CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 3, January 26

Administrivia

- HW1 due in less than 2 weeks ($2 / 7$ at midnight).
- Each student gets 2 late days in total (late days get subtracted for each member for team submitting late).
- Max 1 late day per HW.
- Peer to peer (P2P) mentoring sessions for HWs led by course producers (in addition to OHs) --- see course calendar

Recap

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?
Optimization: How can we efficiently solve the empirical risk minimization problem?

Generalization: Will the predictions of our model transfer gracefully to unseen examples?

All related! And the fuel which powers everything is data.

Summary: Optimization methods

- GD/SGD is a first-order optimization method.
- GD/SGM coverages to a stationary point. For convex objectives, this is all we need. For nonconvex objectives, it is possible to get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points).
- Newton's method is a second-order optimization method.
- Newton's method has a much faster convergence rate, but each iteration also takes much longer. Usually for large scale problems, GD/SGD and their variants are the methods of choice.

Linear classifiers

Binary classification:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{d}}$
- output (label): $y \in\{-1,+1\}$.
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{d}} \rightarrow\{-1,+1\}$

Representation

Definition: The function class of separating hyperplanes is defined as $\mathcal{F}=\left\{f(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right): \boldsymbol{w} \in \mathbb{R}^{d}\right\}$.

Loss function

Use a convex surrogate loss

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\}$ (used in Perceptron)
- hinge loss $\ell_{\text {hinge }}(z)=\max \{0,1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text {logistic }}(z)=\log (1+\exp (-z))$ (used in logistic regression; the base of \log doesn't matter)

Optimization

Empirical risk minimization (ERM) problem:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{d}}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i}\right)
$$

Solve using a suitable optimization algorithm:

- GD: $\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \nabla F(\boldsymbol{w})$
- SGD: $\quad \boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w})$

$$
(\mathbb{E}[\tilde{\nabla} F(\boldsymbol{w})]=\nabla F(\boldsymbol{w}))
$$

- Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w}-\left(\nabla^{2} F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

Maximum likelihood estimation

What we observe are labels, not probabilities.

Take a probabilistic view

- assume data is independently generated in this way by some \boldsymbol{w}
- perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing labels y_{1}, \cdots, y_{n} given x_{1}, \cdots, x_{n}, as a function of some \boldsymbol{w} ?

$$
P(\boldsymbol{w})=\prod_{i=1}^{N} \mathbb{P}\left(y_{i} \mid \boldsymbol{x}_{\boldsymbol{i}} ; \boldsymbol{w}\right)
$$

MLE: find \boldsymbol{w}^{*} that maximizes the probability $P(\boldsymbol{w})$

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

Generalization

Reviewing definitions

- Input space: \mathcal{X}
- Output space: \mathcal{Y}
- Predictor: $f(\boldsymbol{x}): \mathcal{X} \rightarrow \mathcal{Y}$
- Distribution D over (x,y).
- Let D^{n} denote the distribution of n samples $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right), i \in[n]\right\}$ drawn i.i.d. from D. \rightarrow independent \& identically disisributed
- Risk of a predictor $f(\boldsymbol{x})$ is $R(f)=\mathbb{E}_{(\boldsymbol{x}, y) \sim D}[\ell(f(\boldsymbol{x}), y)]$
- Consider the 0-1 loss, $\ell(f(\boldsymbol{x}, y))=\mathbb{1}(f(\boldsymbol{x}) \neq y)$.

The analysis we'll do could also help you solve Problem 2 on HW1.

Assumptions for today's theory
Finite sized function class.
Def: A function class F is finite-sized if $|F|$ is finite. egg. $F=\left\{f(x)=\operatorname{sign}\left(w^{\top} x\right): w \in\{-1,0,1\}^{d}\right\}$

$$
171=3^{d}
$$

Realizability: There exists $f^{*} \in \mathcal{F}$ s.t. $y=f^{*}(x) \forall x \in X$.

Intuition: When does ERM generalize?

