CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 6, Feb 16

Sylzz

=T
_—

USCUniversity of

Southern California

Administrivia

No OH or mentoring sessions on Monday, can find schedule for rest of
the week on course calendar.

HW2 due next Thursday at 12 noon (12 hour extension due to holiday on
Monday)

Exam 1 is in 2 weeks (March 1, 1pm-3:20pm).

Multiclass
classification

1.1 Setup

Recall the setup:
e input (feature vector): & € R?
e output (label): y € [C] ={1,2,--- ,C}

e goal: learn a mapping f : R? — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
e predicting weather: sunny, cloudy, rainy, etc

e predicting image category: ImageNet dataset (C ~ 20K)

1.2 Linear models: Binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

2 ifwlz <0

Fz) = {1 if wlx >0

can be written as

f(z) 1 ifwlx > wlx
€Xr) =
2 ifwlz>wix

— argmax w,x
ke{1,2}

for any wi, ws s.t. w = w; — wo

Think of w, .« as a score for class k.

Linear models: Binary to multiclass

|
P
[\WI[JV)
O =
N

@ Blue class:
{z:w'z >0}

1t @ Orange class:

{z:wlz <0}

Linear models: Binary to multiclass

Y

w

@ Blue class:

{z : 1 = argmax;, w} =}
@ Orange class:

{z : 2 = argmax;, w} =}

Linear models: Binary to multiclass

wi = (1,—%)
ws= (5
w3 = (Oa 1)

® Blue class:

{z: 1 = argmax, wx}
@ Orange class:

{z : 2 = argmax;, w x}
® Green class:

{z : 3 = argmax, wlz}

1.3 Function class: Linear models for multiclass classification

F =< f(x) = argmax w,x | wi,...,wc €]Rd}
kel[C]

\

7\

f(x) = argmax (Wz);, | W € R<*¢
kelC]

\

Next, lets try to generaliﬁe the loss functions. Focus on the logistic loss today.
—— N

W, | A w, (g a
— 1o ,:> wo T
| — U’} . \A/

!A‘ 4]L post ¢ L
C :

+—. s Wi S

. P

\ /

1.4 Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w; — wa:

.
?’\(\%’z\'ljuﬂ _ Q/W""’L N QWLT‘K.«
Naturally, for multiclass: oW Ty &Wﬂx
eWi T
Pr(y=1i|ax; W) = — o eWi®

This is called the softmax function.

(AVNU\\’S CC0hey u);.(W = Vﬁ(%" —\ | T

J

]

1.5 Let’s find the MILE

Maximize probability of seeing labels y1,...,y, given 1, ..., T,
¢ d ASS[,.WPHQ/V\\

w! x;
e Vi

:HPr<yi|-’Bz’;W):H T
i=1 i=1 Zk:e[C] ek

By taking negative log, this is equivalent to minimizing

Zl <Zk€g} wzk z) Zln 1+Z (wy,—w,y,)"z

k#y;

This 1s the multiclass logistic loss. 1t 1s an upper-bound on the 0-1 misclassification loss:

I[f(x) #y] <logy | 1+ Z p(Wr—wy) @ (

k7y Ae x20

When C = 2, multiclass logistic loss is the same as binary logistic loss (let’s verify).

Relating binary and multiclass logistic loss

FW) = 2 Ly = g/(“’"‘”‘r"\)r’c)
<=\ hd-%"

((onsi des, Ay e D\])

c | pou) '
T sy e (ot e(w ’ X)

Foo g2, e ekw(-wq K)

fon ws oWw-wy , and \'MV\S{'U{W% by, from {2y a{l,q}

h - Ty -
— "YW X
- (W)- 2 QM(\JV e l)

1.6 Next, optimization

Apply SGD: what is the gradient of

FW)=In|1+ Z e(wk—wy,) @i | 9

k#yi

It’s a C x d matrix. Let’s focus on the k-th row:

If £ 75 Y;-
('wk_wyi)Twi
Vot FW) = — —al =
* 1+ Zk;ﬁyi elwon—wn e
else
_ (Zk | e(wk—wyn%i)
Vot F(W) = i 2T =

1+ Zk;ﬁyi e(Wr—wy, Jla;

T

wy x; w; x; Li
e T Zk?éyi ek
T
— W, I,
(Zk#yz €) T
€Ly

w! x; T
y; T w i, L
€ @ +Zk7$yie k=t

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1. pick ¢ € [n]| uniformly at random

2. update the parameters

(Priy=1]|a; W) \

)

WeW-—n| Prly=yi |x; W)—1 |}

\ Pry=ClasW) |

Think about why the algorithm makes sense intuitively.

