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Administrivia

• Exam 2 is on April 26 from 1pm-3:20pm
• Similar instructions as Exam 1
• More info will be posted on Ed later

• Today’s plan:
• Reinforcement Learning
• Trustworthy ML



Multi-armed Bandits 
& Reinforcement 
Learning: Recap



There are K arms (actions/choices/...)

The problem proceeds in rounds between the environment and a learner: for each time t = 1, . . . , T

• the environment decides the reward for each arm rt,1, . . . , rt,K

• the learner picks an arm at ∈ [K]

• the learner observes the reward for arm at, i.e., rt,at

Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is usually referred to as bandit feedback

Multi-armed bandits: Setup



All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

• on one hand we want to exploit the arms that we think are good

• on the other hand we need to explore all arms often enough in order to figure out which one
is better

• so each time we need to ask: do I explore or exploit? and how?

We discussed three ways to trade off exploration and exploitation for our simple multi-armed bandit
setting:

• Explore-then-Exploit

• ε-Greedy

• Upper Confidence Bound (UCB)

The key challenge



An MDP is parameterized by five elements

• S: a set of possible states

• A: a set of possible actions

• P : transition probability, Pa(s, s′) is the probability of transiting from state s to state s′ after
taking action a (Markov property)

• r: reward function, ra(s) is (expected) reward of action a at state s

Difference from Markov models, the state transition is influenced by the taken action.

Difference from Multi-armed bandit, the reward depends on the state.

Markov Decision Process



First goal: knowing all parameters, how do we find the optimal policy

argmax
π

E

[

∞
∑

t=0

γtrπ(st)(st)

]

?

We first answer a related question: what is the maximum reward one can achieve starting from an arbitrary

state s?

V (s) = max
π

E

[

∞
∑

t=0

γtrπ(st)(st)
∣

∣

∣
s0 = s

]

= max
a∈A

(

ra(s) + γ
∑

s′∈S

Pa(s, s
′)V (s′)

)

V is called the (optimal) value function.

We can solve it using value iteration.

Optimal policy and Bellman equation



Value Iteration:

Initialize V0(s) randomly for all s ∈ S

For k = 1, 2, . . . (until convergence)

Vk(s) = max
a∈A

(

ra(s) + γ
∑

s′∈S

Pa(s, s
′)Vk−1(s

′)

)

(Bellman upate)

Knowing V , the optimal policy π∗ is simply

π∗(s) = argmax
a∈A

(

ra(s) + γ
∑

s
′∈S

Pa(s, s
′)V (s′)

)

Value iteration



Markov Decision 
Processes: 
Continued



Reinforcement Learning

• Motivation

• Markov Decision Process (MDP)

• Learning MDPs



Now suppose we do not know the parameters of the MDP

• transition probability P

• reward function r

How do we find the optimal policy?

We discuss examples from two families of learning algorithms:

• model-based approaches

• model-free approaches

Learning MDPs



Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT , then the MLE for P and
r are simply

Pa(s, s
′) ∝ #transitions from s to s′ after taking action a

ra(s) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to find the optimal policy.

Model-based approaches



How do we collect data s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT ?

Simplest idea: follow a random policy for T steps. This is similar to explore–then–exploit, and we know
this is not the best way.

Let’s adopt the ε-Greedy idea instead.

Model-based approaches

A sketch for model-based approaches

Initialize V, P, r randomly

For t = 1, 2, . . .,

• with probability ε, explore: pick an action uniformly at random

• with probability 1− ε, exploit: pick the optimal action based on V

• update the model parameters P, r

• update the value function V (via value iteration)



Model-free approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the Q : S ×A → R function as

Q(s, a) = ra(s) + γ
∑

s
′∈S

Pa(s, s
′)max

a
′∈A

Q(s′, a′)

In words, Q(s, a) is the expected reward one can achieve starting from state s with action a, then acting optimally.

Clearly, V (s) = maxa Q(s, a).

