CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 8, March 8

Administrivia

- HW3 due in less than 3 weeks
- No office hours next week due to spring break
- Project proposals due today on Gradescope \& Google form
- Today's plan:
- Sequential prediction, Markov models, recurrent neural networks, attention \& Transformers
outputs
(optional)

hidden states

Sequence prediction and recurrent neural networks

Acknowledgements

We borrow heavily from:

- Stanford's CS224n: https://web.stanford.edu/class/cs224n/

Sequential prediction

Examples:

- text or speech data
- stock market data
- weather data
- ...

In this lecture, we will mostly focus on text data (language modelling).

Language modelling

Language modelling is the task of predicting what word comes next:

More formally, le X_{i} be the random variable for the i-th word in the sentence, and let x_{i} be the value taken by the random variable. Then the goal is to compute

$$
P\left(X_{t+1} \mid X_{t}=x_{t}, \ldots, X_{1}=x_{1}\right)
$$

A system that does this is known as a Language Model.

Language modelling

We can also think of a Language Model as a system that assigns a probability to a piece of text.
For example, if we have some text x_{1}, \ldots, x_{T}, then the probability of this text (according to the Language Model) is:

$$
\begin{aligned}
P\left(X_{1}=x_{1}, \ldots, X_{T}=x_{T}\right) & =P\left(X_{1}=x_{1}\right) \times P\left(X_{\mathbf{2}}=x_{2} \mid X_{1}=x_{\mathbf{1}}\right) \\
& \times \cdots \times P\left(X_{T}=x_{T} \mid X_{T-1}=x_{T-1}, \ldots, X_{1}=x_{1}\right) \\
& =\Pi_{t=1}^{T} P\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}, \ldots, X_{1}=x_{1}\right) .
\end{aligned}
$$

You use Language Models every day!

\rightarrow	I'll meet you at the							()			
三	cafe				airport				office		
q	[${ }_{\text {W }}$	e		4 r	t	6 y	${ }^{7}$		¢	0	- $\begin{aligned} & 0 \\ & \end{aligned}$
@		S	${ }_{\text {d }}^{\text {d }}$		*	g	$\stackrel{+}{\text { h }}$	j		k	1
已		Z	£ x		c	v	b	n		m	\times
123										13.	-

You use Language Models every day!

Google

```
what is the |
%
what is the weather
what is the meaning of life
what is the dark web
what is the xfl
what is the doomsday clock
what is the weather today
what is the keto diet
what is the american dream
what is the speed of light
what is the bill of rights
```


n-gram Language Models

the students opened their \qquad

- Question: How to learn a Language Model?
- Answer (pre- Deep Learning): learn an n-gram Language Model!
- Definition: An n-gram is a chunk of n consecutive words.
- unigrams: "the", "students", "opened", "their"
- bigrams: "the students", "students opened", "opened their"
- trigrams: "the students opened", "students opened their"
- four-grams: "the students opened their"
- Idea: Collect statistics about how frequent different n-grams are and use these to predict next word.
n-gram language model: A type of Markov model
A Markov model or Markov chain is a sequence of random variables with the Markov property: a sequence of random variables X_{1}, X_{2}, \cdots s.t.

$$
P\left(X_{t+1} \mid X_{1: t}\right)=P\left(X_{t+1} \mid X_{t}\right)
$$

(Markov property)
i.e. the next state only depends on the most recent state (notation $X_{1: t}$ denotes the sequence X_{1}, \ldots, X_{t}). This is a bigram model.

We will consider the following setting:
(S\}) 7
the size of

- All X_{t} 's take value from the same discrete set $\{1, \ldots$
dictionary of all
- $P\left(X_{t+1}=s^{\prime} \mid X_{t}=s\right)=a_{s, s^{\prime}}$, known as transition probability
possible wards
- $P\left(X_{1}=s\right) \rightarrow$ initial probability
- $\left(\left\{\pi_{s}\right\},\left\{a_{s, s^{\prime}}\right\}\right)=(\boldsymbol{\pi}, \boldsymbol{A})$ are parameters of the model $\quad\left(s, s^{\prime}\right)$ entry of A is $a_{s, s}$,

$$
P\left(x_{1}, \ldots, x_{T}\right)=P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdot P\left(x_{3} \mid x_{2}\right) \cdots P\left(x_{T} \mid x_{T-1}\right)
$$

Markov model: examples

- Example 1 (Language model)

States $[S]$ represent a dictionary of words,

$$
a_{\text {ice }, \text { cream }}=P\left(X_{t+1}=\text { cream } \mid X_{t}=\text { ice }\right)
$$

is an example of the transition probability.