1.7 Probabilities -> Prediction

Having learned W, we can either

e make a deterministic prediction argmaxy¢c; Wy

e make a randomized prediction according to Pr(y = k | ; W) eWh®

1.8 Beyond linear models

Suppose we have any model f (not necessary linear) which gives some score fx(x) for
the datapoint & having the k-th label.

Far lnen medet, i@ @' x

How can we convert this score to probabilities? Use the softmax function!
efk (:1:)

S e Or @

Once we have probability estimates, what is suitable loss function to train the model?
Use the log loss. Also known as the cross-entropy loss.

o ef* (@)

fu(@) =Prly =k |z f) =

Log Loss/Cross-entropy loss: Binary case

Let’s start with binary classification again. Consider a model which predicts f (x) as
the probability of label being 1 for labelled datapoint (x, y). The log loss is defined as,

Whe 7
LogLoss =1(y =1)In (f(tv)) +1(y=—1)In (%f(@) y 79{ s
= ~1(y = DIn(f(@) — 1(y = ~1) (1 — f). o o CFOO)

. . . . C=> min L 1] 717)
When the model is linear, this reduces to the logistic regression loss we defined before!

N -
Linean wodeg : OO0 : o (wT) - \fe‘_wﬁc y 1-slwhd = & (—yTy)

l/°2 \oss = - /ﬂ (‘jth LV\((\-\' (uu"l)") A ,u (VT'B 1“\((+ P WTX)'1>

- L
h/\(\ Ly Gw 17 ((Ov(s\’;c 9\&77\%&'9\4 lcgsw

Log Loss/Cross-entropy loss: Multiclass case

This generalizes easily to the multiclass case. For datapoint (x,y), if fi(x) is the
predicted probability of label &,

st - 310 (72

k=1
= EC: 1(y = k)In (ﬁ(w)))-
k=1

When the model is linear, this also reduces to the multiclass logistic regression loss we
defined earlier today.

Log Loss/Cross-entropy loss: Multiclass case

By combining the softmax and the log-loss, we have a general loss £(f(x),y) which
we can use to train a multi-class classification model which assigns scores fi () to the
k-th class. (These scores fi(ax) are sometimes referred to as logits).

C
(f(@)y) = =D 1y = k) (fo(@))
Zke[C] efk(@)

efy ()

k=
= In (
I (1 LY @ h@

k7y

Multiclass logistic loss: Another view

Kol Mt we pralid usivg,

00\2 -y S Fn (7(\

L ($ 6O, =
F 2\ Ui (é 24p (Fz(x\j - ﬂv\(sz(7[”(7(\\

bnc T 24p(Fe(x)) - f, 6O
L2 ce(fN) & mer foc)
-1

\“**f‘a M
o fa) £ g,
Lo 2 (" [(teitc_)ﬂw(-/L(x\w < Y"T\ -F&hb 1 QMQ

LGN & ™Y £ - fy»)

1.8 Other techniques for multiclass classification

Cross-entropy is the most popular, but there are other black-box techniques to convert
multiclass classification to binary classification.

e one-versus-all (one-versus-rest, one-against-all, etc.)
e one-versus-one (all-versus-all, etc.)
e Error-Correcting Output Codes (ECOC)

e tree-based reduction

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k € [C],

1.9 One-versus-all

e relabel examples with class £ as 41, and all others as —1

e train a binary classifier hy using this new dataset

] i B
X1 X1 X1 X1 X1
X2 X2 X2 X2 X2
X3 X3 X3 X3 X3
X4 X4 X4 X4 X4
X5 X5 X5 X5 X5
Y Y Y Y
hy ho h3 hy

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf

1.9 One-versus-all

Idea: train C binary classifiers to learn “is class & or not?” for each k.