Knowing Q(s, a), the optimal policy at state s is simply argmax
a
Q(s, a).

Model-free approaches learn the Q function directly from samples.



Q-learning update rule

How to learn the Q function?

Q(s, a) = ra(s) + γ
∑

s′∈S

Pa(s, s
′)max

a′∈A
Q(s′, a′)

On experience 〈st, at, rt, st+1〉, with the current guess on Q, rt+γmaxa′ Q(st+1, a
′)

is like a training example for Q-learning.

So it’s natural to do the following update:

Q(st, at)← (1− α)Q(st, at) + α
(

rt + γmax
a′

Q(st+1, a
′)
)

= Q(st, at) + α
(

rt + γmax
a′

Q(st+1, a
′)−Q(st, at)

)

︸ ︷︷ ︸

difference between (estimated) obtained reward and predicted reward

α is like the learning rate



Q-learning
The simplest model-free algorithm:

Q-learning

Initialize Q randomly; denote the initial state by s1.

For t = 1, 2, . . .,

• with probability ε, explore: at is chosen uniformly at random

• with probability 1− ε, exploit: at = argmax
a
Q(st, a)

• execute action at, receive reward rt, arrive at state st+1

• update the Q function

Q(st, at)← (1− α)Q(st, at) + α
(

rt + γmax
a

Q(st+1, a)
)

for some learning rate α.



Q-learning for large state spaces

For a large state space, such as a continuous space:

1. Discretize

2. Treat Q-learning as a supervised  learning problem, given current !, # find $ !, #

Input: !! , #!
Desired output: %! + ' () !!"#

where () !!"# =max$ $(!!"# , #).

Can use powerful supervised learning techniques! 

Deep neural networks -> Deep Q-learning



Model-based Model-free

What they learn model parameters P, r, . . . Q function

Space O(|S|2|A|) O(|S||A|)

Data efficiency usually better usually worse

Assumptions need model of world do not assume model

Model-based vs model-free RL



Trustworthy ML



Machine Learning can be brittle

The Blind Men and the Elephant

It was six men of Indostan
To learning much inclined, 

Who went to see the Elephant 
(Though all of them were blind), 

That each by observation 
Might satisfy his mind. 

The First approached the Elephant, 
And happening to fall 

Against his broad and sturdy side, 
At once began to bawl: 

"God bless me! but the Elephant 
Is very like a WALL!”

….



Challenges in Trustworthy ML

• Spurious correlations and distributional shifts

• Biases in models and unfairness to demographics

• Adversarial examples

• Privacy, Interpretability, Ethics, …



Spurious 
correlations and 

distributional shifts



ML models can be very sensitive to changes in 
the data distribution

You saw a small example of this in the HW3 Bonus question:



ML models can latch onto 
spurious features to make predictions 

LandbirdWaterbird vs.

Consider the following task:

Images courtesy of: University of Hawaii at Manoa, Greg Schechter (Flickr)



LandbirdsWaterbirds vs.

Most images of waterbirds are in water, 
and landbirds are on land

ML models can latch onto 
spurious features to make predictions 



LandbirdsWaterbirds vs.

But this isn’t always true!

ML models can latch onto 
spurious features to make predictions 



LandbirdsWaterbirds vs.

This is known as failure to distributional shifts

ML models can latch onto 
spurious features to make predictions 



Source: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing 
radiologists, Rajpurkar et al. 2018 

A real-world example
CNN models have obtained impressive results for diagnosing X-rays

E.g. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization 
of Common Thorax Diseases, Wang et a;. 2017



Source: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-
sectional study, Zech et al. 2018 

CNN to predict hospital system detects both general and specific image features.
(A) We obtained activation heatmaps from our trained model and averaged over a sample of images to reveal which subregions 
tended to contribute to a hospital system classification decision. Many different subregions strongly predicted the correct 
hospital system, with especially strong contributions from image corners. (B-C) On individual images, which have been 
normalized to highlight only the most influential regions and not all those that contributed to a positive classification, we note that 
the CNN has learned to detect a metal token that radiology technicians place on the patient in the corner of the image field of 
view at the time they capture the image. When these strong features are correlated with disease prevalence, models can 
leverage them to indirectly predict disease. 

