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Administrivia

o HW1 due next Wednesday midnight.



Recap



Ensuring generalization

Theorem. Let F be a function class with size |F|. Let y = f*(x) for some f* €
F. Suppose we get a training set S = {(x1,y1), ..., (Tn,yn)} of size n with each
datapoint drawn i.i.d. from the data distribution D. Let

1 n
ERM :
= argmin — » £(f(x;),y;).
i fer m ;

In(|F]/94)

€

For any constants €,6 € (0,1), if n > , then with probability (1 — §) over

{(wloyl)a SR (wnpyn)}: R( SERM) < €

A useful rule of thumb: to guarantee generalization, make sure that
your training data set size n is at least linear in the number d of free

parameters in the function that you're trying to learn.




Beyond linear models: nonlinearly transformed features

1. Use a nonlinear mapping
dx):xeRY - 2z c RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).
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Polynomial basis functions

Polynomial basis functions for d = 1

-1
L M
o(x) = x? = f(x) =wo + Z W '™
. m=1
M

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space



Underfitting and overfitting

M < 2 is underfitting the data g laining
—6— Test
@ large training error
@ large test error 2 05
=

M > 9 is overfitting the data

@ small training error

o - . .
o large test error 0 S M ° 2

More complicated models = larger gap between training and test error

How to prevent overfitting?

See Colab notebook



Preventing overfitting: Regularization
Regularized linear regression: new objective
G(w) = RSS(w) + M) (w)
Goal: find w* = argmin,, G(w)

o ¢ :RY = Rt is the regularizer

e measure how complex the model w is, penalize complex models

w

2
29 1 etC.

e common choices: ||w

e )\ > 0is the regularization coefficient

e )\ = (, no regularization
e \ — 400, w — argmin,, (w)

e i.e. control trade-off between training error and complexity



Understanding
regularization



¥, regularization: penalizing large weights
{5 regularization, ¢ (w) = ||w||5:
G(w) =RSS(w) + A|w|3 = | Xw — y|z + Awl];

VG(w) =2(X"Xw - X"y)+ 22w =0
= (X'X +M)w=X"y
= w* = (X"X + M) X"y

Linear regression with /5 regularization is also known as ridge regression.

With a Bayesian viewpoint, corresponds to a Gaussian prior for w.



Encouraging sparsity: £, regularization

Continuing from the frequentist view, having small norm is one possible structure to
impose on the model. Another very common one is sparsity.

Sparsity of w: Number of non-zero coefficients in w. Same as ||w]||g

E.g.w= @0@ 0, @ 0 ] is 3-sparse



Encouraging sparsity: £, regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w]||g

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications
we have numerous possible features, only some of which may have any
relationship with the label.



Encouraging sparsity: £, regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w]||g

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications
we have numerous possible features, only some of which may have any
relationship with the label.

d Genes—> Xw = 4

Suppose we want to fit a linear models from
gene expression to an outcome (disease,

Expression phenotype etc.).
levels
in n samples d is huge, but likely that only a few genes
are related.




Encouraging sparsity: £, regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w]||g

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications
we have numerous possible features, only some of which may have any
relationship with the label.

o Sparse models may also be more interpretable. They could narrow down a small
number of features which carry a lot of signal.

Eg. w= @0 —@O @O 0 | is more interpretable than,

[1,0.2,—1.3,0.15,0.2,0.05,0.12 ]

For a sparse model, it could be easier to understand the model. It is also easier to
verify whether the features which have a high weight have a relation with the
outcome (they are not spurious artifacts of the data).



Encouraging sparsity: £, regularization
Sparsity of w: Number of non-zero coefficients in w. Same as ||w]||g

Advantage:

o Sparse models are a natural inductive bias in many settings. In many applications
we have numerous possible features, only some of which may have any
relationship with the label.

o Sparse models may also be more interpretable. They could narrow down a small
number of features which carry a lot of signal.

o Data required to learn sparse model maybe significantly less than to learn dense
model.

WEe'll see more on the third point next.