Distribution over $X=\left(t_{1}, t_{2}\right)$ \qquad same here

Theorem: Let F be a function class with size $|F|$. Let $y=f^{*}(x)$ for some $f^{*} \in F$. Suppose we get a training set $S=\left\{\left(t_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ of size n drawn iid from the data distribution D. Let

$$
f_{s}^{E R M}=\underset{f \in F}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} l\left(f\left(x_{i}\right), y_{i}\right)
$$

If $n \geqslant \frac{\ln (1711 \delta)}{\varepsilon}$, then with probability $(1-\delta)$ over $\left\{\left(x_{i}, y_{i}\right), i \in[n]\right\}, R\left(f_{s}^{\text {ER }}\right) \leq \varepsilon$ (for constants $\left.\varepsilon, \delta\right)$.
e.g. if $\varepsilon=0.1, \delta=0.1$, then with $n \geqslant 10 \ln (|F| \cdot 10)$ samples, then with probability $0.9, R\left(f_{S}^{E R M}\right) \leq 0.1$.
Proof. Note that there exists $f^{*} \in F$ s.t. $R\left(f^{*}\right)=0$.
Let $F_{\text {bad }}=\{f \in \mathcal{F}: R(f)>\varepsilon\}$
hoar (1): What is the probability of "getting tricked" by one fixed $f \in F_{\text {bad }}$?
lonsider some $f^{\prime} \in F_{\text {bad }}$.

$$
\begin{aligned}
& \operatorname{Pr}_{\text {SND }}\left[f^{\prime} \text { is an ERM }\right]\left(f^{\prime} \text { gets } \hat{R}_{S}\left(f^{\prime}\right)=0\right) \\
& \left.=\operatorname{Pr}_{\text {S } \sim D^{n}}\left[\{H i \in\{1, \ldots, n\}\}, f^{\prime}\left(x_{i}\right)=f^{*}\left(x_{i}\right)\right\}\right] \\
& =\prod_{i=1}^{n} \operatorname{Pr}_{\text {ai }}\left[f^{\prime}\left(x_{i}\right)=f^{*}\left(x_{i}\right)\right] \begin{array}{l}
\text { (iid assumption, } \\
\text { Prr }\left[E_{1} n E_{2}\right]=P_{r}\left[E_{1}\right] \operatorname{Pa}\left[E_{2}\right] \\
\leq \prod_{i=1}^{n}(1-\varepsilon) \quad\left(f^{\prime} \in F_{\text {bad }}\right)
\end{array} \quad \text { if } E_{1}, E_{2} \text { independent) }
\end{aligned}
$$

$$
\begin{aligned}
& \leq \prod_{i=1}^{n} e^{-\varepsilon} \quad\left(\text { since } 1-\varepsilon \leq e^{-\varepsilon}\right. \\
& =e^{-\varepsilon n}
\end{aligned}
$$

Goal (2): What is the probability of being tricked by any $f^{\prime} \in F_{\text {bad }}$.
Union bound

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{n}}\left[\bigcup_{f \in F_{\text {bad }}}\{f \text { is an ERM\}}]\right. \\
& \leq \sum_{t \in F_{\text {bad }}} \operatorname{Pr}[f \text { is an ERM)-(*)}
\end{aligned}
$$

$$
\leq|F| e^{-\varepsilon n}
$$

$$
\therefore \text { if } n \geqslant \frac{1}{\varepsilon}(\ln (|F|)+\ln (| | \delta))
$$

then $\operatorname{Pr} r_{\text {Sapn }}\left[\bigcup_{f \in \text { Fbad }}\{f\right.$ is an ERM $\left.\}\right] \leq \delta$

$$
\begin{aligned}
\therefore \text { if } n & \geqslant \frac{\ln (1 \neq 1 \mid \delta)}{\varepsilon} \text {, w.p. }(1-\delta) f_{s}^{E R M} \notin F_{\text {tad }} \\
& \Rightarrow R\left(f_{s}^{E R M}\right) \leq \varepsilon .
\end{aligned}
$$

Here $\quad \hat{R}_{S}\left(f_{s}^{E R M}\right)=0 \therefore$ heneralization $g a p=R\left(f_{s}^{E R m}\right)$.