But the models may not generalize as well to data from new hospitals because they can 
learn to pickup on spurious correlations such as the type of scanner and marks used by 
technicians in specific hospitals! 



How to make models robust to spurious correlations?
Very active research area, lots of algorithmic solutions. 

• An example is Distributionally Robust Optimization. Here instead of minimizing the 
average loss (as we do with ERM), we minimize the worst loss across some known set of 
groups within the data.

Usually, the best solution (if possible) is to collect more representative data.



Lesson: Don’t assume model is generalizing
• By now, you understand generalization when test distribution = train distribution 

• However, this can be frequently violated for real-world applications

• Important to test the model on different kinds of data, and understand limitations of 
models trained on certain data



Fairness



ML models can show biases against certain 
sub-populations

You saw a small example of this in the HW4 word embedding question:



Fig. from the book Fairness And ML: Limitations and Opportunities



Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• Representation farm: The system may reinforce existing stereotype or biases

• …



Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• Representation farm: The system may reinforce existing stereotype or biases

• …



Unequal accuracy: The GenderShades project

http://gendershades.org/

Models can do well on average but not on sub-populations  

http://gendershades.org/


How well do facial recognition tools
perform on various demographics? 

http://gendershades.org/

http://gendershades.org/


Ans: Not very well



Ans: Not very well



Mitigating harm due to unequal accuracy
• The problem of unequal accuracy of sub-groups bears similarities to the problem of ensuring 

the algorithm does well on distributional shifts (original distribution  -> distribution with more 
weight on a particular demographic)

• As for distributional shifts and spurious correlations, getting more representative data is the 
best solution

• Algorithmic approaches also exist, similar to what we discussed for distributional shifts



Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• Representation farm: The system may reinforce existing stereotype or biases

• …



Bias in predictions: The COMPAS software

• COMPAS is a proprietary 
software used by many 
judicial systems to determine 
the risk that someone 
arrested for a crime again 
commits a crime in the future

• Used for decisions such as for 
deciding bail



Biases in COMPAS

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Biases in COMPAS

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

“In forecasting who would re-offend, the algorithm made mistakes with black and white defendants at 
roughly the same rate but in very different ways.
• The formula was particularly likely to falsely flag black defendants as future criminals, wrongly labeling 
them this way at almost twice the rate as white defendants.
•White defendants were mislabeled as low risk more often than black defendants.”

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Dissecting racial bias in an algorithm used 
to manage the health of populations, 
Obermeyer et al., Science 2019

Quoting from the paper:

• Health systems rely on commercial prediction algorithms 
to identify and help patients with complex health needs. 

• A widely used algorithm affecting millions of patients, 
exhibits significant racial bias: At a given risk score, Black 
patients are considerably sicker than White patients, as 
evidenced by signs of uncontrolled illnesses.

• Remedying this disparity would increase the percentage of 
Black patients receiving additional help from 17.7 to 46.5%.

• Bias arises because the algorithm predicts health care costs 
rather than illness, but unequal access to care means that 
we spend less money caring for Black patients than for 
White patients. 

Bias in predictions: Predicting disease severity



How to obtain fair classifiers?
Observation: No fairness by just excluding sensitive attributes
Why? Sensitive attribute can often be reconstructed from other features

Zip code has a lot of information about race



Ensuring fairness in classification: Group & Individual fairness notions

Two broad classes of fairness notions in classification:

Individual fairness: Algorithm treats similar individuals similarly

Group fairness: Algorithm is “unbiased” on protected groups (such as race, gender etc.)