- Example 2 (Weather)

States $[S]$ represent weather at each day

$$
a_{\text {sunny,rainy }}=P\left(X_{t+1}=\text { rainy } \mid X_{t}=\text { sunny }\right)
$$

Markov model: Graphical representation

A Markov model is nicely represented as a directed graph

if today is Rainy, tomorrow is $\left\{\begin{array}{l}\text { Rairy, } 70^{\circ} \% \text { prob. } \\ S_{u n n}, 30^{\circ} \% \text { prob. }\end{array}\right.$

Learning Markov models

Now suppose we have observed n sequences of examples:

- $x_{1,1}, \ldots, x_{1, T}$
(raing, sunry,..., Rairy)
- ..
- $x_{i, 1}, \ldots, x_{i, T}$
- . .
- $x_{n, 1}, \ldots, x_{n, T}$
where
- for simplicity we assume each sequence has the same length T
- lower case $x_{i, t}$ represents the value of the random variable $X_{i, t}$

From these observations how do we learn the model parameters $(\boldsymbol{\pi}, \boldsymbol{A})$?

Learning Markov models: MLE

Same story, find the MLE. The log-likelihood of a sequence x_{1}, \ldots, x_{T} is

$$
\begin{aligned}
& \ln P\left(X_{1: T}=x_{1: T}\right) \\
& =\sum_{t=1}^{T} \ln P\left(X_{t}=x_{t} \mid X_{1: t-1}=x_{1: t-1}\right) \\
& \text { (always true) } \\
& =\sum_{t=1}^{T} \ln P\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}\right) \\
& \text { (Markov property) } \\
& P\left(X_{1}=x_{1}\right)=\ln \pi_{x_{1}}+\sum_{t=2}^{T} \ln a_{x_{t-1}, x_{t}} \rightarrow \text { Prob. of transition } \\
& =\mathbb{\pi} \boldsymbol{x}_{\mathbf{1}} \quad=\sum_{s} \mathbb{I}\left[x_{1}=s\right] \ln \pi_{s}+\sum_{s, s^{\prime}}\left(\sum_{t=2}^{T} \mathbb{I}\left[x_{t-1}=s, x_{t}=s^{\prime}\right]\right) \ln a_{s, s^{\prime}}
\end{aligned}
$$

This is over one sequence, can sum over all.

Learning Markov models: MLE

So MLE is

$$
s, s^{\prime} \text { entry is } a_{s, s}
$$

$$
\begin{aligned}
& \underset{\boldsymbol{\pi}, \boldsymbol{A}}{\operatorname{argmax}} \sum_{s}(\# \text { \#initial states with value } s) \ln \pi_{s} \\
& \quad+\sum_{s, s^{\prime}}\left(\# \text { transitions from } s \text { to } s^{\prime}\right) \ln a_{s, s^{\prime}}
\end{aligned}
$$

This is an optimization problem, and can be solved by hand (though we'll skip in class). The solution is:

$$
\begin{aligned}
\pi_{s} & =\frac{\text { \#initial states with value } s}{\text { \#initial states }} \\
a_{s, s^{\prime}} & =\frac{\text { \#transitions from } s \text { to } s^{\prime}}{\# \text { transitions from } s \text { to any state }}
\end{aligned}
$$

Learning Markov models: Another perspective

Let's first look at the transition probabilities. By the Markov assumption,

$$
P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{1}=x_{1}\right)=P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)
$$

Using the definition of conditional probability,

$$
P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)=\frac{P\left(X_{t+1}=x_{t+1}, X_{t}=x_{t}\right)}{P\left(X_{t}=x_{t}\right)}
$$

