
CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 3, January 26

Administrivia

HW1 due in less than 2 weeks (2/7 at midnight).
Each student gets 2 late days in total (late days get subtracted for
each member for team submitting late).
Max 1 late day per HW.
Peer to peer (P2P) mentoring sessions for HWs led by course
producers (in addition to OHs) --- see course calendar

Recap

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Summary: Optimization methods

GD/SGD is a first-order optimization method.

GD/SGM coverages to a stationary point. For convex objectives, this is all
we need. For nonconvex objectives, it is possible to get stuck at local
minimizers or “bad” saddle points (random initialization escapes “good”
saddle points).

Newton’s method is a second-order optimization method.

Newton’s method has a much faster convergence rate, but each iteration
also takes much longer. Usually for large scale problems, GD/SGD and their
variants are the methods of choice.

Linear classifiers

Definition: The function class of separating hyperplanes is defined as
ℱ = {$ % = &'() *!% :* ∈ ℝ"}.

Representation

Use a convex surrogate loss

Loss function

Optimization

Maximum likelihood estimation

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

Generalization

Reviewing definitions

The analysis we’ll do could also help you solve Problem 2 on HW1.

Assumptions for today’s theory

Intuition: When does ERM generalize?

Relaxing our assumptions

We assumed that the function class is finite-sized. Results can be
extended to infinite function classes (such as separating hyperplanes).
We considered 0-1 loss. Can extend to real-valued loss (such as for
regression).
We assumed realizability. Can prove similar theorem which guarantees
small generalization gap without realizability (but with an /# instead of
/ in the denominator). This is called agnostic learning.

Rule of thumb for generalization

Suppose the functions ! in our function class ℱ have # parameters which can be set.
Assume we discretize these parameters so they can each take 3 possible values
{−1,0, +1}. How much data do we need to have small generalization gap?

A useful rule of thumb: to guarantee generalization, make sure that your
training data set size) is at least linear in the number 0 of free parameters
in the function that you’re trying to learn.

Nonlinear basis

What if a linear model is not a good fit?

Let’s go back to the regression setup (output ! ∈ #).
A linear model could be a bad fit for the following data:

,

-

A solution: nonlinearly transformed features

1. Use a nonlinear mapping

φ(x) : x ∈ R
d
→ z ∈ R

M

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

A solution: nonlinearly transformed features

1. Use a nonlinear mapping

φ(x) : x ∈ R
d
→ z ∈ R

M

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Regression with nonlinear basis

Model: f(x) = wTφ(x) where w ∈ RM

Objective:

RSS(w) =
n
∑

i=1

(

wTφ(xi)− yi
)2

Similar least square solution:

w∗ =
(

Φ
T
Φ
)−1

Φ
Ty where Φ =











φ(x1)T

φ(x2)T

.

.

.

φ(xn)T











∈ R
n×M

Example

Polynomial basis functions for d = 1

φ(x) =















1
x
x2

...
xM















⇒ f(x) = w0 +
M
∑

m=1

wmxm

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space

Example

See Colab notebook

Why nonlinear?

Can I use a fancy linear feature map?

φ(x) =











x1 − x2

3x4 − x3

2x1 + x4 + x5

...











= Ax for some A ∈ R
M×d

Why nonlinear?

Can I use a fancy linear feature map?

φ(x) =











x1 − x2

3x4 − x3

2x1 + x4 + x5
...











= Ax for some A ∈ R
M×d

No, it basically does nothing since

min
w∈RM

∑

i

(

wTAxi − yi

)2
= min

w
′
∈Im(AT)⊂Rd

∑

i

(

w′Txi − yi

)2

Overfitting and
Regularization

Should we use a very complicated mapping?

See Colab notebook

Underfitting and overfitting

See Colab notebook

Method 1: More data!!

See Colab notebook

Method 2: Control model complexity

Magnitude of the weights

See Colab notebook

How to make the weights small?
Regularized linear regression: new objective

G(w) = RSS(w) + λψ(w)

Goal: find w
∗ = argminw G(w)

• ψ : Rd → R+ is the regularizer

• measure how complex the model w is, penalize complex models

• common choices: ‖w‖22, ‖w‖1, etc.

How to make the weights small?
Regularized linear regression: new objective

G(w) = RSS(w) + λψ(w)

Goal: find w
∗ = argminw G(w)

• ψ : Rd → R+ is the regularizer

• measure how complex the model w is, penalize complex models

• common choices: ‖w‖22, ‖w‖1, etc.

• λ > 0 is the regularization coefficient

• λ = 0, no regularization

• λ→ +∞, w → argminw ψ(w)

• i.e. control trade-off between training error and complexity

ℓ! regularization with non-linear basis: The effect of "

See Colab notebook

When we increase regularization coefficient λ:

lnλ = −∞ lnλ = −18 lnλ = 0

w0 0.35 0.35 0.13

w1 232.37 4.74 -0.05

w2 -5321.83 -0.77 -0.06

w3 48568.31 -31.97 -0.06

w4 -231639.30 -3.89 -0.03

w5 640042.26 55.28 -0.02

w6 -1061800.52 41.32 -0.01

w7 1042400.18 -45.95 -0.00

w8 -557682.99 -91.53 0.00

w9 125201.43 72.68 0.01

ℓ! regularization with non-linear basis : A tradeoff

See Colab notebook

Why is regularization useful?