£, regularization: The good, the bad and the ugly
Choose ¥ (w) = ||w]|o.

G(w) = Z(’waBi — i) + Awllo.
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£, regularization: The good, the bad and the ugly
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£, regularization: The good, the bad and the ugly
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£, regularization: The good, the bad and the ugly
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£, regularization as a proxy for £, regularization
Choose ¢(w) = ||w];. = % lw|

G(w) = Z(mei —yi)" + Allw|:.

There 1s theory which says that under some appropriate conditions, doing
£, regularization has the same effect as if we did €, regularization, i.e.

we get sparsity, and have the same data requirement as if we did £,
regularization!



Why does ¢, regularization encourage sparse solutions?

Optimization problem: argmin,, RSS(w) , subject to (w) < f
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Diving deeper: £; and ¢, regularization for the “isotropic” case
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Diving deeper: £; and ¢, regularization for the “isotropic” case

Without /5 regularization, with the isotropic assumption (X "X = I)wehad
* T
wy =Xy =5
where we define 5; = X E)y to be the correlation of j-th feature with label.

With /5 regularization and the isotropic assumption we get,

. 1
vi = (53) >

Therefore, /5 regularization “’shrinks” the estimated parameters.

Note: When features have unequal variance, {5 regularization applies similar shrinkage to all of
them. So, scaling features properly can be important.



Diving deeper: £; and ¢, regularization for the “isotropic” case

What about £, regularization (v (w) = ||w||{) ?
Let B; = X 6-) y as before
It is possible to show that for the £, regularized case:

(B —A/2,B; > /2
wi =< 0|8 <1/2
Bj +2/2,B; < —2/2




Diving deeper: £, and ¥, regularization for the “isotropic” case

Summary: Isotropic case (X'X = I).

No regularization w; = f;

¢, regularization w; = B; /(1 + 1)

i —A/2,B; > A/2
: ¢, regularization w; = 0,|8;] < 1/2
i : Bi +14/2,B; < —1/2



Implicit regularization

So far, we explicitly added a y(w) term to our objective function to regularize.

In many cases, the optimization algorithm we use can themselves act as
regularizers, favoring some solutions over others.

Currently a very active area of research, you’ll see more in the homework.



Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-
variance tradeoffin the literature.

A model whose complexity is too small for the task will underfit. This is a model
with a large bias because the model’s accuracy will not improve even if we add
a lot of training data.

sin(x) fitting example we saw in Lec 3



Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-
variance tradeoffin the literature.

A model whose complexity is too large for the amount of available training data
will overfit. This is a model with high variance, because the model’s predictions
will vary a lot with the randomness in the training data (it can even fit any noise
in the training data).

sin(x) fitting example we saw in Lec 3



Kernels



Motivation

Recall the nonlinear function map for linear regression:

1. Use a nonlinear mapping
¢(x):x e R —» z e RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

Kernel methods give a way to choose and efficiently work with the nonlinear map
¢ : RY — RM (for linear regression, and much more broadly).



Regularized least squares

Let’s continue with regularized least squares with non-linear basis:

argmin F'(w)

= argmin (||®w — y|3 + M|w])3)
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This operates in space R™ and M could be huge (and even infinite).



Regularized least squares solution: Another look

By setting the gradient of F'(w) = ||[®w — yl|3 + \||w]|3 to be O:

T (Pw* — y) +  Mw* =0
we know \// - J'ZT
il
1 e(gv"‘ PP
w* X@T(y Pw™) a — Zozqu x;)

1=1

A (Y dw @ W)
A
Thus the least square solution is a linear combination of features of the datapoints!

This calculation does not show what o should be, but ignore that for now.



Why is this helpful?

Assuming we know ¢, the prediction of w™ on a new example x is
al . .
\Aj - g‘ @(Xl) : &.
N ]

whle) = ) aig(@) 9@ o W el

T - T
| | = & (b))
Therefore, only inner products in the new feature space matter! o
Kernel methods are exactly about computing inner products without explicitly comput-

ing .

But we need to figure out what « is first!