Individual fairness

Fairness Through Awareness. Cynthia Dwork, Moritz Hardt, Toniann
Pitassi, Omer Reingold, Richard Zemel. 2011

Define a metric !(#, #!) for the similarity between any two individuals # and #′.

e.g.: ! #, #! = ∥ # − #! ∥"

If classifier predicts *(#) as the probability of label being one for #, if

* # − * #! ≤ , ! #, #! ,

then predictions of the classifier are individually fair with parameter ,. 

If these two individuals 
are similar, then their 
risk scores should be 
similar.



Group fairness
Group fairness notions require that the models predictions obey certain properties over 
protected groups (e.g. by race, gender).

Many different notions have been proposed

• Statistical parity

• Equalized odds

• Calibration across groups



Statistical parity
Binary classification setup (e.g. admitting a student to a degree program)

• Classifier 1
• Datapoint (2, 3)
• Sensitive attribute # ∈ {0,1}

Statistical parity: Pr% 1 2 = 1 # = 1] = Pr% 1 2 = 1 # = 0]

In words: Predictions are independent of sensitive attribute

E.g., admit equal fraction of men or women into program

Can be too strong if labels and sensitive attribute are not independent.

E.g. if women are more likely to be qualified for that degree program than men



Equalized odds
Same binary classification setup (e.g. admitting student to degree program)

• Classifier 1
• Datapoint (2, 3)
• Sensitive attribute # ∈ {0,1}

Equalized odds:

Pr% 1 2 = 1 # = 1, 3 = 1] = Pr% 1 2 = 1 # = 0, 3 = 1]
Pr% 1 2 = 0 # = 1, 3 = 0] = Pr% 1 2 = 1 # = 0, 3 = 0]

In words: Recall for both < = = and < = > is the same for both groups

Also equivalent to saying: Conditioned on label, prediction is independent 
of sensitive attribute



Equalized odds

Equalized odds:
Pr! # $ = 1 ' = 1, ) = 1] = Pr! # $ = 1 ' = 0, ) = 1]
Pr! # $ = 0 ' = 1, ) = 0] = Pr! # $ = 1 ' = 0, ) = 0]

Qualified Unqualified
Accepted 60 5
Rejected 20 15
Total 80 20

Qualified Unqualified
Accepted 30 15
Rejected 10 45
Total 40 60

E.g. Professor Snape has to admit students to his Advanced 
Potions class.

100 students apply from Gryffindor (80% are qualified)

100 students apply from Slytherin (40% are qualified)



Calibration across groups

Calibration: A model 1 for binary classification is 
calibrated if 

Pr%,' 3 = 1 1(2) = ?] = ?

Informally, this says that “predictions mean 
what they should” 



Calibration across groups

Multi-calibration: A model 1 for binary classification is 
calibrated for groups defined by sensitive attribute # if 

Pr%,' 3 = 1 1 2 = ?, # = 1] = ? ,
Pr%,' 3 = 1 1 2 = ?, # = 0] = ?.

Informally, this says that “predictions mean what they 
should for each group” 



Group fairness notions: Can we satisfy them all?
We saw three notions: statistical parity, equalized odds, calibration across groups
Can we satisfy all of them together? No!

In our example from Hogwarts, the model was fair in terms of equalized odds but unfair in terms of 
statistical parity. This tension between different notions arises in real data too.

COMPAS: Unfair because black defendants who 
did not recommit crime are assigned higher 

score (i.e. does not obey equalized odds)

https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c

COMPAS: Fair because probability of 
recommitting crime is similar for a given 

risk score, for both groups (i.e. is calibrated)

https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c


Unfairness could arise in various ways
• Unequal accuracy: The model may have poor performance on certain sub-populations or 

demographics

• Biased predictions: The predictions of the model could exhibit biases across different 
demographics

• Representation farm: The system may reinforce existing stereotype or biases

• …



Bias in representation: Machine Translation

• Hindi does not have gendered pronouns
• Machine translation model seems to pick on existing stereotypes (likely from its training 

data), and rely on them 
• Some efforts to mitigate such biases: https://research.google/blog/a-scalable-approach-to-

reducing-gender-bias-in-google-translate/, but problems remain

https://research.google/blog/a-scalable-approach-to-reducing-gender-bias-in-google-translate/


