CSCI 567: Machine Learning

Vatsal Sharan
Spring 2024

Lecture 8, March 8

Sylzz

=T
_—

USCUniversity of

Southern California

Administrivia

HW3 due in less than 3 weeks
No office hours next week due to spring break
Project proposals due today on Gradescope & Google form

Today’s plan:
 Sequential prediction, Markov models, recurrent neural networks,
attention & Transformers

Sequence prediction
and recurrent neural networks

Acknowledgements

We borrow heavily from:

e Stanford’s CS224n: https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Sequential prediction

ol sudpd”

Given observations x4, x5, ..., X;_1 What is x;?
Examples:
* text or speech data

* stock market data
 weather data

In this lecture, we will mostly focus on text data (language modelling).

Language modelling

Language modelling is the task of predicting what word comes next:

books
the students opened their /‘/ laptops
h s dorn €58 nthe \ exams
7 Copkent €, u»vi'@"‘1 ot minds

More formally, le@e the random variable for the ¢-th word in the sentence, and let
x; be the value taken by the random variable. Then the goal is to compute

P<Xt-|—1|Xt — Tty - - 7X1 — 371)-
A system that does this is known as a Language Model.

Slide adapted from CS224n by Chris Manning (Lecture 5)

Language modelling

We can also think of a Language Model as a system that assigns a probability to a piece of text.

For example, if we have some text x1,...,xr, then the probability of this text (according to the
Language Model) is:

P(Xl :ajlw”aXT:xT) :P(Xl :33'1) XP(XL: Qfg‘Xt :.Tj)

X oo X P(XT :ZIZ‘T|XT_1 :ﬂjT_l,...,Xl :xl)
= P(X¢ = 2| X1 = 241, ..., X1 = 21).

Slide adapted from CS224n by Chris Manning (Lecture 5)

You use Language Models every day!

e I'll meet you at the @ >

airport

Slide adapted from CS224n by Chris Manning (Lecture 5)

You use Language Models every day!

Google

-(.

what is the |

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky

Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram Language Models

the students opened their

* Question: How to learn a Language Model?
e Answer (pre- Deep Learning): learn an n-gram Language Model!

e Definition: An n-gram is a chunk of n consecutive words.
* unigrams: “the”, “students”, “opened”, "their”
* bigrams: “the students”, “students opened”, “opened their”
e trigrams: “the students opened”, “students opened their”
e four-grams: “the students opened their”

e Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram language model: A type of Markov model

A Markov model or Markov chain is a sequence of random variables with the Markov
property: a sequence of random variables X, Xo, - - - s.t.

P(Xiy1 | X1:4) = P(X421 | Xo) (Markov property)

1.e. the next state only depends on the most recent state (notation X.; denotes the
sequence X1, ..., X;). This is a bigram model.

We will consider the following setting:

e sine 06
e All X,’s take value from the same discrete set {1, ... @)77 AX«HN\oo\y of

Qossible (s,
o P(Xi41=5"1]Xy=s)=as,known as transition probability e

° P(Xl = S) :@_& .\r\;cvl Mvét'ﬁ’hp

o ({ms},{ass}) = (mw, A) are parameters of the model C S ") edry df A s %es!

PC Xy, %) = PCXC) PL %) x0). Plxs) sy - ﬂ’(THT-')

Markov model: examples

e Example 1 (Language model)
States |S] represent a dictionary of words,

Gice cream = L (Xi41 = cream | X = ice)

is an example of the transition probability.

e Example 2 (Weather)
States [.S] represent weather at each day

a P(Xt41 = rainy | X; = sunny)

sunny,rainy —

Markov model: Graphical representation

A Markov model is nicely represented as a directed graph

Rairy) 607 pack.
Suv\ma' Uo'r. M

Learning Markov models

Now suppose we have observed n sequences of examples:

® Ti1,...,T1T (hawmy, Sulng ..o va\
® --- '
I
® ity X5 T /
® .-
® Tnily---yTn,T
where

e for simplicity we assume each sequence has the same length 7'

e lower case x; ; represents the value of the random variable X ;

From these observations how do we learn the model parameters (7w, A)?

Learning Markov models: MLE

Same story, find the MLE. The log-likelihood of a sequence x1, . .