We can estimate this using data,

$$
\frac{P\left(X_{t+1}=x_{t+1}, X_{t}=x_{t}\right)}{P\left(X_{t}=x_{t}\right)} \approx \frac{\text { \#times }\left(x_{t}, x_{t+1}\right) \text { appears } f \text { \#tservations }}{\# \text { times }\left(x_{t}\right) \text { appears (and is not the last state) }}
$$

The initial state distribution follows similarly,

$$
P\left(X_{1}=s\right) \approx \frac{\text { \#times } s \text { is first state }}{\# \text { sequences }}
$$

Learning Markov models: Example

Suppose we observed the following 2 sequences of length 5

- sunny, sunny rainy, fainy, rainy
- rainy, sunny, sunny, sunny, rainy

Higher-order Markov models

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.
Higher order Markov chains make it a bit more reasonable, e.g.

$$
P\left(X_{t+1} \mid X_{t}, \ldots, X_{1}\right)=P\left(X_{t+1} \mid X_{t}, X_{t-1}\right)
$$

(second-order Markov assumption)

i.e. the current word only depends on the last two words. This is a trigram model, since we need statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a $(n+1)$-gram model):
$P\left(X_{t+1} \mid X_{t}, \ldots, X_{1}\right)=P(X_{t+1} \mid \overbrace{\left.X_{t}, X_{t-1}, \ldots, X_{t-n+2}\right)}^{\text {1лevious } n \text { obsertations }}$ (n-th order Markov assumption) $) ~$

Learning higher order Markov chains is similar, but more expensive.

$$
\begin{aligned}
P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{1}=x_{1}\right) & =P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{t-n+2}=x_{t-n+2}\right) \\
& =\frac{P\left(X_{t+1}=x_{t+1}, X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{t-n+2}=x_{t-n+2}\right)}{P\left(X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{t-n+2}=x_{t-n+2}\right)} \\
& \approx \frac{\operatorname{count}\left(x_{t-n+2}, \ldots, x_{t-1}, x_{t}, x_{t+1}\right) \text { in the data }}{\operatorname{count}\left(x_{t-n+2}, \ldots, x_{t-1}, x_{t}\right) \text { in the data }}
\end{aligned}
$$

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

$$
P(\boldsymbol{w} \mid \text { students opened their })=\frac{\operatorname{count}(\text { students opened their } \boldsymbol{w})}{\text { count(students opened their) }}
$$

For example, suppose that in the corpus:

- "students opened their" occurred 1000 times
- "students opened their books" occurred 400 times
- $\rightarrow P($ books \mid students opened their) $=0.4$
- "students opened their exams" occurred 100 times
- $\rightarrow P$ (exams | students opened their) $=0.1$

Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram Language Models in practice

- You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop
today the \qquad

```
get probability
```

distribution

company	0.153
bank	0.153
price	0.077
italian	0.039
emirate	0.039
	..

Notice that there isn't that much granularity in the distribution, because "today the" doesn't appear too often in corpus. Most two-grams won't appear too often.

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

Generating text with a n-gram Language Model

You can also use a Language Model to generate text
$\omega_{1} \omega_{2} \omega_{3} \neq \begin{aligned} & \text { today the price of gold per ton, while production of shoe }\end{aligned}$
 considered and rejected an imf demand to rebuild depleted european stocks, sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than three words at a time if we want to model language well.

However, larger n increases model size and requires too much data to learn

How to build a neural Language Model?

- Recall the Language Modeling task: g.v. \& the value
- Input: sequence of words $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(t)}$ it takes
- Output: prob dist of the next word $P\left(\boldsymbol{x}^{(t+1)} \mid \boldsymbol{x}^{(t)}, \ldots, \boldsymbol{x}^{(1)}\right)$
- How about a window-based neural model?

