CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 4, February 2

Administrivia

- HW1 due next Wednesday midnight.

Recap

Ensuring generalization

$$
\begin{aligned}
& \text { Theorem. Let } \mathcal{F} \text { be a function class with size }|\mathcal{F}| \text {. Let } y=f^{*}(\boldsymbol{x}) \text { for some } f^{*} \in \\
& \mathcal{F} \text {. Suppose we get a training set } S=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\} \text { of size } n \text { with each } \\
& \text { datapoint drawn i.i.d. from the data distribution D. Let } \\
& \qquad f_{S}^{E R M}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\boldsymbol{x}_{i}\right), y_{i}\right) . \\
& \text { For any constants } \epsilon, \delta \in(0,1) \text {, if } n \geq \frac{\ln (|\mathcal{F}| / \delta)}{\epsilon} \text {, then with probability }(1-\delta) \text { over } \\
& \left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}, R\left(f_{S}^{E R M}\right)<\epsilon .
\end{aligned}
$$

A useful rule of thumb: to guarantee generalization, make sure that your training data set size n is at least linear in the number d of free parameters in the function that you're trying to learn.

Beyond linear models: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{d} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Polynomial basis functions

Polynomial basis functions for $d=1$

$$
\phi(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{M}
\end{array}\right] \Rightarrow f(x)=w_{0}+\sum_{m=1}^{M} w_{m} x^{m}
$$

Learning a linear model in the new space
$=$ learning an M-degree polynomial model in the original space

Underfitting and overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error

More complicated models \Rightarrow larger gap between training and test error
How to prevent overfitting?

Preventing overfitting: Regularization

Regularized linear regression: new objective

$$
G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda \psi(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} G(\boldsymbol{w})$

- $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model \boldsymbol{w} is, penalize complex models
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.
- $\lambda>0$ is the regularization coefficient
- $\lambda=0$, no regularization
- $\lambda \rightarrow+\infty, \boldsymbol{w} \rightarrow \operatorname{argmin}_{w} \psi(\boldsymbol{w})$
- i.e. control trade-off between training error and complexity

ℓ_{2} regularization: penalizing large weights

ℓ_{2} regularization, $\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$:

$$
\begin{aligned}
& G(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \quad \nabla G(\boldsymbol{w})=2\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \quad \Rightarrow\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{y} \\
& \quad \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

Linear regression with ℓ_{2} regularization is also known as ridge regression.
With a Bayesian viewpoint, corresponds to a Gaussian prior for \boldsymbol{w}.

Encouraging sparsity: ℓ_{0} regularization

Continuing from the frequentist view, having small norm is one possible structure to impose on the model. Another very common one is sparsity.

Sparsity of w : Number of non-zero coefficients in \boldsymbol{w}. Same as $\|\mathbf{w}\|_{\mathbf{0}}$
E.g. $\boldsymbol{w}=(11,0,-(1), 0,6.2,0,0]$ is 3 -sparse

Encouraging sparsity: ℓ_{0} regularization

Sparsity of $w:$ Number of non-zero coefficients in \boldsymbol{w}. Same as $\|\mathbf{w}\|_{\mathbf{0}}$

Advantage:

- Sparse models are a natural inductive bias in many settings. In many applications we have numerous possible features, only some of which may have any relationship with the label.

Encouraging sparsity: ℓ_{0} regularization

Sparsity of w : Number of non-zero coefficients in \boldsymbol{w}. Same as $\|\mathbf{w}\|_{\mathbf{0}}$
Advantage:

- Sparse models are a natural inductive bias in many settings. In many applications we have numerous possible features, only some of which may have any relationship with the label.