Relaxing our assumptions

- We assumed that the function class is finite-sized. Results can be extended to infinite function classes (such as separating hyperplanes).
- We considered 0-1 loss. Can extend to real-valued loss (such as for regression).
- We assumed realizability. Can prove similar theorem which guarantees small generalization gap without realizability (but with an ϵ^{2} instead of ϵ in the denominator). This is called agnostic learning.

Rule of thumb for generalization

Suppose the functions f in our function class \mathcal{F} have d parameters which can be set. Assume we discretize these parameters so they can each take 3 possible values $\{-1,0,+1\}$. How much data do we need to have small generalization gap?

$$
\begin{aligned}
& |F|=3^{d} \\
& \text { generalization gap is at most } \varepsilon(\text { with prod ability }(1-\delta)) \\
& \text { with } n \geqslant \frac{\ln (|F| \mid \delta)}{\varepsilon} \text { samples }=\frac{d \ln (31 \delta)}{\varepsilon} \text { samples }
\end{aligned}
$$

A useful rule of thumb: to guarantee generalization, make sure that your training data set size n is at least linear in the number d of free parameters in the function that you're trying to learn.

What if a linear model is not a good fit?

Let's go back to the regression setup (output $\mathcal{Y} \in R$). A linear model could be a bad fit for the following data:

A solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{d} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

A solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{d} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).
Q.g. consider $y=1-x^{2}, x \in[-1,1]$

$$
\begin{aligned}
& \phi(x)=\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right) \in \mathbb{R}^{3} \\
& y=w^{\top} \phi(x) \\
& \text { if } w=(1,0,-1)
\end{aligned}
$$

then $y=1-x^{2}$

Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$
Objective:

$$
\operatorname{RSS}(\boldsymbol{w})=\sum_{i=1}^{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

Similar least square solution:

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \quad \text { where } \quad \boldsymbol{\Phi}=\left(\begin{array}{c}
\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)^{\mathrm{T}} \\
\vdots \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{n \times M}
$$

Example

Polynomial basis functions for $d=1$

$$
\phi(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{M}
\end{array}\right] \Rightarrow f(x)=w_{0}+\sum_{m=1}^{M} w_{m} x^{m}
$$

Learning a linear model in the new space
$=$ learning an M-degree polynomial model in the original space

Example

Fitting a noisy sine function with a polynomial ($M=0,1$, or 3):

Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times d}
$$

Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times d}
$$

No, it basically does nothing since

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}} \sum_{i}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{i}-y_{i}\right)^{2}=\min _{\boldsymbol{w}^{\prime} \in \operatorname{Im}\left(\boldsymbol{A}^{\mathrm{T}}\right) \subset \mathbb{R}^{d}} \sum_{i}\left(\boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{i}-y_{i}\right)^{2}
$$

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Underfitting and overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error

More complicated models \Rightarrow larger gap between training and test error
How to prevent overfitting?

Method 1: More data!!

More data \Rightarrow smaller gap between training and test error

Method 2: Control model complexity

For polynomial basis, the degree M clearly controls the complexity

- use cross-validation to pick hyper-parameter M

Cross-validation: Explored in HW1. Idea is to do a three-way split in addition to training set/test set, and tune hyperparameters on a validation set.

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of the weights

Least square solution for the polynomial example:

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}	0.19	0.82	0.31	0.35
w_{1}		-1.27	7.99	232.37
w_{2}			-25.43	-5321.83
w_{3}			17.37	48568.31
w_{4}				-231639.30
w_{5}				640042.26
w_{6}				-1061800.52
w_{7}				1042400.18
w_{8}				-557682.99
w_{9}				125201.43

Intuitively, large weights \Rightarrow more complex model

How to make the weights small?

Regularized linear regression: new objective

$$
G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda \psi(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} G(\boldsymbol{w})$

- $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model \boldsymbol{w} is, penalize complex models
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.