A fixed-window neural Language Model

Use a fixed window of previous words, and train a vanilla fully-connected neural network to predict the next word? \rightarrow This is a standard supervised leaning task.
Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding

Suppose vocabulary is of size s
'the' $=[1,0,0, \ldots 0] \rightarrow 5$. dim vector
'students' $=[0,1,0, \ldots 0] \rightarrow s$ - dim veatior
(1) high-dimensional
(2) each representation is onthoyoral, even similar words have orthogonal representations

Approach 2: word embeddings/word vectors

Word embeddings/vectors

A word embedding is a (dense) mapping from words, to vector representations of the words.
Ideally, this mapping has the property that words similar in meaning have representations which are close to each other in the vector space.
need help
You'll see a simple way to construct these in HW4.

A fixed-window neural Language Model

 came arditecture
 as in \(\mathrm{YNW}_{3}\)
 output distribution
 $\hat{\boldsymbol{y}}=\operatorname{softmax}\left(\boldsymbol{U} \boldsymbol{h}+\boldsymbol{b}_{2}\right) \in \mathbb{R}^{|V|}$
hidden layer
$\boldsymbol{h}=f\left(\boldsymbol{W} \boldsymbol{e}+\boldsymbol{b}_{1}\right)$
f : non-linearity (RelV)
concatenated word embeddings
$\boldsymbol{e}=\underbrace{\left[\boldsymbol{e}^{(1)}\right.} ; \boldsymbol{e}^{(2)} ; \boldsymbol{e}^{(3)} ; \boldsymbol{e}^{(4)}]$
suppose eachis 10 -dim
words / one-hot vectors
$\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}, \boldsymbol{x}^{(4)}$

Slide adapted from CS224n by Chris Manning (Lecture 5)

The problem with this architecture

- Uses a fixed window, which can be too small.
- Enlarging this window will enlarge the size of the weight matrix \boldsymbol{W}.
- The inputs $x^{(\mathbf{1)}}$ and $x^{(2)}$ are multiplied by completely different weights in \boldsymbol{W}.
No symmetry in how inputs are processed!

As with CNNs for images before, we need an architecture which has similar symmetries as the data.

In this case, can we have an architecture that can process any input length?

Recurrent Neural Networks (RNN)

A family of neural architectures

Core idea: Apply the same weights W repeatedly similar to filters

A Simple RNN Language Model

$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

hidden states
$\boldsymbol{h}^{(t)}=\sigma\left(\boldsymbol{W}_{h} \boldsymbol{h}^{(t-1)}+\boldsymbol{W}_{e} \boldsymbol{e}^{(t)}+\boldsymbol{b}_{1}\right)$
$\boldsymbol{h}^{(0)}$ is the initial hidden state
6: Activation (ReLU)
word embeddings

$$
\boldsymbol{e}^{(t)}=\boldsymbol{E} \boldsymbol{x}^{(t)}
$$

isth column is embedding for ith-word words / one-hot vectors

$$
\boldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}
$$

$\boldsymbol{x}^{(1)}$
students
$\boldsymbol{x}^{(2)}$

Slide adapted from CS224n by Chris Manning (Lecture 5)

Training an RNN Language Model

- Get a big corpus of text which is a sequence of words $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(T)}$
- Feed into RNN-LM; compute output distribution $\hat{\boldsymbol{y}}^{(t)}$ for every step t.
- i.e. predict probability dist of every word, given words so far
- Loss function on step t is cross-entropy between predicted probability distribution $\hat{\boldsymbol{y}}^{(t)}$, and the true next word $\boldsymbol{y}^{(t)}$ (one-hot for $\boldsymbol{x}^{(t+1)}$):

$$
J^{(t)}(\theta)=C E\left(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}\right)=-\sum_{w \in V} \boldsymbol{y}_{w}^{(t)} \log \hat{\boldsymbol{y}}_{w}^{(t)}=-\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}
$$

- Average this to get overall loss for entire training set:

$$
J(\theta)=\frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)=\frac{1}{T} \sum_{t=1}^{T}-\log \hat{\boldsymbol{y}}_{x_{t+1}}^{(t)}
$$

Training an RNN Language Model

Slide adapted from CS224n by Chris

Training an RNN Language Model

Slide adapted from CS224n by Chris

Training an RNN Language Model

Slide adapted from CS224n by Chris

Training an RNN Language Model

Slide adapted from CS224n by Chris

Training an RNN Language Model

"Teacher forcing"

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to generate text by repeated sampling. Sampled output becomes next step's input.