Encouraging sparsity: ℓ_{0} regularization

Sparsity of w : Number of non-zero coefficients in \boldsymbol{w}. Same as $\|\mathbf{w}\|_{\mathbf{0}}$
Advantage:

- Sparse models are a natural inductive bias in many settings. In many applications we have numerous possible features, only some of which may have any relationship with the label.
- Sparse models may also be more interpretable. They could narrow down a small number of features which carry a lot of signal.
E.g. $\quad \boldsymbol{w}=(1.5,0,-1.1,0,0.25,0,0]$ is more interpretable than, $\boldsymbol{w}=[1,0.2,-1.3,0.15,0.2,0.05,0.12]$

For a sparse model, it could be easier to understand the model. It is also easier to verify whether the features which have a high weight have a relation with the outcome (they are not spurious artifacts of the data).

Encouraging sparsity: ℓ_{0} regularization

Sparsity of w : Number of non-zero coefficients in \boldsymbol{w}. Same as $\|\mathbf{w}\|_{\mathbf{0}}$
Advantage:

- Sparse models are a natural inductive bias in many settings. In many applications we have numerous possible features, only some of which may have any relationship with the label.
- Sparse models may also be more interpretable. They could narrow down a small number of features which carry a lot of signal.
- Data required to learn sparse model maybe significantly less than to learn dense model.

We'll see more on the third point next.
ℓ_{0} regularization: The good, the bad and the ugly
Choose $\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{0}$.

$$
G(\boldsymbol{w})=\sum_{i=1}^{n}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-y_{i}\right)^{2}+\lambda\|\boldsymbol{w}\|_{0}
$$

hood: Need less data to learn
Suppose weights in w are $\{-1,0,1\}$.
How many such s-sparse vectors are there in d dimensions?
Answer: $\binom{d}{s} \cdot 2^{s}$ possibilities
ℓ_{0} regularization: The good, the bad and the ugly
How much data to learn?

$$
\binom{d}{s} \leq d^{s}
$$

About $\log (\mid F 1)$ many samples to barn

$$
\begin{aligned}
\rightarrow \log \left(\binom{d}{s} 2^{s}\right) & \leq \log \left(d^{s} \cdot 2^{s}\right) \\
& =\log \left(d^{s}\right)+\log (2 s) \\
& =s \log d+s \log (2)
\end{aligned}
$$

How many free parameters?
\rightarrow choose which s of the d coordinates $\approx s$ parameters
\rightarrow choose value $(\{ \pm 1\})$ for each coordinate $=s$ parameters
ℓ_{0} regularization: The good, the bad and the ugly

In contrast, without s- sparsity need about $\approx d$ samples to learn (in d dimensions).
\therefore If $s e c d$, need much less data to generalize!!

Bad: $\|w\|_{0}$ is non-convex ($\|w\|_{p}, p<1$ is non-convex). minimizing $\quad G(w)=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{0}$ is NP-Hard :C
ℓ_{0} regularization: The good, the bad and the ugly

Ugly: Halo is highly-discontinuous

UD has no hope!!: (

ℓ_{1} regularization as a proxy for ℓ_{0} regularization

Choose $\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{1} .=\sum_{i=1}^{\infty}\left|w_{i}\right|$

$$
G(\boldsymbol{w})=\sum_{i=1}^{n}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}-y_{i}\right)^{2}+\lambda\|\boldsymbol{w}\|_{1}
$$

There is theory which says that under some appropriate conditions, doing ℓ_{1} regularization has the same effect as if we $\operatorname{did} \ell_{0}$ regularization, i.e. we get sparsity, and have the same data requirement as if we $\operatorname{did} \ell_{0}$ regularization!

Why does ℓ_{1} regularization encourage sparse solutions?

Diving deeper: ℓ_{1} and ℓ_{2} regularization for the "isotropic" case

Isotropic assumption: $x^{\top} x=I$
(1) $\varphi(\omega)=\|\omega\|_{2}^{2}$

$$
\begin{aligned}
G(w)= & \sum_{i=1}^{n}\left(x_{i}^{\top} w-y_{i}\right)^{2}+\lambda\|\omega\|_{2}^{2} \\
\omega^{*} & =\left(x^{\top} x+\lambda I\right)^{-1} x^{\top} y
\end{aligned}
$$

intumally,
(1) all features have mean 0
(2) del features have variance 1
(3) features are uncorrelated.

