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Administrivia

• HW3 due in less than 3 weeks
• No office hours next week due to spring break
• Project proposals due today on Gradescope & Google form

• Today’s plan:
• Sequential prediction, Markov models, recurrent neural networks, 

attention & Transformers



Sequence prediction 
and recurrent neural networks



We borrow heavily from:

• Stanford’s CS224n: https://web.stanford.edu/class/cs224n/
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Sequential prediction

Given observations !!, !", … , !#$! what is !#?

Examples:

• text or speech data
• stock market data
• weather data
• …

In this lecture, we will mostly focus on text data (language modelling).



Language modelling
Language modelling is the task of predicting what word comes next:

More formally, let Xi be the random variable for the i-th word in the sentence, and let
xi be the value taken by the random variable. Then the goal is to compute

P (Xt+1|Xt = xt, . . . , X1 = x1).

A system that does this is known as a Language Model.

Slide adapted from CS224n by Chris Manning (Lecture 5)



Language modelling

We can also think of a Language Model as a system that assigns a probability to a piece of text.

For example, if we have some text x1, . . . , xT , then the probability of this text (according to the
Language Model) is:

P (X1 = x1, . . . , XT = xT ) = P (X1 = x1)× P (X1 = x2|X2 = x2)

× · · ·× P (XT = xT |XT−1 = xT−1, . . . , X1 = x1)

= ΠT

t=1P (Xt = xt|Xt−1 = xt−1, . . . , X1 = x1).

Slide adapted from CS224n by Chris Manning (Lecture 5)



You use Language Models every day!

21 Slide adapted from CS224n by Chris Manning (Lecture 5)



You use Language Models every day!

22 Slide adapted from CS224n by Chris Manning (Lecture 5)



n-gram Language Models

the students opened their  ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to 
predict next word.

23 Slide adapted from CS224n by Chris Manning (Lecture 5)



A Markov model or Markov chain is a sequence of random variables with the Markov

property: a sequence of random variables X1, X2, · · · s.t.

P (Xt+1 | X1:t) = P (Xt+1 | Xt) (Markov property)

i.e. the next state only depends on the most recent state (notation X1:t denotes the
sequence X1, . . . , Xt). This is a bigram model.

We will consider the following setting:

• All Xt’s take value from the same discrete set {1, . . . , S}

• P (Xt+1 = s′ | Xt = s) = as,s′ , known as transition probability

• P (X1 = s) = πs

• ({πs}, {as,s′}) = (π,A) are parameters of the model

!-gram language model: A type of Markov model



• Example 1 (Language model)
States [S] represent a dictionary of words,

aice,cream = P (Xt+1 = cream | Xt = ice)

is an example of the transition probability.

• Example 2 (Weather)
States [S] represent weather at each day

asunny,rainy = P (Xt+1 = rainy | Xt = sunny)

Markov model: examples



Markov model: Graphical representation

A Markov model is nicely represented as a directed graph



Now suppose we have observed n sequences of examples:

• x1,1, . . . , x1,T

• · · ·

• xi,1, . . . , xi,T

• · · ·

• xn,1, . . . , xn,T

where

• for simplicity we assume each sequence has the same length T

• lower case xi,t represents the value of the random variable Xi,t

From these observations how do we learn the model parameters (π,A)?

Learning Markov models



Same story, find the MLE. The log-likelihood of a sequence x1, . . . , xT is

lnP (X1:T = x1:T )

=
T
∑

t=1

lnP (Xt = xt | X1:t−1 = x1:t−1) (always true)

=
T
∑

t=1

lnP (Xt = xt | Xt−1 = xt−1) (Markov property)

= lnπx1
+

T
∑

t=2

ln axt−1,xt

=
∑

s

I[x1 = s] lnπs +
∑

s,s′

(

T
∑

t=2

I[xt−1 = s, xt = s′]

)

ln as,s′

Learning Markov models: MLE



So MLE is

argmax
π,A

∑

s

(#initial states with value s) lnπs

+
∑

s,s′

(#transitions from s to s
′) ln as,s′

This is an optimization problem, and can be solved by hand (though we’ll skip in class).
The solution is:

πs =
#initial states with value s

#initial states

as,s′ =
#transitions from s to s

′

#transitions from s to any state

Learning Markov models: MLE



Let’s first look at the transition probabilities. By the Markov assumption,

P (Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) = P (Xt+1 = xt+1 | Xt = xt)