Transformers

The problem with recurrence

1. Must always compress all necessary information into one hidden state representation
2. Cannot capture long-range dependencies in input ("vanishing gradients problem")

Inputs from sufficiently far away do not contribute to hidden state representation:

Suppose

$$
\boldsymbol{W}=\left(\begin{array}{cc}
0.8 & 0.2 \\
-0.6 & 0.9
\end{array}\right)
$$

Then

$$
\boldsymbol{W}^{5}=\left(\begin{array}{cc}
-0.31 & 0.35 \\
-1.06 & -0.13
\end{array}\right), \quad \boldsymbol{W}^{10}=\left(\begin{array}{cc}
-0.28 & -0.16 \\
0.47 & -0.36
\end{array}\right), \quad \boldsymbol{W}^{50}=\left(\begin{array}{cc}
0.01 & 0.00 \\
-0.01 & 0.01
\end{array}\right)
$$

A solution: Attention

Attention Is All You Need

$5 C$	Ashish Vaswani* Google Brain avaswani@google.com	Noam Shazeer* Google Brain noam@google.com	Niki Parmar* Google Research nikip@google.com	Jakob Uszkoreit* Google Research usz@google.com
	Llion Jones* Google Research llion@google.com	Aidan N. Gom University of Tor aidan@cs.toront	lukaszk	Kaiser* Brain @google.c

Illia Polosukhin ${ }^{*} \ddagger$
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature

Starting point: Averaging word representations

Attention: Weighted averaging

Attention: Weighted averaging

Attention: Weighted averaging

Self-attention

Attention as soft lookup

Attention: match query q to keys $k 1, k 2, \ldots, k 5$ to get weights between 0 and 1. Sum up values corresponding to each key with respective weight

Lookup: find query in database, return value corresponding to its key

Self-attention

How to get k, q, v ?

$$
\begin{aligned}
& q^{(5)}=Q x^{(5)} \\
& k^{(5)}=K x^{(5)} \\
& v^{(5)}=V x^{(5)}
\end{aligned}
$$

$$
\alpha, k, v \in \mathbb{R}^{d+d}
$$

Self-attention in matrix form

1. Transform each word embedding with weight matrices $\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}$, each in $\mathbb{R}^{d \times d}$

$$
\begin{aligned}
& \boldsymbol{q}_{i}=\boldsymbol{Q} \boldsymbol{x}_{i} \\
& \boldsymbol{k}_{i} \text { (queries) } \\
& \boldsymbol{v}_{i}=\boldsymbol{V} \boldsymbol{x}_{i} \\
&(\text { keys }) \\
&(\text { values })
\end{aligned}
$$

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$
\begin{aligned}
\alpha_{i j} & =\boldsymbol{q}_{i}^{\top} \boldsymbol{k}_{j} \\
w_{i j} & =\frac{\exp \left(\alpha_{i j}\right)}{\sum_{j^{\prime}} \exp \left(\alpha_{i j^{\prime}}\right)}
\end{aligned}
$$

3. Compute output for each word as weighted sum of values

$$
\boldsymbol{o}_{i}=\sum_{j} w_{i j} \boldsymbol{v}_{j}
$$

Multi headed self-attention

Attention head 2

$x^{(1)}$

$x^{(3)}$

$x^{(4)}$

$x^{(5)}$

Multi headed self-attention

- Input: List of vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$, each of size d
- Output: List of vectors $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{T}$, each of size d
- Formula: For each head i :
- Compute self attention output using $\boldsymbol{Q}_{i}, \boldsymbol{K}_{i}, \boldsymbol{V}_{i}$
- Finally, concatenate results for all heads
- Parameters:
- For each head i, parameter matrices $\boldsymbol{Q}_{i}, \boldsymbol{K}_{i}, \boldsymbol{V}_{i}$ of size $d_{\text {attn }} \times d$
- \# of heads n is hyperparameter, $d_{\text {attn }}=d / n$

What do attention heads learn?

A Multiscale Visualization of Attention in the Transformer Model, Vig 2019