Now, $x^{\top} x=I \Rightarrow \omega^{*}=((1+\lambda) I)^{-1} x^{\top} y=\left(\frac{1}{1+\lambda}\right) x^{\top} y$

$$
w_{j}^{*}=\left(\frac{1}{1+\lambda}\right) \times(j)^{\top} y
$$

jth co-arlinate of $\omega^{*}=\left(\frac{1}{1}+\lambda\right)$. correlation of $x^{\text {th }}$ feature with label

Diving deeper: ℓ_{1} and ℓ_{2} regularization for the "isotropic" case

Without ℓ_{2} regularization, with the isotropic assumption $\left(\boldsymbol{X}^{\top} \boldsymbol{X}=I\right)$ we had

$$
w_{j}^{*}=\boldsymbol{X}_{(j)}^{\top} \boldsymbol{y}=\beta_{j}
$$

where we define $\beta_{j}=\boldsymbol{X}_{(j)}^{\top} \boldsymbol{y}$ to be the correlation of j-th feature with label.
With ℓ_{2} regularization and the isotropic assumption we get,

$$
w_{j}^{*}=\left(\frac{1}{1+\lambda}\right) \beta_{j} .
$$

Therefore, ℓ_{2} regularization "shrinks" the estimated parameters.
Note: When features have unequal variance, ℓ_{2} regularization applies similar shrinkage to all of them. So, scaling features properly can be important.

Diving deeper: ℓ_{1} and ℓ_{2} regularization for the "isotropic" case

What about ℓ_{1} regularization $\left(\psi(\boldsymbol{w})=\|\boldsymbol{w}\|_{1}\right)$?
Let $\beta_{j}=\boldsymbol{X}_{(j)}^{T} \boldsymbol{y}$ as before
It is possible to show that for the ℓ_{1} regularized case:

$$
w_{j}=\left\{\begin{array}{c}
\beta_{j}-\lambda / 2, \beta_{j}>\lambda / 2 \\
0,\left|\beta_{j}\right| \leq \lambda / 2 \\
\beta_{j}+\lambda / 2, \beta_{j}<-\lambda / 2
\end{array}\right.
$$

Diving deeper: ℓ_{1} and ℓ_{2} regularization for the "isotropic" case

Summary: Isotropic case ($\boldsymbol{X}^{T} \boldsymbol{X}=\boldsymbol{I}$).
Let $\beta_{j}=\boldsymbol{X}_{(j)}^{T} \boldsymbol{y}$

Implicit regularization

So far, we explicitly added a $\psi(\boldsymbol{w})$ term to our objective function to regularize.
In many cases, the optimization algorithm we use can themselves act as regularizers, favoring some solutions over others.

Currently a very active area of research, you'll see more in the homework.

Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the biasvariance tradeoff in the literature.

A model whose complexity is too small for the task will underfit. This is a model with a large bias because the model's accuracy will not improve even if we add a lot of training data.

Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the biasvariance tradeoff in the literature.

A model whose complexity is too large for the amount of available training data will overfit. This is a model with high variance, because the model's predictions will vary a lot with the randomness in the training data (it can even fit any noise in the training data).

Input Space

Feature Space

Motivation

Recall the nonlinear function map for linear regression:

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{d} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Kernel methods give a way to choose and efficiently work with the nonlinear map $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{M}$ (for linear regression, and much more broadly).

Regularized least squares

Let's continue with regularized least squares with non-linear basis:

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\operatorname{argmin}} F(\boldsymbol{w}) \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}}\left(\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}\right) \\
& =\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

This operates in space \mathbb{R}^{M} and M could be huge (and even infinite).

