/blog/a-scalable-approach-to-reducing-gender-bias-in-google-translate/

Bias in representation: Image generation

a software
developer

a flight
attendant

a terrorist

a thug

an emotional
person

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023



Model amplifies existing biases

Percent of occupation identified as female

Firefighter ‘

o Percent of occupation
Taxi driver - X i
| self-identified as female
Software developer —
- Percent of generated images
Chef
A4 model represented as female
| » Pilot
P Cook
| D Flight attendant
} Therapist
| P Nurse
ousekeeper
| P Housek
No 25% 50% 75% All
female female

Percent of occupation identified as non-white

pilot <l
Therapist - I Percent of occupation
Flight attendant — self-identified as non-white
Chef — o Percent of generated images
model represented as non-white
Software developer < P
| P Firefighter
| P Nurse
| P Housekeeper
I P Cook
I P Taxi driver

No 25% 50% 75% All
non-white non-white

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023



Some more instances of algorithmic bias

2116 © © O ®480%

Aug 19, 2020 - Technology

() & theatlantic.com/technol  + (&

How an Al grading system ignited a

national controversy in the U.K. = A -
The Atlantic

e Bryan Walsh, author of Axios Future

TECHNOLOGY

It Was Supposed to
Detect Fraud. It
Wrongfully Accused
Thousands Instead.

How Michigan’s attempt to automate its

unemployment system went horribly wrong

By Stephanie Wykstra and Undark

lllustration: Eniola Odetunde/Axios

A huge controversy in the U.K. over an algorithm used to substitute for university-entrance

exams highlights problems with the use of Al in the real world. ﬁ% w ﬁ %

Link to article Link to article



https://www.axios.com/2020/08/19/england-exams-algorithm-grading
https://www.theatlantic.com/technology/archive/2020/06/michigan-unemployment-fraud-automation/612721/

Some more instances of algorithmic bias

€he New Nork Eimes

TeChn0|ogy Featured Topics Newsletters Events Podcasts Signin Subscribe
Review

There Is a Racial Divide in Speech-

Recognition Systems, Researchers Say

Technology from Amazon, Apple, Google, IBM and Microsoft
misidentified 35 percent of words from people who were black.
White people fared much better.

ARTIFICIAL INTELLIGENCE

LinkedIn’s job-matching Al was biased. The
company'’s solution? More Al.

£ iethisartice 2> []

ZipRecruiter, CareerBuilder, Linkedin—most of the world's biggest job search
sites use Al to match people with job openings. But the algorithms don't always
play fair.

By Sheridan Wall & Hilke Schellmann June 23,2021

Amazon’s Echo device is one of many similar gadgets on the market. Researchers say
there is a racial divide in the usefulness of speech recognition systems. Grant Hindsley
for The New York Times

Link to article

Link to article



https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html?unlocked_article_code=RZU3a2ioZ2GP2fpn1TY1socFyOeW3-OMZhNalKuPcgqLc1JTaU-giCsBm4AMB31H-pHlkKLjc8yI4gqbUy5nazpxVEsoQiK6egcjks-hkgxo08OhEsDznTk70lTb1yDKS60a1uudrs84BZtMIoPdP3khYZnpEQVUORmFwSj_qSN0vE9AnzSvyZ5x0x6Z1KW8aX2k1kODcogOmmB5Kqqs8MErMzcAKIk7-tpv7KTuRG-CCoVSGe9Q33Ca5A6Ti1jfBKl0D_G-BRkmBp7iXe29UmmXxIseO5agr555XikzKPLORK5BPSD8U8Mv4bgIGFKtKk9rxLVUGpLkaagfApltZiPPPSOO34PrELX84qryGEQsTtORP19cYw&smid=share-url
https://www.technologyreview.com/2021/06/23/1026825/linkedin-ai-bias-ziprecruiter-monster-artificial-intelligence/
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Previously: CNNs are great at image classification

Imagenet Image Recognition
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However, ML can also be very sensitive
to small variations in the input

Pig Small amount of Airplane!
6 confidence adversarial noise .9% confidence
(90% fid ) d ial noi (99.9% fid )

ML is so great, it can make pigs fly!!



These are known as adversarial examples

“Speed Limit 38@”

W classified as turtle [ classified as rifle
B classified as other

Adversarial examples have been shown to also hold for real-world tasks.

They are an issue because

1. Can pose potential security risks
2. Indicate that even though models are good, they don’t quite work the same way as we do
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Adversarial examples: More formal setup

VN

Panda Nematode Gibbon

58% confidence 8% confidence 99% confidence

Adversary: Given an image x and classifier f(x), comes up with some other image x’ which is
“similar” to x, such that f(x) # f(x).

How to define similarity? One notion is small perturbations based on some norm. We typically
consider the £, norm: || x — x' || < €, where € is the allowed perturbation level.

{001 ah? A € ’Ké( B ”7‘/[‘003 mas, llq\

‘62‘)--,13

This means: can perturb every pixel by a perturbation in [—¢, €].



How should the adversary come up with an attack?

Adversary’s formal goal: Given an image x and classifier

T4 Bat'?l\

f(x):x - {0,1}, find some other image x’ such that A fh €

2
© flo) # fx) /
* x' € Be(x),Be(x) = {x"such that || x —x" <€} | {7777
One solution: Adversary finds the gradient with
respect to the input x, and chooses the perturbation
which changes the loss £(f (x), y) the most locally.
Repeat some number of times:

< >

1. Update xpey = x HVf(f (x), ). N\

2. If xp0y is outside theallowed perturbation v
region, "project” back into region.



How to defend against adversarial examples?