In P(X1.7 = 1.7)

T
Zl P(Xt—$t|X1t 1= T1:¢— 1)
t=1

T
Zl P(Xt—il?t|Xt 1 — Tt— 1)
t=1

T foh - Froms
&)y 7 Bk of b

£-(

Oveh ene Sag Lenc Q, Can

., LT 1S

(always true)

(Markov property)

F’ ont v

1L’\ovvx T, > ¢

Learning Markov models: MLE

§,s enthy 75 ag g

argma/z‘:(#initial states with value s) In 7

™, A o

So MLE is

+ Z(#transitions from s to s’) In Qs, s’

s,s’

This 1s an optimization problem, and can be solved by hand (though we’ll skip in class).
The solution is:

B #initial states with value s

#1initial states
#transitions from s to s’

g g/ = L.
#transitions from s to any state

Learning Markov models: Another perspective

Let’s first look at the transition probabilities. By the Markov assumption,
PXip1 =21 | Xe =24y, Xh =21) = P(Xyq1 = 2441 | Xy =)
Using the definition of conditional probability,

P(Xt+1 = Tyq1, Xy = xt)

P(Xt+1 = Tt+1 ‘ Xy = CCt) =

P(X: = xy)
We can estimate this using data,
P(Xi11 =401, Xy = 1) - #times (x¢, T4 1) appears ,‘H’U;SU\VQE'Q)'\S
P(X; = xy) # times (z;) appears (and is not the last state) | st val oo

The initial state distribution follows similarly,

#times s 1s first state
P(Xl = S) ~

#sequences

Learning Markov models: Example

Suppose we observed the following 2 sequences of length 5

Higher-order Markov models

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.
Higher order Markov chains make it a bit more reasonable, e.g.
P(Xiq1 | Xtyoo oy Xh) = P(Xpg1 | X, Xi—1) (second-order Markov assumption)

1.e. the current word only depends on the last two words. This is a frigram model, since we need
statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a
(n + 1)-gram model): [heVAUS n sbgeniabong

/—/vﬁ

P(X1 | Xeyoo o, X1) = P(Xa1 | X4, Xi—1, .- -, X4—na2) (n-th order Markov assumption)

Learning higher order Markov chains is similar, but more expensive.

P(Xt+1 = Tt+1 ’ Xt = Tty..- ,Xl = 5131) = P(Xt+1 = Tt+1 ’ Xt = T¢, Xt—l = Tt—1y--- 7Xt—n—{—2 = xt_n+2)
. P(Xt+1 = X441, Xt = X4, X4o1 = Tp—1, .o, Xp—pg2 = CBt—n+2)
N P(Xt =24, X4 1 = Tp—1,. 0o, Xpmpy2 = CUt—n+2)
N count(T¢_p19,...,Ti_1,Tt, Tey1) in the data

{

count(x¢_p12,...,Tt_1,x¢) in the data

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

-as-ﬁhe-p#oeﬁo#-ﬁaﬁed-ﬁhe-ebebﬁrestudents opened the/r

discard

condltlon on this

count(students opened their w)

P(w/|students opened their) =
(wlstudents open ir) count(students opened their)

For example, suppose that in the corpus:

e “students opened their” occurred 1000 times

e “students opened their books” occurred 400 times
e = P(books | students opened their) = 0.4 Should we have discarded

e “students opened their exams” occurred 100 times the “proctor” context?

* = P(exams | students opened their) =

J
Slide adapted from CS224n by Chris Manning (Lecture 5)

n-gram Language Models in practice

* You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop

Business and financial news

today the

get probability

distribution
E::iany — Notice that there isn’t that much granularity in the distribution,
price 0.077 because “today the” doesn’t appear too often in corpus.
italian 0.039 Most two-grams won’t appear too often.
emirate 0.039

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the
"

Condlthn get probability
on th|5 distribution

company ©.153
bank 9.153

price 0.077

italian ©.039
emirate 0.039

Lampm

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price
Cond |t|0n get probability
on this distribution

"o‘c 0.308 sample
for 0.050

it 0.046

to 0.046

is 0.031

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of
——
Condltlon get probability

on this distribution
the 0.072
18 9.043
0il 9.043
its 9.036
|gold 0.018 sample

Slide adapted from CS224n by Chris Manning (Lecture 5)

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of gold per ton, while production of shoe
= Jasts and shoe industry , the bank intervened just after it
/ considered and rejected an imf demand to rebuild depleted

w\ \”2_ \U%

european stocks , sept 30 end primary 76 cts a share .