Using the definition of conditional probability,

P (Xt+1 = xt+1 | Xt = xt) =
P (Xt+1 = xt+1, Xt = xt)

P (Xt = xt)

We can estimate this using data,

P (Xt+1 = xt+1, Xt = xt)

P (Xt = xt)
≈

#times (xt, xt+1) appears

# times (xt) appears (and is not the last state)

The initial state distribution follows similarly,

P (X1 = s) ≈
#times s is first state

#sequences

Learning Markov models: Another perspective



Suppose we observed the following 2 sequences of length 5

• sunny, sunny, rainy, rainy, rainy
• rainy, sunny, sunny, sunny, rainy

Learning Markov models: Example



Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.

Higher order Markov chains make it a bit more reasonable, e.g.

P (Xt+1 | Xt, . . . , X1) = P (Xt+1 | Xt, Xt−1) (second-order Markov assumption)

i.e. the current word only depends on the last two words. This is a trigram model, since we need
statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a
(n+ 1)-gram model):

P (Xt+1 | Xt, . . . , X1) = P (Xt+1 | Xt, Xt−1, . . . , Xt−n+2) (n-th order Markov assumption)

Learning higher order Markov chains is similar, but more expensive.

P (Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) = P (Xt+1 = xt+1 | Xt = xt, Xt−1 = xt−1, . . . , Xt−n+2 = xt−n+2)

=
P (Xt+1 = xt+1, Xt = xt, Xt−1 = xt−1, . . . , Xt−n+2 = xt−n+2)

P (Xt = xt, Xt−1 = xt−1, . . . , Xt−n+2 = xt−n+2)

≈
count(xt−n+2, . . . , xt−1, xt, xt+1) in the data

count(xt−n+2, . . . , xt−1, xt) in the data

Higher-order Markov models



n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have discarded 
the “proctor” context?

25 Slide adapted from CS224n by Chris Manning (Lecture 5)



n-gram Language Models in practice

• You can build a simple trigram Language Model over a 
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability 
distribution

Sparsity problem: 
not much granularity 

in the probability 
distribution

Business and financial news

28

Notice that there isn’t that much granularity in the distribution,
because “today the” doesn’t appear too often in corpus. 
Most two-grams won’t appear too often.

Slide adapted from CS224n by Chris Manning (Lecture 5)



Generating text with a n-gram Language Model

29

You can also use a Language Model to generate text

today the _______

condition 
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability 
distribution

sample

Slide adapted from CS224n by Chris Manning (Lecture 5)



Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price _______

condition 
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability 
distribution

sample

30 Slide adapted from CS224n by Chris Manning (Lecture 5)



Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of _______

condition 
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability 
distribution

sample

31 Slide adapted from CS224n by Chris Manning (Lecture 5)



Generating text with a n-gram Language Model

32

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than 
three words at a time if we want to model language well.

But increasing n worsens sparsity problem, 
and increases model size…

However, larger ! increases model size and requires too much data to learn

Slide adapted from CS224n by Chris Manning (Lecture 5)



How to build a neural Language Model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word 

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 3:

33
in Paris are amazingmuseums

LOCATION

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window

34 Slide adapted from CS224n by Chris Manning (Lecture 5)

Use a fixed window of previous words, and train a vanilla fully-connected 
neural network to predict the next word?

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding

Approach 2: word embeddings/word vectors



Word embeddings/vectors

Slide adapted from CS224n by Chris Manning (Lecture 1)

A word embedding is a (dense) mapping from words, to vector representations of the words. 

Ideally, this mapping has the property that words similar in meaning have representations which 
are close to each other in the vector space.

You’ll see a simple way to construct these in HW4.



A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors 

hidden layer

a zoo

output distribution 

35 Slide adapted from CS224n by Chris Manning (Lecture 5)



The problem with this architecture

• Uses a fixed window, which can be too small. 
• Enlarging this window will enlarge the size of 

the weight matrix $.
• The inputs &(&) and &(() are multiplied by 

completely different weights in $.
No symmetry in how inputs are processed!

As with CNNs for images before, we need an 
architecture which has similar symmetries as the 
data.

In this case, can we have an architecture that 
can process any input length?