Prediction: for a new example x
e ask each hy: does this belong to class k? (i.e. hi(x))

e randomly pick among all k’s s.t. hy(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

Idea: train ((2:) binary classifiers to learn “is class k& or k£'?”.

Training: for each pair (k, k'),

e relabel examples with class k£ as +1 and examples with class k' as —1

e discard all other examples

1.10 One-versus-one

e train a binary classifier /i, ;/) using this new dataset

W vs. Mvs. B Hvs. B | Nvs. Mvs. B | Hvs
X1 X1 X1 X1
X2 X2 X3 Xo -
X3 X3 X | X3
X4 X4 X4 X4
X5 Xs + | X5 + X5

Y Y Y Y U U
”'(1-‘2) h 3) h(z 4 h42) }1'(1.4) h‘(3.2)

Picture credits link

http://rob.schapire.net/talks/ecoc-icml10.pdf

1.10 One-versus-one

Idea: train (g) binary classifiers to learn “is class k or k'?”.

Prediction: for a new example @
e ask each classifier 1, ;) to vote for either class £ or k'

e predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Other techniques such as tree-based methods and error-correcting codes can achieve
intermediate tradeoffs.

Neural Networks

Linear -> Fixed non-linear -> Learned non-linear map

Tre e

Qe\'wOWA o 0
‘LOMA g '\u‘:\

(a«l‘k 2 OO

| |
0 0

Linear models aren’t always enough. As we discussed, we can use a nonlinear mapping
and learn a linear model in the feature space:

d(x):xcRY— 2z e RM
But what kind of nonlinear mapping ¢ should be used?

Can we just learn the nonlinear mapping itself?

Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization: Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.

2.1 Loss function

For model which makes predictions f(a) on labelled datapoint (x,y), we can use the
following losses.

Regression:

Classification:

>okerq ¢ Fr (@)=, (@)
((f(x),y) =In oFy (@) = In 1+Ze v

k#y

There maybe other, more suitable options for the problem at hand, but these are the
most popular for supervised problems.

2.2 Representation: Defining neural networks

Linear model as a one-layer neural network:

For a linear model, h(a) = a.

Activation functions

To create non-linearity, can use some nonlinear (differentiable) function:

Rectified Linear Unit (ReLU): h(a) = max{0, a}

e Sigmoid function: h(a) = —=

14e—@ ' /,' —— Sigmoid
L’ === Tanh
) ed_e— @ —10fmmmmm =T —-= RelU
e Tanh: h(a) = St

-4 -2 0 2 4

o
many more Figure 13.2 from PML

Adding a layer

0, >
1 1
. q .
X9 O = h(W$) “ { \A}] h
X3 ’ O} |
%% Dy

W e R4X3’ h . R4 — R4 SO h(a) r— (hl(al), h2(a/2)7 h3(a’3)7 h4(a’4))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)

"I(O) g ("\(QD’ \/\(°"¢)) "\(0'9,‘/\(0'14\)

Putting things together: a neural network

We now have a network:

each node is called a neuron
h is called the activation function

e can use h(a) = 1 for one neuron in each layer to
incorporate bias term

e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output
layers)

deep neural nets can have many layers and millions of
parameters

this is a feedforward, fully connected neural net, there
are many variants (convolutional nets, residual nets, re-
current nets, etc.)

input layer

hidden layer 1

hidden layer 2

output layer

Neural network: Definition

An L-layer neural net can be written as

f(ac) = h|_ (WLhL—l (WL—l s h1 (WliL‘))) .
: : Wt QG (’)\LVM \ony
fi \V\()(/sk. 9"’[?
Define / G\;ka: .(V(N_-A c,-f ok (o\be)\

o W, € R¥xde-1 g the weights between layer £ — 1 and ¢

e dy =d,dy,...,d_are numbers of neurons at each layer

a; € R% is input to layer ¢

o, € R% is output of layer ¢

e h,:R% — R% is activation functions at layer ¢

input layer hidden layer 1 hidden layer 2 output layer

Now, for a given input @, we have recursive relations:

00:ZB,ae:WgOg_l,Og:hg(ag), (521,...,L).