Solving for a, Step 1: Kernel matrix

Plugging in w = ®' o into F(w) gives

(3" (&7 )

H(a) = F(®'a)
. ) AREEINS 291
= |22 a -yl + AP a3 : K«
= | Ka — yHg + o' Ko (K = PP! c R™>"™)

K is called Gram matrix or kernel matrix where the (¢, 7)-th entry is

K ;) = ¢(z:) o(x;)



Kernel matrix: Example



Kernel matrix vs Covariance matrix
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Solving for a, Step 2: Minimize the dual
Minimize (the so-called dual formulation)
H(a) = |[Ka—y|; + o' Ka

Setting the derivative to O we have

0=(K?+\K)a - Ky= K(W)

= ©
Thus o = (K + M)~ 'y is a minimizer and we obtain

w*=®'a=0"(K+\) 'y

Exercise: are there other minimizers? and are there other w*’s?



Comparing two solutions
Minimizing F'(w) gives w* = (®'® + \I)"'®'y
Minimizing H (o) gives w* = &' (®®" + \I)~!
Note I has different dimensions in these two formulas.
Natural question: are the two solutions the same or different?
They have to be the same because F'(w) has a unique minimizer!
And they are:
(®@'®+ ) 'y

= (®'®+ ) '@ (D" + M) (D" + AI)!

= (@' @+ )" (@' @2" + 2\ (®D" + AI)!

=(@'@+ )" (@' 2+ AP (22" + \I)!

(@' +AI)!



The kernel trick

If the solutions are the same, then what is the difference?
N+ duw, T OC,\‘S) b&-% O(N’D Hm@

. . /\TM 1 . . T —1
First, computing (®#®" + AI)~" can be more efficient than computing (®" ® + \I)

< .
whenn < M M4+ M Avaion

More importantly, computing o = (K + \I) ™1y also only requires computing inner
products in the new feature space!

Now we can conclude that the exact form of ¢(-) is not essential; all we need to do is
know the inner products ¢(x) p(x').

For some ¢ it is indeed possible to compute ¢ () ¢p(x’) without computing/knowing
¢@. This is the kernel trick.



The kernel trick: Example 1

Consider the following polynomial basis ¢ : R? — R3:

2
- A - ‘. 11'
(L = o) =| V2xixs 1=
1. 2 1,

What is the inner product between ¢(x) and ¢(x’)?

o(x)' p(x') = 3312:13’12 + 2z 0T TH + ;C22:I:’22

_ 58133/+£I?2£13/ 2 _ me/Q
( 1 2

Therefore, the inner product in the new space is simply a function of the inner product
in the original space.



The kernel trick: Example 2
¢ : R? — R2? is parameterized by 0:

1 ( cos(0x1) \
7,(_( Sin(.Hxl)

] e@=|
x4 e |

What is the inner product between ¢, (x) and ¢,y (x’)?

¢o() Py (2 Z cos(0x,) cos(0x! ) + sin(fz,,) sin(0z] )
m=1
— Z cos(0(xy, — x))) (trigonometric identity)

Once again, the inner product in the new space is a simple function of the features in
the original space.



The kernel trick: Example 3

Based on ¢, define ¢; : RY — R24L+1) for some integer L:

by (x
(on

¢p(x) = ¢22W( )

\ ¢L%(m) )

What is the inner product between ¢ () and ¢ (x')?

] =

@) dp (@) =Y b () o (')

L

i (27r£

m=1

T
@)

[
] =

T
(@)



The kernel trick: Example 4

When L — oo, even if we cannot compute ¢(x) (since it’s a vector of infinite dimen-
sion), we can still compute inner product:
) P P Q SwaP S L 2

- g b%(ﬂ@d‘e’ ¢Oo(ag)T¢oo(w’) = 27T zd: cos(0(x,, — ) db ( Z_TU_L - 9\
. sm 0| L -
. o _ Z sm(27r(:1:m_— /azm))
= Sin 2T L 1 (Tm — x7,)
T

Again, a simple function of the original features.