How to make the weights small?

Regularized linear regression: new objective

$$
G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda \psi(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} G(\boldsymbol{w})$

- $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model \boldsymbol{w} is, penalize complex models
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.
- $\lambda>0$ is the regularization coefficient
- $\lambda=0$, no regularization
- $\lambda \rightarrow+\infty, \boldsymbol{w} \rightarrow \operatorname{argmin}_{w} \psi(\boldsymbol{w})$
- i.e. control trade-off between training error and complexity

ℓ_{2} regularization with non-linear basis: The effect of λ

When we increase regularization coefficient λ :

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}	0.35	0.35	0.13
w_{1}	232.37	4.74	-0.05
w_{2}	-5321.83	-0.77	-0.06
w_{3}	48568.31	-31.97	-0.06
w_{4}	-231639.30	-3.89	-0.03
w_{5}	640042.26	55.28	-0.02
w_{6}	-1061800.52	41.32	-0.01
w_{7}	1042400.18	-45.95	-0.00
w_{8}	-557682.99	-91.53	0.00
w_{9}	125201.43	72.68	0.01

ℓ_{2} regularization with non-linear basis : A tradeoff

when we increase regularization coefficient λ

Why is regularization useful?

If you don't have sufficient data to fit your more expressive model, then ERM will overfit. Regularization helps with generalization.

So should it not be useful in many practical settings, where we have enough data?

Why is regularization useful?

If you don't have sufficient data to fit your more expressive model, then ERM will overfit. Regularization helps with generalization.

So should it not be useful in many practical settings, where we have enough data?
In general, a viewpoint is that we should always be trying to fit a more expressive model if possible. We want our function class to be rich enough that we could almost overfit if we are not careful.

Since we're often in this regime where the models we want to fit are more and more complex, regularization is very useful to help generalization (it's also a relatively simple knob to control).

How to solve the regularized objective $G(w)$?
Let's go back to the original linear model.
Simple for ℓ_{2} regularization, $\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}=\sum_{i=1}^{d} w_{i}^{2}$

$$
G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

How to solve the regularized objective $G(w)$?
Let's go back to the original linear model.

$$
(x w-y)^{\top}(x w-y)
$$

Simple for ℓ_{2} regularization, $\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

$$
\nabla G(\boldsymbol{w})=2\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0
$$

$$
\Rightarrow \boldsymbol{2}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\check{L} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
$$

$$
\Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
$$

How to solve the regularized objective $G(w)$?

Let's go back to the original linear model.
Simple for ℓ_{2} regularization, $\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{aligned}
& G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \quad \nabla G(\boldsymbol{w})=2\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \quad \Rightarrow\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y} \\
& \quad \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

Linear regression with ℓ_{2} regularization is also known as ridge regression.
For other regularizers, as long as it's convex, standard optimization algorithms can be applied.

Aside: Least-squares when $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ is not invertible

When $\boldsymbol{X}^{\top} \boldsymbol{X}$ is not invertible $\boldsymbol{w}_{L S}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ is not defined.

Aside: Least-squares when $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ is not invertible

When $\boldsymbol{X}^{\top} \boldsymbol{X}$ is not invertible $\boldsymbol{w}_{L S}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ is not defined.
This could happen when:

1. ∞ many \boldsymbol{w} s.t. $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{y}$
2. No such \boldsymbol{w} s.t. $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{y}$

The first condition can happen when $n<d$ (do not have enough data to learn)

Aside: Least-squares when $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ is not invertible

When $\boldsymbol{X}^{\top} \boldsymbol{X}$ is not invertible $\boldsymbol{w}_{L S}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ is not defined.
This could happen when:

1. ∞ many \boldsymbol{w} st. $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{y}$
2. No such \boldsymbol{w} s.t. $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{y}$

The first condition can happen when $n<d$ (do not have enough data to learn)

What does L_{2} regularization do here?

$$
G(\boldsymbol{w})=\underbrace{\|}_{0 \text { for del w set. } \quad\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}}
$$

$\therefore \ell_{2}$ regularization chooses w with smallest $\left\|_{w}\right\|_{2}$ s.t. $X_{w}=y$.