Slide adapted from CS224n by Chris Manning (Lecture 5)



Recurrent Neural Networks (RNN)

hidden states 

input sequence 
(any length)

…

…

…

Core idea: Apply the same 
weights % repeatedlyA family of neural architectures

37

outputs 
(optional)

Slide adapted from CS224n by Chris Manning (Lecture 5)



A Simple RNN Language Model

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings

a zoo

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state

38

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution         for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:

40 Slide adapted from CS224n by Chris Manning (Lecture 5)



Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

41

Predicted 
prob dists

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

42

Predicted 
prob dists

= negative log prob
of “opened”

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

43

Predicted 
prob dists

= negative log prob
of “their”

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

44

Predicted 
prob dists

= negative log prob
of “exams”

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Training an RNN Language Model

+                  +                   +                  + …      =

the students opened their …exams

…

45

Corpus

Loss

Predicted 
prob dists

“Teacher forcing”

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)

How to train this?
Backprop + SGD



Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model to 
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season is

…

sample

favorite
sample

season
sample

is
sample

spring

spring51

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Transformers



The problem with recurrence

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

" " " "
1. Must always compress all 
necessary information into one 
hidden state representation

2. Cannot capture long-range 
dependencies in input (“vanishing 
gradients problem”)

W =

(

0.8 0.2

−0.6 0.9

)

W
5
=

(

−0.31 0.35

−1.06 −0.13

)

, W
10

=

(

−0.28 −0.16

0.47 −0.36

)

, W
50

=

(

0.01 0.00

−0.01 0.01

)

Suppose

Then

Inputs from sufficiently far away do not contribute to hidden state representation:



A solution: Attention



Starting point: Averaging word representations

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

Adding together/averaging the 
representations of all words in sentence will 
give a representation of the sentence



Attention: Weighted averaging

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

#(") #($) #(%) #(&) #(') $

pineapple
$



Attention: Weighted averaging

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

pineapple
$

#(") #($) #(%) #(&) #(') $



Attention: Weighted averaging

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

pineapple
$

#(") #($) #(%) #(&) #(') $

%



Attention: Weighted averaging

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

pineapple
$

-0.3 0.8 0.2 2 1.5

0.04 0.14 0.07 0.46 0.29

0.04 * + 0.14 * + 0.07 * + 0.46 * + 0.29 * =

#(") #($) #(%) #(&) #(') $

%#(") #($) #(%) #(&) #(')



Self-attention

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

%(") %($) %(%) %(&) %(')



Attention as soft lookup

Attention: match query q to keys 
k1, k2, …, k5 to get weights 
between 0 and 1. Sum up values 
corresponding to each key with 
respective weight

Lookup: find query in database, 
return value corresponding to its key

Slide adapted from 
CS224n by Chris 

Manning



Self-attention

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

$(") $($) $(%) $(&) $(')

&(") &($) &(%) &(&) &(')

0.1 1 -0.2 0.8 1

0.12 0.28 0.09 0.23 0.28

0.12 * + 0.28 * + 0.09 * + 0.23 * + 0.28 * =

'(") '($) '(%) '(&) '(') %(")



Self-attention in matrix form
1. Transform each word embedding with weight matrices Q, K, V , each in Rd×d

qi = Qxi (queries)

ki = Kxi (keys)

vi = V xi (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

αij = q"
i kj

wij =
exp(αij)∑
j′ exp(αij′)

3. Compute output for each word as weighted sum of values

oi =
∑

j

wijvj



Multi headed self-attention

!(") !($) !(%) !(&) !(')

%(",") %(",$) %(",%) %(",&) %(",')

Attention head 1

%($,") %($,$) %($,%) %($,&) %($,')

Attention head 2

Concatenate both

%(",") %(",$) %(",%) %(",&) %(",')



Multi headed self-attention

• Input: List of vectors x1, . . . ,xT , each of size d

• Output: List of vectors h1, . . . ,hT , each of size d

• Formula: For each head i:

– Compute self attention output using Qi, Ki, V i

– Finally, concatenate results for all heads

• Parameters:

– For each head i, parameter matrices Qi, Ki, V i of size dattn × d

– # of heads n is hyperparameter, dattn = d/n



What do attention heads learn?

A Multiscale Visualization of Attention in the Transformer Model, Vig 2019