Note that when using this mapping in linear regression, we are learning a weight w™
with infinite dimension/



Kernel functions

Definition: a function k£ : R? x R? — R is called a kernel function if there exists a
function ¢ : RY — RM so that for any =, ' € R?,

k(z,2') = ¢(z) d(x')

Examples we have seen

k() — Z sin(27(x,, — 2,))




Using kernel functions

Choosing a nonlinear basis ¢ becomes equivalent to choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply the kernel
trick.

Gram/kernel matrix becomes:

k(x1,21) k(xy,x2) -+ k(x1,2n)
[ k(xs,x1) k(xo,x2) -+  k(xa, )
k(w’rwml) k‘(wn,fDQ) e k(wnamn)

In fact, k 1s a kernel if and only if K is positive semidefinite for any n and any x1,
To,...,x, (Mercer theorem).

e useful for proving that a function is not a kernel



Examples which are not kernels

Function
k(z,x') = ||z — |3

1s not a kernel, why?

His Qrdl\p ‘S

oints 1 and a»: [ 5
v =

0 |21 — x2|)5
K —
( |21 — 2|3 0

must be positive semidefinite, buf is it?

Q
Supp0s€ a2z = K= ( ;) subidy s it ocd.

If 1t 1s a kernel, the kernel matrix for two dat

Wyl e (U -D) (1 ,\j(o )(W:(—\ ﬁ(_r'):,l
Lo - |



Properties of kernels

/ what i< t% 7
For any function f : R — R, k(x,z’) = f(x)f(x’) is a kernel. ¢ 'Rt{% ™
)
If k1(-,-) and ko (-, -) are kernels, then the following are also kernels: ¢~ \6[1\

e conical combination: ak:(-,-) + Bka(-,-) ifa, B3>0 — ot i< 4 ?

e product: k1 (-, )ka(-, ) d{, . frop Fs-’\ k
\
e exponential: ¢*(-) ¢, - roo (ﬁm\ ks
o (
d) AN ‘FGS‘ ol L\ 1 B |0-<

Verity using the definition of kernel! Envde - il g (r '?



Popular kernels

Polynomial kernel
k(x,2') = (2Tx' + )M

for ¢ > 0 and M is a positive integer.

What is the corresponding ¢?
1,%

J2 A2y
L,2

(:’ O, M-‘«'Z we Scun ML\UI ¢l>(7q

)

(



Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

|z — 2'||3
202

k(z,x') = exp (—

) for some o > 0.

7 \ 2 _ rd 2
What is the corresponding ¢? ( ‘(1 » ‘(1, = | ll, € “’h"'v -2 ‘ILT‘)L’

e ( ’l,')(j - \I’)(,‘(Z) 24p “'L[l ) L.ﬂo(
RCx, 2D e £60) F(a'?
frn £ - 2rp(- lly? >

L(z,



Popular kernels

Gaussian kernel or Radial basis function (RBF) kernel

= — 2|3

k(z,x') = exp (—'

What is the corresponding ¢?

ﬁ*?kﬁ) = |

o &

5, ) for some o > 0.
o

P
el Vo4t a3

L’ 3!

-



Popular kernels

Appropriate kernels have also been developed for tasks like Natural Language Processing where
inputs are discrete.

For two strings s; and s, and some parameter ¢,

k:(s1, s2) = Number of sub-strings of length ¢ which appear in both s; and s,.

Fore.g. ift =1,

k:(’machine’,’ learning’) = 4.

What is the corresponding ¢? A U se |
']



Prediction with kernels

Aslong as w* = > | a;¢p(x;), prediction on a new example x becomes

w* ¢(x) = Z i (x;) () = Z aik(x;, ).

This is known as a non-parametric method. Informally speaking, this means that
there is no fixed set of parameters that the model is trying to learn (remember w*
could be infinite). Nearest-neighbors is another non-parametric method we have seen.



Classification with kernels

¢

Input Space Feature Space

Similar ideas extend to the classification case, and we can predict using sign(w? ¢).
Data may become linearly separable in the feature space!