Bias in representation: Image generation

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023



Model amplifies existing biases

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale, Bianchi et al., 2023



Link to article Link to article

Some more instances of algorithmic bias 

https://www.axios.com/2020/08/19/england-exams-algorithm-grading
https://www.theatlantic.com/technology/archive/2020/06/michigan-unemployment-fraud-automation/612721/


Link to article Link to article

Some more instances of algorithmic bias 

https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html?unlocked_article_code=RZU3a2ioZ2GP2fpn1TY1socFyOeW3-OMZhNalKuPcgqLc1JTaU-giCsBm4AMB31H-pHlkKLjc8yI4gqbUy5nazpxVEsoQiK6egcjks-hkgxo08OhEsDznTk70lTb1yDKS60a1uudrs84BZtMIoPdP3khYZnpEQVUORmFwSj_qSN0vE9AnzSvyZ5x0x6Z1KW8aX2k1kODcogOmmB5Kqqs8MErMzcAKIk7-tpv7KTuRG-CCoVSGe9Q33Ca5A6Ti1jfBKl0D_G-BRkmBp7iXe29UmmXxIseO5agr555XikzKPLORK5BPSD8U8Mv4bgIGFKtKk9rxLVUGpLkaagfApltZiPPPSOO34PrELX84qryGEQsTtORP19cYw&smid=share-url
https://www.technologyreview.com/2021/06/23/1026825/linkedin-ai-bias-ziprecruiter-monster-artificial-intelligence/


Adversarial 
examples



Previously: CNNs are great at image classification



However, ML can also be very sensitive
to small variations in the input 

Pig 
(90% confidence)

Airplane! 
(99.9% confidence)

Small amount of 
adversarial noise

ML is so great, it can make pigs fly!!



These are known as adversarial examples

Adversarial examples have been shown to also hold for real-world tasks.

They are an issue because 

1. Can pose potential security risks
2. Indicate that even though models are good, they don’t quite work the same way as we do



Adversarial examples: More formal setup

Adversary: Given an image 2 and classifier 1(2), comes up with some other image 2′ which is 
“similar” to 2, such that 1 2 ≠ 1(2().

How to define similarity? One notion is small perturbations based on some norm. We typically 
consider the ℓ) norm: ∥ 2 − 2( ∥)≤ F, where F is the allowed perturbation level.

This means: can perturb every pixel by a perturbation in [−F, F].



How should the adversary come up with an attack?
Adversary’s formal goal: Given an image 2 and classifier 
1 2 : 2 → {0,1} , find some other image 2′ such that 

• 1 2 ≠ 1 2(
• 2( ∈ J* 2 , J* 2 = {2( !KLℎ Nℎ#N ∥ 2 − 2( ∥)≤ F}

One solution: Adversary finds the gradient with 
respect to the input 2, and chooses the perturbation 
which changes the loss ℓ(1(2), 3) the most locally.

Repeat some number of times:

1. Update 2+,- = 2 + ∇%ℓ 1 2 , 3
2. If 2+,- is outside the allowed perturbation 

region, ”project” back into region.



How to defend against adversarial examples?
Naïve strategy: Do data augmentation by adding 
random noise to original inputs

Issue: Adversary might still be able to find one 
datapoint P′ within perturbation region such that 
Q P ≠ Q(P()

Better strategy: 

Mimic the adversary’s strategy to add the particular 
point P′ which has a different label from P

Training objective:

min. T
$// 012+!3 %

max
%#∈5$(%)

ℓ(1 2( , 3)



Privacy, 
interpretability, 

ethics …



Privacy & Denonymization
Many companies and organizations release or exchange data to 
spur research interest, build better models etc.

Often, the data is “anonymized" before being released. But 
does anonymization actually work?

