
CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 2, Jan 19

Administrivia

HW1 is out
Due in about 3 weeks (2/7 midnight). Start early!!!
Post on Ed Discussion if you’re looking for teammates.

Recap

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Linear regression

Predicted sale price = price_per_sqft × square footage + fixed_expense

How to solve this? Find stationary points

Are stationary points minimizers?

General least square solution

Find stationary points:

Optimization methods
(continued)

Problem setup
Given: a function F(#)
Goal: minimize F(#) (approximately)

Two simple yet extremely popular methods
Gradient Descent (GD): simple and fundamental
Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is the first-order information of a function.
Therefore, these methods are called first-order methods.

Gradient descent

GD: keep moving in the negative gradient direction

• in theory ! should be set in terms of some parameters of "
• in practice we just try several small values
• might need to be changing over iterations (think " # = |#|)
• adaptive and automatic step size tuning is an active research area

Why GD?

Intuition: First-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T (w −w
(t))

For w = w
(t+1) = w

(t) − η∇F (w(t)), we can write,

F (w(t+1)) ≈ F (w(t))− η‖∇F (w(t))‖22

=⇒ F (w(t+1)) ! F (w(t))

(Note that this is only an approximation, and can be invalid if
the step size is too large.)

Switch to Colab

Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations ! (in terms of ") are needed to achieve

#(%(")) − #(%∗) ≤ "

Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations ! (in terms of ") are needed to achieve

#(%(")) − #(%∗) ≤ "

Even for nonconvex objectives, some guarantees exist:
e.g. how many iterations ! (in terms of ") are needed to achieve

∇#(% ") ≤ "

that is, how close is % " as an approximate stationary point

for convex objectives, stationary point ⇒ global minimizer
for nonconvex objectives, what does it mean?

Stationary points: non-convex objectives

A stationary point can be a local minimizer or even a local/global maximizer
(but the latter is not an issue for GD).

+(%(")) − +(%∗) ≤ "

Stationary points: non convex objectives

Switch to Colab

Stationary points: non convex objectives

This is known as a saddle point

Stationary points: non convex objectives

Switch to Colab

Stationary points: non convex objectives

Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

Key point: it could be much faster to obtain a stochastic gradient!
Similar convergence guarantees, usually needs more iterations but
each iteration takes less time.

Switch to Colab

Summary: Gradient descent & Stochastic Gradient descent

GD/SGD coverages to a stationary point

for convex objectives, this is all we need

Summary: Gradient descent & Stochastic Gradient descent

GD/SGD coverages to a stationary point

for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad” saddle
points (random initialization escapes “good” saddle points)

recent research shows that many problems have no “bad” saddle points or
even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)

Second-order methods

Newton’s Method Gradient Descent
No learning rate Need to tune learning rate

Super fast convergence Slower convergence
Know and invert Hessian

(inversion takes !(#%) time
naively)

Fast!
(only takes !(#) time)

If optimization objective is very flat along a certain direction, 2nd order methods maybe better

Linear classifiers

The Setup

Representation: Choosing the function class

Representation: Choosing the function class

Still makes sense for “almost” linearly separable data

Iris dataset

Features:

1. Sepal length
2. Sepal width

Choosing the loss function

Choosing the loss function: minimizing 0/1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss ℓ(')

'

Solution: use a convex surrogate loss

Choosing the loss function: surrogate losses

ℓ(')

'

Solution: use a convex surrogate loss

Choosing the loss function: surrogate losses

ℓ(')

'

Solution: use a convex surrogate loss

Choosing the loss function: surrogate losses

ℓ(')

'

Onto Optimization!

No closed-form solution in general (in contrast to linear regression)
We can use our optimization toolbox!

Find ERM:

w
∗ = argmin

w∈Rd

1

n

(

n
∑

i=1

!(yiw
#
xi)

)

where !(·) is a convex surrogate loss function.

The Navy last week demonstrated
the embryo of an electronic
computer named the Perceptron
which, when completed in about a
year, is expected to be the first non-
living mechanism able to "perceive,
recognize and identify its
surroundings without human
training or control."

New York Times, 1958

Perceptron

The Navy last week demonstrated
the embryo of an electronic
computer named the Perceptron
which, when completed in about a
year, is expected to be the first non-
living mechanism able to "perceive,
recognize and identify its
surroundings without human
training or control."

New York Times, 1958

Recall perceptron loss

Applying GD to perceptron loss

Applying SGD to perceptron loss

SGD with η = 1 on perceptron loss.

1. Initialize w = 0

2. Repeat

• Pick xi ∼ Unif(x1, . . . ,xn)

• If sgn(wT
xi) "= yi

w ← w + yixi

Perceptron algorithm

Perceptron algorithm: Intuition

Perceptron algorithm: visually

Perceptron algorithm: Iris dataset

Perceptron algorithm: Iris dataset

HW1: Theory for perceptron!

Logistic regression

Logistic loss

Predicting probabilities
Instead of predicting the {±1} label, predict the probability (i.e. regression on probability).

Sigmoid + linear model:

P(y = +1|x,w) = σ(wT
x)

where

σ(z) =
1

1 + e−z
(Sigmoid function)

The sigmoid function

Therefore, we can model

Maximum likelihood estimation

Maximum likelihood solution

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

SGD to logistic loss