Regularized least squares solution: Another look

By setting the gradient of $F(\boldsymbol{w})=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}$ to be $\mathbf{0}$:

$$
\begin{aligned}
& \boldsymbol{w}^{*}=\frac{1}{\lambda} \boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{y}-\boldsymbol{\Phi} \boldsymbol{w}^{*}\right)=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\mathbb{R}^{m}\right) \\
& \alpha=\left(\boldsymbol{x}_{i}\right) \\
&\left.\downarrow \boldsymbol{y}-\Phi w^{*}\right)
\end{aligned}
$$

we know

Thus the least square solution is a linear combination of features of the datapoints!
This calculation does not show what $\boldsymbol{\alpha}$ should be, but ignore that for now.

Why is this helpful?

Assuming we know $\boldsymbol{\alpha}$, the prediction of \boldsymbol{w}^{*} on a new example \boldsymbol{x} is

$$
\begin{aligned}
& \boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}(\boldsymbol{x})=\sum^{*}=\sum_{i=1}^{n} \alpha_{i} \phi\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}) \Rightarrow\left(x_{i}\right) \cdot \alpha_{i} \\
& \omega^{*} \phi(x) \\
&=\sum_{i=1}^{n} \alpha_{i}\left(\phi\left(x_{1}\right)\right)^{\top} \phi(x)
\end{aligned}
$$

Kernel methods are exactly about computing inner products without explicitly computing ϕ.

But we need to figure out what $\boldsymbol{\alpha}$ is first!

Solving for α, Step 1: Kernel matrix

Plugging in $\boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$ into $F(\boldsymbol{w})$ gives

$$
\begin{aligned}
H(\boldsymbol{\alpha}) & \left.=F\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}\right) \quad \boldsymbol{(} \quad \Phi^{\top} \boldsymbol{\alpha}\right)^{\top}\left(\Phi^{\top} \alpha\right) \\
& =\left\|\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}-\boldsymbol{y}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}\right\|_{2}^{2} \quad \alpha^{\top} \Phi^{\top} \Phi^{\top} \boldsymbol{\alpha} \\
& =\|\boldsymbol{K} \boldsymbol{\alpha}-\boldsymbol{y}\|_{2}^{2}+\lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\alpha} \quad\left(\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \in \mathbb{R}^{n \times n}\right)
\end{aligned}
$$

\boldsymbol{K} is called Gram matrix or kernel matrix where the (i, j)-th entry is

$$
\boldsymbol{K}_{(i, j)}=\boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{j}\right)
$$

Kernel matrix: Example

$$
\phi\left(x_{1}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right) \quad \phi\left(x_{2}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \phi\left(x_{3}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Gram/Kernel matrix

$$
\begin{aligned}
\boldsymbol{K} & =\left(\begin{array}{lll}
\boldsymbol{\phi}\left(x_{1}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{1}\right) & \boldsymbol{\phi}\left(x_{1}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{2}\right) & \boldsymbol{\phi}\left(x_{1}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{3}\right) \\
\boldsymbol{\phi}\left(x_{2}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{1}\right) & \boldsymbol{\phi}\left(x_{2}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{2}\right) & \boldsymbol{\phi}\left(x_{2}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{3}\right) \\
\boldsymbol{\phi}\left(x_{3}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{1}\right) & \boldsymbol{\phi}\left(x_{3}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(x_{2}\right) & \boldsymbol{\phi}\left(x_{3} \mathrm{~T}^{\mathrm{T}} \boldsymbol{\phi}\left(x_{3}\right)\right.
\end{array}\right) \\
& =\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 4
\end{array}\right)
\end{aligned}
$$

Kernel matrix vs Covariance matrix

Any matrix $A=V U^{\top}$ (for some matrix v) is pod.

$$
x^{\top} A x=x^{\top} U u^{\top} x=\left(u^{\top} x\right)^{\top}\left(U^{\top} x\right)=\left\|v^{\top} x\right\|_{2}^{2} \geqslant 0 .
$$

Solving for α, Step 2: Minimize the dual

Minimize (the so-called dual formulation)

$$
H(\boldsymbol{\alpha})=\|\boldsymbol{K} \boldsymbol{\alpha}-\boldsymbol{y}\|_{2}^{2}+\lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\alpha}
$$

Setting the derivative to $\mathbf{0}$ we have

$$
\mathbf{0}=\left(\boldsymbol{K}^{2}+\lambda \boldsymbol{K}\right) \boldsymbol{\alpha}-\boldsymbol{K} \boldsymbol{y}=\boldsymbol{K}(\underbrace{(\boldsymbol{K}+\lambda \boldsymbol{I}) \boldsymbol{\alpha}-\boldsymbol{y}}_{=\boldsymbol{0}})
$$

Thus $\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}$ is a minimizer and we obtain

$$
\boldsymbol{w}^{*}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}=\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
$$

Exercise: are there other minimizers? and are there other w^{*} 's?