If you don’t have sufficient data to fit your more expressive model, then ERM will overfit.
Regularization helps with generalization.

So should it not be useful in many practical settings, where we have enough data?

Why is regularization useful?

If you don’t have sufficient data to fit your more expressive model, then ERM will overfit.
Regularization helps with generalization.

So should it not be useful in many practical settings, where we have enough data?

In general, a viewpoint is that we should always be trying to fit a more expressive model if
possible. We want our function class to be rich enough that we could almost overfit if we
are not careful.

Since we’re often in this regime where the models we want to fit are more and more
complex, regularization is very useful to help generalization (it’s also a relatively simple
knob to control).

Understanding
regularization

How to solve the regularized objective #(%)?
Let’s go back to the original linear model.

Simple for !2 regularization, ψ(w) = ‖w‖22:

G(w) = RSS(w) + λ‖w‖22 = ‖Xw − y‖22 + λ‖w‖22

How to solve the regularized objective #(%)?
Let’s go back to the original linear model.

Simple for !2 regularization, ψ(w) = ‖w‖22:

G(w) = RSS(w) + λ‖w‖22 = ‖Xw − y‖22 + λ‖w‖22

∇G(w) = 2(XTXw −XTy) + 2λw = 0

⇒
(

XTX + λI
)

w = XTy

⇒ w∗ =
(

XTX + λI
)−1

XTy

How to solve the regularized objective #(%)?
Let’s go back to the original linear model.

Simple for !2 regularization, ψ(w) = ‖w‖22:

G(w) = RSS(w) + λ‖w‖22 = ‖Xw − y‖22 + λ‖w‖22

∇G(w) = 2(XTXw −XTy) + 2λw = 0

⇒
(

XTX + λI
)

w = XTy

⇒ w∗ =
(

XTX + λI
)−1

XTy

Linear regression with !2 regularization is also known as ridge regression.

For other regularizers, as long as it’s convex, standard optimization algorithms can be applied.

Aside: Least-squares when '"' is not invertible

When X!X is not invertible wLS = (X!X)−1X!y is not defined.

Aside: Least-squares when '"' is not invertible

When X!X is not invertible wLS = (X!X)−1X!y is not defined.

This could happen when:

1. ∞ many w s.t. Xw = y

2. No such w s.t. Xw = y

The first condition can happen when n < d (do not have enough data to learn)

Aside: Least-squares when '"' is not invertible

When X!X is not invertible wLS = (X!X)−1X!y is not defined.

This could happen when:

1. ∞ many w s.t. Xw = y

2. No such w s.t. Xw = y

The first condition can happen when n < d (do not have enough data to learn)

What does L2 regularization do here?

G(w) = ||Xw − y||22 + λ||w||22

Aside: Least-squares when !!! is not invertible
Intuition: what does inverting X

T
X do?

eigendecomposition: X
T
X = U

T















λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 · · · λD 0
0 · · · 0 λD+1















U

where λ1 ≥ λ2 ≥ · · ·λD+1 ≥ 0 are eigenvalues.

inverse: (XT
X)−1 = U

T

















1

λ1
0 · · · 0

0 1

λ2
· · · 0

...
...

...
...

0 · · · 1

λD
0

0 · · · 0 1

λD+1

















U

i.e. just invert the eigenvalues

Aside: Least-squares when !!! is not invertible
Non-invertible ⇒ some eigenvalues are 0.

One natural fix: add something positive

X
T
X + λI = U

T















λ1 + λ 0 · · · 0
0 λ2 + λ · · · 0
...

...
...

...
0 · · · λD + λ 0
0 · · · 0 λD+1 + λ















U

where λ > 0 and I is the identity matrix. Now it is invertible:

(XT
X + λI)−1 = U

T

















1
λ1+λ

0 · · · 0
0 1

λ2+λ
· · · 0

...
...

...
...

0 · · ·
1

λD+λ
0

0 · · · 0 1

λD+1+λ

















U

A “Bayesian view” of ℓ! regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Let’s continue with the linear model, and Q4 from the practice problems for today.

A “Bayesian view” of ℓ! regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Let’s continue with the linear model, and Q4 from the practice problems for today.

A “Bayesian view” of ℓ! regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Bayesian view: A prior over !

A “Bayesian view” of ℓ! regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of
maximum likelihood estimation (MLE).

Bayesian view: A prior over !

An equivalent form, and a “Frequentist view”

“Frequentist” approach to justifying regularization is to argue that if the true model has a
specific property, then regularization will allow you to recover a good approximation to the
true model. We this view, we can equivalently formulate regularization as:

