
CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 6, Feb 16

 



Administrivia

• No OH or mentoring sessions on Monday, can find schedule for rest of 
the week on course calendar.

• HW2 due next Thursday at 12 noon (12 hour extension due to holiday on 
Monday)

• Exam 1 is in 2 weeks (March 1, 1pm-3:20pm).



Multiclass 
classification



1.1 Setup

Recall the setup:

• input (feature vector): x ∈ Rd

• output (label): y ∈ [C] = {1, 2, · · · ,C}

• goal: learn a mapping f : Rd → [C]

Examples:

• recognizing digits (C = 10) or letters (C = 26 or 52)

• predicting weather: sunny, cloudy, rainy, etc

• predicting image category: ImageNet dataset (C ≈ 20K)



1.2 Linear models: Binary to multiclass
Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {−1,+1} to {1, 2})

f(x) =

{

1 if wT
x ≥ 0

2 if wT
x < 0

can be written as

f(x) =

{

1 if wT
1x ≥ w

T
2x

2 if wT
2x > w

T
1x

= argmax
k∈{1,2}

w
T
kx

for any w1,w2 s.t. w = w1 −w2

Think of wT
kx as a score for class k.



Linear models: Binary to multiclass



Linear models: Binary to multiclass



Linear models: Binary to multiclass



1.3 Function class: Linear models for multiclass classification

F =

{

f(x) = argmax
k∈[C]

w
T
kx | w1, . . . ,wC ∈ R

d

}

=

{

f(x) = argmax
k∈[C]

(Wx)k | W ∈ R
C×d

}

Next, lets try to generalize the loss functions. Focus on the logistic loss today.



1.4 Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 −w2:

Pr(y = 1 | x;w) = σ(wT
x) =

1

1 + e−w
T
x
=

ew
T
1
x

ew
T
1
x + ew

T
2
x

∝ ew
T
1
x

Naturally, for multiclass:

Pr(y = i | x;W ) =
ew

T
i
x

∑
k∈[C] e

w
T
k
x

∝ ew
T
i
x

This is called the softmax function.



1.5 Let’s find the MLE
Maximize probability of seeing labels y1, . . . , yn given x1, . . . ,xn

P (W ) =
n
∏

i=1

Pr(yi | xi;W ) =
n
∏

i=1

ew
T
yi

xi

∑

k∈[C] e
w

T
k
xi

By taking negative log, this is equivalent to minimizing

F (W ) =
n
∑

i=1

ln

(
∑

k∈[C] e
w

T
kxi

ew
T
yi

xi

)

=
n
∑

i=1

ln



1 +
∑

k "=yi

e(wk−wyi
)T
xi





This is the multiclass logistic loss. It is an upper-bound on the 0-1 misclassification loss:

I[f(x) != y] ≤ log2



1 +
∑

k "=y

e(wk−wy)
T
x





When C = 2, multiclass logistic loss is the same as binary logistic loss (let’s verify).



Relating binary and multiclass logistic loss



1.6 Next, optimization
Apply SGD: what is the gradient of

F (W ) = ln



1 +
∑

k !=yi

e(wk−wyi
)T
xi



?

It’s a C× d matrix. Let’s focus on the k-th row:

If k "= yi:

∇
w

T
k
F (W ) =

e(wk−wyi
)T
xi

1 +
∑

k !=yi
e(wk−wyi

)T
xi

x
T
i =

ew
T
kxi

ew
T
yi

xi +
∑

k !=yi
ew

T
k
xi

x
T
i = Pr(y = k | xi;W )xT

i

else:

∇
w

T
k
F (W ) =

−
(

∑

k !=yi
e(wk−wyi

)T
xi

)

1 +
∑

k !=yi
e(wk−wyi

)T
xi

x
T
i =

−
(

∑

k !=yi
ew

T
kxi

)

ew
T
yi

xi +
∑

k !=yi
ew

T
k
xi

x
T
i = (Pr(y = yi | xi;W )− 1)xT

i



SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1. pick i ∈ [n] uniformly at random

2. update the parameters

W ←W − η

















Pr(y = 1 | xi;W )
...

Pr(y = yi | xi;W )− 1
...

Pr(y = C | xi;W )

















x
T
i

Think about why the algorithm makes sense intuitively.



1.7 Probabilities -> Prediction

Having learned W , we can either

• make a deterministic prediction argmaxk∈[C] wT
k
x

• make a randomized prediction according to Pr(y = k | x;W ) ∝ ew
T
k
x



1.8 Beyond linear models

Suppose we have any model f (not necessary linear) which gives some score fk(x) for
the datapoint x having the k-th label.

How can we convert this score to probabilities? Use the softmax function!

f̃k(x) = Pr(y = k | x; f) =
efk(x)

∑
k′∈[C] e

fk′ (x)
∝ efk(x)

Once we have probability estimates, what is suitable loss function to train the model?
Use the log loss. Also known as the cross-entropy loss.



Log Loss/Cross-entropy loss: Binary case
Let’s start with binary classification again. Consider a model which predicts f̃(x) as
the probability of label being 1 for labelled datapoint (x, y). The log loss is defined as,

LogLoss = 1(y = 1) ln

(

1

f̃(x)

)

+ 1(y = −1) ln

(

1

1− f̃(x)

)

= −1(y = 1) ln(f̃(x))− 1(y = −1) ln((1− f̃(x))).

When the model is linear, this reduces to the logistic regression loss we defined before!



This generalizes easily to the multiclass case. For datapoint (x, y), if f̃k(x) is the
predicted probability of label k,

LogLoss =
C
∑

k=1

1(y = k) ln

(

1

f̃k(x)

)

= −

C
∑

k=1

1(y = k) ln
(

f̃k(x)
)

).

When the model is linear, this also reduces to the multiclass logistic regression loss we
defined earlier today.

Log Loss/Cross-entropy loss: Multiclass case



By combining the softmax and the log-loss, we have a general loss !(f(x), y) which
we can use to train a multi-class classification model which assigns scores fk(x) to the
k-th class. (These scores fk(x) are sometimes referred to as logits).

!(f(x), y) = −

C
∑

k=1

1(y = k) ln
(

f̃k(x)
)

= ln

(
∑

k∈[C] e
fk(x)

efy(x)

)

= ln



1 +
∑

k "=y

efk(x)−fy(x)



 .

Log Loss/Cross-entropy loss: Multiclass case



Multiclass logistic loss: Another view



Cross-entropy is the most popular, but there are other black-box techniques to convert
multiclass classification to binary classification.

• one-versus-all (one-versus-rest, one-against-all, etc.)

• one-versus-one (all-versus-all, etc.)

• Error-Correcting Output Codes (ECOC)

• tree-based reduction

1.8 Other techniques for multiclass classification



Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k ∈ [C],

• relabel examples with class k as +1, and all others as −1

• train a binary classifier hk using this new dataset

1.9 One-versus-all

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf


Idea: train C binary classifiers to learn “is class k or not?” for each k.

Prediction: for a new example x

• ask each hk: does this belong to class k? (i.e. hk(x))

• randomly pick among all k’s s.t. hk(x) = +1.

Issue: will (probably) make a mistake as long as one of hk errs.

1.9 One-versus-all



Idea: train
(

C

2

)

binary classifiers to learn “is class k or k′?”.

Training: for each pair (k, k′),

• relabel examples with class k as +1 and examples with class k′ as −1

• discard all other examples

• train a binary classifier h(k,k′) using this new dataset

1.10 One-versus-one

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf


Idea: train
(

C

2

)

binary classifiers to learn “is class k or k′?”.

Prediction: for a new example x

• ask each classifier h(k,k′) to vote for either class k or k′

• predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Other techniques such as tree-based methods and error-correcting codes can achieve
intermediate tradeoffs.

1.10 One-versus-one



Neural Networks



Linear models aren’t always enough. As we discussed, we can use a nonlinear mapping
and learn a linear model in the feature space:

φ(x) : x ∈ R
d
→ z ∈ R

M

But what kind of nonlinear mapping φ should be used?

Can we just learn the nonlinear mapping itself?

Linear -> Fixed non-linear -> Learned non-linear map



Supervised learning in one slide

Loss function: What is the right loss function for the task? 

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer 
gracefully to unseen examples?

All related! And the fuel which powers everything is data.



2.1 Loss function
For model which makes predictions f(x) on labelled datapoint (x, y), we can use the
following losses.

Regression:

!(f(x), y) = (f(x)− y)2 .

Classification:

!(f(x), y) = ln

(
∑

k∈[C] e
fk(x)

efy(x)

)

= ln



1 +
∑

k "=y

efk(x)−fy(x)



 .

There maybe other, more suitable options for the problem at hand, but these are the
most popular for supervised problems.



To create non-linearity, can use some nonlinear (differentiable) function:

• Rectified Linear Unit (ReLU): h(a) = max{0, a}

• Sigmoid function: h(a) = 1

1+e
−a

• Tanh: h(a) = e
a
−e

−a

e
a+e

−a

• many more

2.2 Representation: Defining neural networks

For a linear model, h(a) = a.

Linear model as a one-layer neural network:

Figure 13.2 from PML



W ∈ R4×3, h : R4
→ R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear mapping: φ(x) = h(Wx)

Adding a layer



We now have a network:

• each node is called a neuron

• h is called the activation function

• can use h(a) = 1 for one neuron in each layer to
incorporate bias term

• output neuron can use h(a) = a

• #layers refers to #hidden layers (plus 1 or 2 for input/output
layers)

• deep neural nets can have many layers and millions of
parameters

• this is a feedforward, fully connected neural net, there
are many variants (convolutional nets, residual nets, re-
current nets, etc.)

Putting things together: a neural network



An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W 1x))) .

Define

• W ! ∈ Rd!×d!−1 is the weights between layer !− 1 and !

• d0 = d, d1, . . . , dL are numbers of neurons at each layer

• a! ∈ Rd! is input to layer !

• o! ∈ Rd! is output of layer !

• h! : Rd! → Rd! is activation functions at layer !

Now, for a given input x, we have recursive relations:

o0 = x,a! = W !o!−1,o! = h!(a!), (! = 1, . . . , L).

Neural network: Definition



2.3 Optimization

Our optimization problem is to minimize,

F (W 1, . . . ,W L) =
1

n

n
∑

i=1

Fi(W 1, . . . ,W L)

where

Fi(W 1, . . . ,W L) =

{

‖f(xi)− yi‖
2
2 for regression

ln
(

1 +
∑

k !=yi
efk(xi)−fyi (xi)

)

for classification

How to solve this? Apply SGD!

To compute the gradient efficiently, we use backpropogation. More on this soon.



2.4 Generalization

Overfitting is a concern for such a complex model, but there are ways to handle it.

For example, we can add !2 regularization.

!2 regularization: minimize

G(W 1, . . . ,W L) = F (W 1, . . . ,W L) + λ
∑

all weights w
in network

w2



http://playground.tensorflow.org/

Demo

http://playground.tensorflow.org/


Neural Networks:
Diving deeper



Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous

function.

3.1 Representation: Very powerful function class!



Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous

function.

3.1 Representation: Very powerful function class!



Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous

function.

It might need a huge number of neurons though, and depth helps!

Choosing the network architecture is important.

• for feedforward network, need to decide number of hidden layers, number of
neurons at each layer, activation functions, etc.

Designing the architecture can be complicated, though various standard choices exist.

3.1 Representation: Very powerful function class!



3.2 Optimization: Computing gradients efficiently using Backprop

To run SGD, need gradients of Fi(W 1, . . . ,W L) with respect to all the weights in all
the layers. How do we get the gradient?

Here’s a naive way to compute gradients. For some function F (w) of a univariate
parameter w,

dF (w)

dw
= lim

ε→0

F (w + ε)− F (w − ε)

2ε



Backpropogation: A very efficient way to compute gradients of neural networks using
an application of the chain rule (similar to dynamic programming).

Chain rule:

• for a composite function f(g(w))

∂f

∂w
=

∂f

∂g

∂g

∂w

• for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑

i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

Backprop



Backprop: Intuition



Drop the subscript ! for layer for simplicity. For this derivation, refer to the loss
function as Fm (instead of Fi) for convenience.

Find the derivative of Fm w.r.t. to wij

∂Fm

∂wij
=

∂Fm

∂ai

∂ai

∂wij
=

∂Fm

∂ai

∂(wijoj)

∂wij
=

∂Fm

∂ai
oj

∂Fm

∂ai
=

∂Fm

∂oi

∂oi

∂ai
=

(

∑

k

∂Fm

∂ak

∂ak

∂oi

)

h
′

i(ai) =

(

∑

k

∂Fm

∂ak
wki

)

h
′

i(ai)

Backprop: Derivation



Adding the subscript for layer:

∂Fm

∂w!,ij
=

∂Fm

∂a!,i
o!−1,j

∂Fm

∂a!,i
=

(

∑

k

∂Fm

∂a!+1,k
w!+1,ki

)

h′

!,i(a!,i)

For the last layer, for square loss

∂Fm

∂aL,i
=

∂(hL,i(aL,i)− ym)2

∂aL,i
= 2(hL,i(aL,i)− ym)h′

L,i(aL,i)

Exercise: try to do it for logistic loss yourself.

Backprop: Derivation

We will continue with Backprop next time!