Comparing two solutions

Minimizing $F(\boldsymbol{w})$ gives $\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$
Minimizing $H(\boldsymbol{\alpha})$ gives $\boldsymbol{w}^{*}=\boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y}$
Note \boldsymbol{I} has different dimensions in these two formulas.
Natural question: are the two solutions the same or different?
They have to be the same because $F(\boldsymbol{w})$ has a unique minimizer!
And they are:

$$
\begin{aligned}
& \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& =\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
& =\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1}\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{\Phi}^{\mathrm{T}}\right)\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
& =\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1}\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
& =\boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y}
\end{aligned}
$$

The kernel trick

If the solutions are the same, then what is the difference?
$\overbrace{}^{n+n}$ dim. takes $O\left(n^{3}\right)$ takes $O\left(M^{3}\right)$ time
First, computing $\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \boldsymbol{I}\right)^{-1}$ can be more efficient than computing $\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1}$ when $n \leq M$.

More importantly, computing $\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}$ also only requires computing inner products in the new feature space!

Now we can conclude that the exact form of $\phi(\cdot)$ is not essential; all we need to do is know the inner products $\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)$.

For some ϕ it is indeed possible to compute $\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)$ without computing/knowing ϕ. This is the kernel trick.

The kernel trick: Example 1

Consider the following polynomial basis $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$:

$$
x=\binom{x_{1}}{x_{2}} \phi(x)=\left(\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right) \quad x^{\prime}=\binom{x_{1}^{\prime}}{x_{2}^{\prime}}
$$

What is the inner product between $\boldsymbol{\phi}(\boldsymbol{x})$ and $\boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)$?

$$
\begin{aligned}
\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime}{ }^{2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}\right)^{2}
\end{aligned}
$$

Therefore, the inner product in the new space is simply a function of the inner product in the original space.

The kernel trick: Example 2

$\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2 d}$ is parameterized by $\theta:$

$$
\boldsymbol{x}=\left(\begin{array}{c}
\boldsymbol{x}_{\mathbf{1}} \\
\boldsymbol{x}_{\mathbf{2}} \\
\vdots \\
\boldsymbol{x}_{\boldsymbol{d}}
\end{array}\right) \quad \boldsymbol{\phi}_{\theta}(\boldsymbol{x})=\left(\begin{array}{c}
\cos \left(\theta x_{1}\right) \\
\sin \left(\theta x_{1}\right) \\
\vdots \\
\cos \left(\theta x_{d}\right) \\
\sin \left(\theta x_{d}\right)
\end{array}\right)
$$

What is the inner product between $\boldsymbol{\phi}_{\theta}(\boldsymbol{x})$ and $\boldsymbol{\phi}_{\theta}\left(\boldsymbol{x}^{\prime}\right)$?

$$
\begin{aligned}
\boldsymbol{\phi}_{\theta}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}_{\theta}\left(\boldsymbol{x}^{\prime}\right) & =\sum_{m=1}^{d} \cos \left(\theta x_{m}\right) \cos \left(\theta x_{m}^{\prime}\right)+\sin \left(\theta x_{m}\right) \sin \left(\theta x_{m}^{\prime}\right) \\
& =\sum_{m=1}^{d} \cos \left(\theta\left(x_{m}-x_{m}^{\prime}\right)\right) \quad \quad \text { (trigonometric identity) }
\end{aligned}
$$

Once again, the inner product in the new space is a simple function of the features in the original space.