A story from the 90s:

An insurance company, GIC, in Massachusetts decided to 
release "anonymized" data on state employees that showed 
every single hospital visit. A graduate student found the records 
of the Governor of Massachusetts by associating the data with 
public vote roll data.

“87 percent of all Americans can be uniquely identified using 
only three bits of information: ZIP code, birthdate, and sex.”

https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/

https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/


The Netflix prize:

• Launched in 2006, $1M cash prize
• Dataset: 100 million movie ratings from nearly 500 thousand Netflix 

subscribers on a set of 17770 movies. Each data point corresponds 
to (anonymized user id, movie, date of rating, rating).

• Researchers were able to de-anonymize some of the subscribers by 
linking their rating with ratings on IMDB!

• Some Netflix subscribers had also publicly rated an overlapping set 
of movies on IMDB under their real identities.

• Lawsuit against Netflix, subsequent competition was cancelled.

Privacy & Denonymization

From the book Fairness And ML: Limitations and Opportunities



Privacy & Denonymization

[1] Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, Fredrikson et al., 2015
[2] ProPILE: Probing Privacy Leakage in Large Language Models, Kim et al., 2023,

Some evidence that LLMs could also leak private information:

In some cases, it is possible to recover some of the original training data of the model using only API access to the 
model. The following (left) is an example of an image recovered by an attacker who only knows the name of the person, 
and the original training image (right) from [1]



A solution to get privacy: Differential privacy
Dwork and Roth: “overly accurate answers to too many questions will destroy privacy in a 
spectacular way.” (also called the Fundamental Law of Information Recovery :)

Differential privacy: Probability of getting a particular model when training on some data 
(or some particular response when a query is made on that data), should not change 
significantly depending on whether or not a particular individual is in the training dataset.

Most common solution to obtain differential privacy: Inject noise

• When training using GD/SGD, inject Gaussian noise to the gradient estimate
• When answering a query on a database (e.g. how many individuals have a medical 

condition), return noisy answer



Interpretability and transparency: Why it is important

https://washingtonmonthly.com/2017/06/11/code-of-silence/
Also see: When a Computer Program Keeps You in Jail, NYTimes, Link

Back to COMPAS:

Glenn Rodríguez was denied parole because of a high risk
score from COMPAS, despite being a “model of 
rehabilitation”.

However, there was an error in one of the entries to the 
COMPAS system.

Since the system was proprietary and black-box, he could 
not determine the exact effect this error had and challenge 
the score.

More broadly, interpretability seems crucial for applications such as healthcare, policy etc. 

https://washingtonmonthly.com/2017/06/11/code-of-silence/
https://www.nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html?unlocked_article_code=1.lk0.-Xpo.WQnwBUIBI9ie&smid=url-share


Ethics in ML
``Ethics is a study of what are good and bad ends to pursue in life and what it is right and wrong to do in the 
conduct of life”, Introduction to Ethics, John Deigh

Consider the following case-study on an application of ML.

From Jieyu Zhao’s class, “Ethics in NLP”

Goal: Identify sexual orientation from facial features 

Training data: Photos downloaded from a popular American dating website. All white, with gay and straight, male and 
female, all represented evenly

Method: A deep learning model was used to extract facial features + grooming features; then a logistic regression 
classifier to make prediction

Result: Accuracy: 81% for men, 74% for women



Is this an ethical application of ML?

From Jieyu Zhao’s class, “Ethics in NLP”

What are potential issues?

• Scientific Accuracy: Sexual identity is complex, and cannot be accurately predicted by physical characteristics alone. 
Also is subjective and can change over time.

• Misuse and harm: In many countries, being gay is punishable, in some places by death penalty

• Cost of misclassification is high: Could affect employment, relationships etc.

• Data is likely biased: Trained model could amplify these biases



To conclude, going back to the beginning of Lecture 1..

1. Examine your task
2. Examine your data
3. Examine your model

ML/AI can be very powerful, but should be used responsibly 