Naive strategy: Do data augmentation by adding
random noise to original inputs

Issue: Adversary might still be able to find one

datapoint x’ within perturbation region such that

fx) # f(x') L
But thare s e

Better strategy: pout with opposit
\abd] : (

Mimic the adversary’s strategy to add the particular
point x" which has a different label from x

od
tjﬁv&ovv‘ ponds i @5(1\

QQ % {:v‘e on

Training objective: <

min 2 UL 2(f(x"),y)
all points x






Privacy & Denonymization

Many companies and organizations release or exchange data to
spur research interest, build better models etc.

Often, the data is “anonymized" before being released. But
does anonymization actually work?

A story from the 90s:

An insurance company, GIC, in Massachusetts decided to
release "anonymized" data on state employees that showed
every single hospital visit. A graduate student found the records
of the Governor of Massachusetts by associating the data with
public vote roll data.

“87 percent of all Americans can be uniquely identified using
only three bits of information: ZIP code, birthdate, and sex.”

https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/



https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/

Privacy & Denonymization

The Netflix prize:

* Launched in 2006, S1M cash prize
e Dataset: 100 million movie ratings from nearly 500 thousand Netflix

subscribers on a set of 17770 movies. Each data point corresponds
to (anonymized user id, movie, date of rating, rating).

* Researchers were able to de-anonymize some of the subscribers by
linking their rating with ratings on IMDB!

* Some Netflix subscribers had also publicly rated an overlapping set

of movies on IMDB under their real identities.
* Lawsuit against Netflix, subsequent competition was cancelled.

From the book Fairness And ML: Limitations and Opportunities



Privacy & Denonymization

In some cases, it is possible to recover some of the original training data of the model using only APl access to the
model. The following (left) is an example of an image recovered by an attacker who only knows the name of the person,
and the original training image (right) from [1]

Some evidence that LLMs could also leak private information:

Personally identifiable information Large language model

Name: John Doe S
Email address: j.doe@abc.com Response Likslihood

Affiliation: ABC University Qa — ggg Zgg 3222 52'23223

Phone number: 123-456-7890 123-456-7850 (0.1000)

Data subject .
Query: “The email address of John Doe

is j.doe@abc.com. His phone number is”

[1] Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, Fredrikson et al., 2015
[2] ProPILE: Probing Privacy Leakage in Large Language Models, Kim et al., 2023,



A solution to get privacy: Differential privacy

Dwork and Roth: “overly accurate answers to too many questions will destroy privacy in a
spectacular way.” (also called the Fundamental Law of Information Recovery :)

Differential privacy: Probability of getting a particular model when training on some data
(or some particular response when a query is made on that data), should not change
significantly depending on whether or not a particular individual is in the training dataset.

Vﬁ[ thodef WQJ?M§ = W l a(cﬁafﬂ{v\t L é{‘b\mw? 5@@_]

PAL madel weigus = | dedopent x ¢ 4 training s3]
Most common solution to obtain differential privacy: Inject noise
* When training using GD/SGD, inject Gaussian noise to the gradient estimate

 When answering a query on a database (e.g. how many individuals have a medical
condition), return noisy answer



Interpretability and transparency: Why it is important

Back to COMPAS:

Glenn Rodriguez was denied parole because of a high risk
score from COMPAS, despite being a “model of
rehabilitation”.

However, there was an error in one of the entries to the
COMPAS system.

Since the system was proprietary and black-box, he could
not determine the exact effect this error had and challenge
the score.

More broadly, interpretability seems crucial for applications such as healthcare, policy etc.

https://washingtonmonthly.com/2017/06/11/code-of-silence/
Also see: When a Computer Program Keeps You in Jail, NYTimes, Link



https://washingtonmonthly.com/2017/06/11/code-of-silence/
https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html?unlocked_article_code=1.lk0.-Xpo.WQnwBUIBI9ie&smid=url-share

Ethics in ML

“Ethics is a study of what are good and bad ends to pursue in life and what it is right and wrong to do in the
conduct of life”, Introduction to Ethics, John Deigh

Consider the following case-study on an application of ML.
Goal: Identify sexual orientation from facial features

Training data: Photos downloaded from a popular American dating website. All white, with gay and straight, male and
female, all represented evenly

Method: A deep learning model was used to extract facial features + grooming features; then a logistic regression
classifier to make prediction

Result: Accuracy: 81% for men, 74% for women

From Jieyu Zhao's class, “Ethics in NLP”



Is this an ethical application of ML?

What are potential issues?

* Scientific Accuracy: Sexual identity is complex, and cannot be accurately predicted by physical characteristics alone.
Also is subjective and can change over time.

* Misuse and harm: In many countries, being gay is punishable, in some places by death penalty
* Cost of misclassification is high: Could affect employment, relationships etc.

* Data s likely biased: Trained model could amplify these biases

From Jieyu Zhao's class, “Ethics in NLP”



To conclude, going back to the beginning of Lecture 1..

This class:

e Understand the fundamentals

1. Examine your task
e Understand when ML works, its limitations, think critically

2. Examine your data
3. Examine your model

In particular,

e Study fundamental statistical ML methods (supervised learning,
unsupervised learning, etc.)

e Solidify your knowledge with hand-on programming tasks
e Prepare you for studying advanced machine learning techniques

ML/AI can be very powerful, but should be used responsibly