The kernel trick: Example 3

Based on ϕ_{θ}, define $\phi_{L}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2 d(L+1)}$ for some integer L :

$$
\phi_{L}(\boldsymbol{x})=\left(\begin{array}{c}
\phi_{0}(\boldsymbol{x}) \\
\phi_{\frac{2 \pi}{L}}(\boldsymbol{x}) \\
\phi_{2 \frac{2 \pi}{L}}(\boldsymbol{x}) \\
\vdots \\
\phi_{L \frac{2 \pi}{L}}(\boldsymbol{x})
\end{array}\right)
$$

What is the inner product between $\phi_{L}(\boldsymbol{x})$ and $\phi_{L}\left(\boldsymbol{x}^{\prime}\right)$?

$$
\begin{aligned}
\boldsymbol{\phi}_{L}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}_{L}\left(\boldsymbol{x}^{\prime}\right) & =\sum_{\ell=0}^{L} \phi_{\frac{2 \pi \ell}{L}}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}_{\frac{2 \pi \ell}{L}}\left(\boldsymbol{x}^{\prime}\right) \\
& =\sum_{\ell=0}^{L} \sum_{m=1}^{d} \cos \left(\frac{2 \pi \ell}{L}\left(x_{m}-x_{m}^{\prime}\right)\right)
\end{aligned}
$$

The kernel trick: Example 4

When $L \rightarrow \infty$, even if we cannot compute $\phi(x)$ (since it's a vector of infinite dimension), we can still compute inner product: swap $\int \ell \sum$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \cos (x \theta) d \theta \quad \phi_{\infty}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}_{\infty}\left(\boldsymbol{x}^{\prime}\right)
\end{aligned}=\int_{0}^{2 \pi} \sum_{m=1}^{d} \cos \left(\theta\left(x_{m}-x_{m}^{\prime}\right)\right) d \theta \quad\left(\frac{2 \pi \ell}{L}=\theta\right)
$$

Again, a simple function of the original features.
Note that when using this mapping in linear regression, we are learning a weight \boldsymbol{w}^{*} with infinite dimension!

Kernel functions

Definition: a function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a kernel function if there exists a function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{M}$ so that for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$,

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)
$$

Examples we have seen

$$
\begin{aligned}
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}\right)^{2} \\
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sum_{m=1}^{d} \frac{\sin \left(2 \pi\left(x_{m}-x_{m}^{\prime}\right)\right)}{\left(x_{m}-x_{m}^{\prime}\right)}
\end{aligned}
$$

Using kernel functions

Choosing a nonlinear basis ϕ becomes equivalent to choosing a kernel function.
As long as computing the kernel function is more efficient, we should apply the kernel trick.

Gram/kernel matrix becomes:

$$
\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}=\left(\begin{array}{cccc}
k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & \cdots & k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{n}\right) \\
k\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{1}\right) & k\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right) & \cdots & k\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
k\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{1}\right) & k\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{2}\right) & \cdots & k\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{n}\right)
\end{array}\right)
$$

In fact, k is a kernel if and only if \boldsymbol{K} is positive semidefinite for any n and any \boldsymbol{x}_{1}, x_{2}, \ldots, x_{n} (Mercer theorem).

- useful for proving that a function is not a kernel

Examples which are not kernels
Function

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}
$$

is not a kernel, why?
this entry is
If it is a kernel, the kernel matrix for two data points \boldsymbol{x}_{1} and \boldsymbol{x}_{2} : $\left\|x_{1}-x_{1}\right\|_{2}^{2}=0$

$$
\boldsymbol{K}=\left(\begin{array}{cc}
0 & \left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \\
\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} & 0
\end{array}\right)
$$

must be positive semidefinite, but is it?
suppose $\left\|x_{1}-x_{2}\right\|=1 \quad \Rightarrow \quad k=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, which is not pod.
Why 2. take $\left(\begin{array}{ll}1 & -1\end{array}\right) . \quad\left(\begin{array}{ll}1 & -1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1}=\left(\begin{array}{ll}-1 & 1\end{array}\binom{1}{-1}=-2\right.$

Properties of kernels
For any function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=f(\boldsymbol{x}) f\left(\boldsymbol{x}^{\prime}\right)$ is a kernel.