Aside: Least-squares when $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ is not invertible

Intuition: what does inverting $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ do?

$$
\text { eigendecomposition: } \quad \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}} & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}
\end{array}\right] \boldsymbol{U}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{\mathrm{D}+1} \geq 0$ are eigenvalues.

$$
\text { inverse: } \quad\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0 \\
0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}}
\end{array}\right] \boldsymbol{U}
$$

i.e. just invert the eigenvalues

Aside: Least-squares when $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ is not invertible

Non-invertible \Rightarrow some eigenvalues are 0 .
One natural fix: add something positive

$$
\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1}+\lambda & 0 & \cdots & 0 \\
0 & \lambda_{2}+\lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}}+\lambda & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}+\lambda
\end{array}\right] \boldsymbol{U}
$$

where $\lambda>0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$
\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}+\lambda} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}+\lambda} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}+\lambda} & 0 \\
0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}+\lambda}
\end{array}\right] \boldsymbol{U}
$$

A "Bayesian view" of ℓ_{2} regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of maximum likelihood estimation (MLE).

Let's continue with the linear model, and Q4 from the practice problems for today.
Have training set $\left(t_{1}, y_{1}\right), \ldots,\left(t_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$

$$
y_{i}=\omega_{*}^{\top} x_{i}+\epsilon_{i}, \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

\therefore for any $w, \operatorname{Pr}\left[y_{i} \mid x_{i} ; w, \sigma\right]=\frac{1}{\sigma \sqrt{2 \pi}} \operatorname{e+p}\left(-\frac{\left(y_{i}-w^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}\right)$
MLE: find w which maximizes likelihood

A "Bayesian view" of ℓ_{2} regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of maximum likelihood estimation (MLE).

Let's continue with the linear model, and Q4 from the practice problems for today.

$$
\log \left[\operatorname{Pr}\left[y_{i} \mid x_{i} ; w\right]\right)=\frac{-\left(y_{i}-w^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}+\log \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)
$$

The solution is $w^{*}=\left(x^{\top} x\right)^{-1} x^{\top} y$

A "Bayesian view" of ℓ_{2} regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of maximum likelihood estimation (MLE).

Bayesian view: A prior over w
Suppose our prior for ω is $N\left(0, \gamma^{2} I\right)$
Now we find the model which matimizes aposterioni probability (MAP)

$$
\text { Posterior }=\text { Prior. Likelihood }
$$

Normalization (same for all vectors w)

A "Bayesian view" of ℓ_{2} regularization
Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of maximum likelihood estimation (MLE).

Bayesian view: A prior over w

$$
\begin{aligned}
& \text { Posterior }(w) \alpha \prod_{j=1}^{d} e+p\left(\frac{-w_{j}^{2}}{2 \gamma^{2}}\right) \prod_{i=1}^{n} e+p\left(-\frac{\left.\left(y_{i}-w^{\top} x_{i}\right)^{2}\right)}{2 \sigma^{2}}\right) \\
& \log (\text { Posterior }(w))=-\frac{\|w\|_{2}^{2}}{2 \gamma^{2}}-\sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}
\end{aligned}
$$

$\therefore \operatorname{mat}(\log ($ Posferiar $))$ is same as $\min G(\omega)$
for $\quad \psi(w)=\|w\|_{2}^{2}$

An equivalent form, and a "Frequentist view"

"Frequentist" approach to justifying regularization is to argue that if the true model has a specific property, then regularization will allow you to recover a good approximation to the true model. We this view, we can equivalently formulate regularization as:

$\operatorname{argmin} \operatorname{RSS}(w) \quad$ subject to $\psi(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

$$
\psi(w)=\|w\|_{2}^{2}
$$

Finding the solution becomes a constrained optimization problem.

Choosing either λ or β can be done by cross-validation.