2.3 Optimization

Our optimization problem is to minimize,
1 n
FWq,..., W)= — FEWq,..., W
(W L) = ; (W L)

where
1f (i) —yll3 for regression

In (1 + Zk#y, efr(@i)—fy; (‘”i)) for classification

(2

F,L'(Wl, .. .,WL) — {
How to solve this? Apply SGD!

To compute the gradient efficiently, we use backpropogation. More on this soon.

2.4 Generalization

Overfitting is a concern for such a complex model, but there are ways to handle it.
For example, we can add /5 regularization.
/5 regularization: minimize

GWy,. .., W) =FWy,..., W) +X > v

all weights w
in network

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
e

Noise: 0

e

Batch size: 10
—

REGENERATE

Epoch

000,066

FEATURES

Which properties do
you want to feed in?

X

sin(X;)

sin(X;)

Learning rate

0.03

+

Demo

Activation Regularization Regularization rate Problem type
RelLU v L2 - 0.001 v Classification -
— 2 HIDDEN LAYERS OUTPUT

1 Test loss 0.013

Training loss 0.006

5

ﬂ
-
p, .

This is the output

from one neuron.

Hover to see it
larger.

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

Colors shows

data, neuron and

weight values.

[Showtestdata [] Discretize output

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Neural Networks:
Diving deeper

3.1 Representation: Very powerful function class!

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous

function. f (1\ t,,{v“f

amdl AN

v . « Vv 3V

ML SNz

[

x

b . T

1t

e e———

~T

\V

3.1 Representation: Very powerful function class!

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous

function.

4"\

f(ﬂ

3.1 Representation: Very powerful function class!

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous
function.

It might need a huge number of neurons though, and depth helps!

Choosing the network architecture is important.

e for feedforward network, need to decide number of hidden layers, number of
neurons at each layer, activation functions, etc.

Designing the architecture can be complicated, though various standard choices exist.

3.2 Optimization: Computing gradients efficiently using Backprop

To run SGD, need gradients of F;(W,..., W) with respect to all the weights in all
the layers. How do we get the gradient?

Here’s a naive way to compute gradients. For some function F'(w) of a univariate
parameter w,

dF (w) — lim Fw+e€)— F(w—¢)
dw e—0 2¢

I(duh nedwenle b, ™ e yht g , Hvs Aegwmhes O(w\)

Lveln s o(\ n\oo(QL,

Backprop

Backpropogation: A very efficient way to compute gradients of neural networks using
an application of the chain rule (similar to dynamic programming).

Chain rule:

e for a composite function f(g(w))

af 8f dg (W—> guﬂ
ow Og Ow
e for a composite function f(g1(w), ..., gq(w))

df 0g;
Z dg; Ow

the simplest example f(g1(w), g2(w)) = g1(w)ga(w)

Naw d\3 .
&'A R ero ¢ .

Backprop: Intuition

input layer hidden layer 1 hidden layer 2 output layer

W00y dein Sl Sopeontdly i w51 ¢
9e08e C)m’\r\«)vi o gn 6-8 S{'O%rct] 9)\(;((1, enkg
wirt ekt tedh baye, (ql\

Backprop: Derivation

Drop the subscript £ for layer for simplicity. For this derivation, refer to the loss
function as F;,, (instead of F};) for convenience.

Find the derivative of I, w.r.t. to w;;

6Fm . 3Fm 8CL7; . aFm 8(wijoj) 8Fm
8’(1]7;]' N 8ai 8wij N 8ai 8wz~j Oa;

0j

8Fm 8Fm 80i o 6Fm aak , B aFm | , |
da; do; Oa; (Zk: dar, 802-) hi(a;) = (Zk: Dar m) hi(a;)

Le v (Z\/\G N \'\0 ko
S'(QQ\Q

Backprop: Derivation

Adding the subscript for layer:

OF,, (OF,,
Oay ; -

For the last layer, for square loss

OFy _ O(hii(ar:) = ym)® /
— 2 ? —— 2 h i i) — m h ; i
6aL,i 604_’@. (L, (04_7) Y) L, (a’L,)

Exercise: try to do it for logistic loss yourself.

We will continue with Backprop next time!