What is ϕ ? $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, $\phi(x)=f(x)$

- conical combination: $\alpha k_{1}(\cdot, \cdot)+\beta k_{2}(\cdot, \cdot)$ if $\alpha, \beta \geq 0$
- product: $k_{1}(\cdot, \cdot) k_{2}(\cdot, \cdot)$
- exponential: $e^{k(\cdot, \cdot)}$
-...
\rightarrow What is $\psi^{?}$?
ϕ_{1} : map for k_{1}
$\phi_{2}: \operatorname{map}$ for k_{2}
$\phi^{\prime}: \operatorname{map}_{\operatorname{mor}} \alpha k_{1}+\beta k_{2}$
Verify using the definition of kernel!
Exercise: what is ϕ^{\prime} ?

Popular kernels
Polynomial kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}+c\right)^{M}
$$

for $c \geq 0$ and M is a positive integer.

What is the corresponding ϕ ?

$$
C=0, M=2 \text {, we saw allier } d(x)=\left(\begin{array}{c}
x_{1}{ }^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2} 2
\end{array}\right)
$$

Popular kernels
Gaussian kernel or Radial basis function (RBF) kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right) \quad \text { for some } \sigma>0
$$

What is the corresponding ϕ ? $\quad\left(\left\|x-x^{\prime}\right\|_{2}^{2}=\|x\|_{2}^{2}+\left\|x^{\prime}\right\|_{2}^{2}-2 x^{\top} x^{\prime}\right.$

$$
\begin{aligned}
k\left(x, x^{\prime}\right)= & e+p\left(-\frac{\left.\|x\|_{2}^{2}\right)}{2 \sigma^{2}}\right) e+p\left(-\frac{\left\|x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right) \ell+p\left(\frac{x^{\top} x^{1}}{\sigma^{2}}\right) \\
& R\left(x, x^{\prime}\right)=f(x) f\left(x^{\prime}\right) \\
& \text { for } f(x)=\operatorname{etp}\left(-\frac{1\|x\|_{2}^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Popular kernels
Gaussian kernel or Radial basis function (RBF) kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right) \quad \text { for some } \sigma>0
$$

What is the corresponding ϕ ?

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

$$
\operatorname{l+p}\left(\frac{x^{\top} x^{\prime}}{\sigma^{2}}\right)=1+\frac{x^{\top} x^{1}}{\sigma^{2}}+\frac{1}{2!} \frac{\left(x^{\top} x^{1}\right)^{2}}{\left(\sigma^{2}\right)^{2}}+\frac{1}{3!} \frac{\left(x^{\top} x^{\top}\right)^{3}}{\left(\sigma^{2}\right)^{3}}+\cdots
$$

each of these is polynomial kernel

Popular kernels

Appropriate kernels have also been developed for tasks like Natural Language Processing where inputs are discrete.

For two strings s_{1} and s_{2} and some parameter t,

$$
k_{t}\left(s_{1}, s_{2}\right)=\text { Number of sub-strings of length } t \text { which appear in both } s_{1} \text { and } s_{2} .
$$

For e.g. if $t=1$,

$$
k_{t}(\text { 'machine','learning' })=4 .
$$

What is the corresponding ϕ ? Exercise!

Prediction with kernels

As long as $\boldsymbol{w}^{*}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)$, prediction on a new example \boldsymbol{x} becomes

$$
\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right) .
$$

This is known as a non-parametric method. Informally speaking, this means that there is no fixed set of parameters that the model is trying to learn (remember \boldsymbol{w}^{*} could be infinite). Nearest-neighbors is another non-parametric method we have seen.

Classification with kernels

Similar ideas extend to the classification case, and we can predict using $\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\right)$.
Data may become linearly separable in the feature space!