2 Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

However, larger n increases model size and requires too much data to learn

Slide adapted from CS224n by Chris Manning (Lecture 5)

How to build a neural Language Model?

(€
L Aeon B Gt
* Recall the Language Modeling task: S%v. U e vdve
e Input: sequence of words =), 2 ... z® / ‘« takes

e Output: prob dist of the next word Pz | ® . .. &)

e How about a window-based neural model?

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

A fixed-window neural Language Model

YS—————tfre———proctor—stortet—tire———cfoclh {he students opened thei5

. Y
discard fixed window

Use a fixed window of previous words, and train a vanilla fully-connected
: 5 . ‘
neural network to predict the next word? 5 Ty (s o Skandend Sup owlzed

aw\;yy trske |

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding

@ Wa'm -»UWGV\ St aw,&

Sypese Vowjhuim2 PN ¢ Z3e (g) odlenq
. ’ lady) P\%M ‘ 'S
‘khe <): ‘l 0/ O/"' Oj S- 4 v Q’\k(aoxawax() QQ ﬂ\;\o\h and
| , v S WS

\ ‘ c - K
shdends < T o1, 0,...) 5 s- dkm Vehs have W9thoy ovald Sepustntakone

Approach 2: word embeddings/word vectors

Slide adapted from CS224n by Chris Manning (Lecture 5)

Word embeddings/vectors

A word embedding is a (dense) mapping from words, to vector representations of the words.

Ideally, this mapping has the property that words similar in meaning have representations which
are close to each other in the vector space.

You’ll see a simple way to construct these in HW4.

(0286)

0.792 qive keey
-0.177 make get
-0.107
expect = 0.109
-0.542
0.349
0.271

_ 0.487 Y,

continue

ecome

remall

'O'CU\M Y\Qa}bta’ \HG’\Q Wergas
e simlon W P

M Qona
Slide adapted from CS224n by Chris Manning (Lecture 1) have

A fixed-window neural Language Model

. Q
. ADNAF*\ﬁ!JG*T\

Lo AWy
w
0% * output distribution

7y = softmax(Uh + by) € RIV!

hidden layer
h=f(We+b)

+; non- \‘mzomlha C Lel\)
concatenated word embeddings
e — [e(l); 6(2); 6(3); 6(4)]
-

lfpoSe tadns (O -dLm

words / one-hot vectors
w(l),m(2>, $(3), (%)

books
laptops
a R @a dh wals \n
(e00000000000|
A
w

(0000 0000 0000 0000

the students opened their
2(1) 7(2) 2(3) %)

Slide adapted from CS224n by Chris Manning (Lecture 5)

The problem with this architecture

books

* Uses a fixed window, which can be too small. laptops
e Enlarging this window will enlarge the size of
the weight matrix W. Mﬂ
« The inputs x(D and x@® are multiplied by : 200
completely different weights in W. U
No symmetry in how inputs are processed! (ee00c0c00000)
As with CNNs for images before, we need an %4

architecture which has similar symmetries as the (0000 0000 0000 ©000)

]

In this case, can we have an architecture that the students opened their
can process any input length?) x?) x®) x®)

Slide adapted from CS224n by Chris Manning (Lecture 5)

Recurrent Neural Networks (RNN) Core idea: Apply the same

A family of neural architectures weights W repeatedly
sidles, by {ittene
outputs ~(3) ~(4)
(optional) { Y Y
h3) h®)
@ @
hidden states : w > : W >
@ @
input sequence T T
P { 2(3) ey

(any length)

Slide adapted from CS224n by Chris Manning (Lecture 5)

A Simple RNN Language Model

output distribution

g = softmax <Uh(t) + b2> e RV

hidden states

h® — & (Whh(t—l) + W.e® + b1)

h() is the initial hidden state

€ - hebivakom (%W\M

1 |

word embeddings
et — Bp® d

i

7

“th cdluwn e am\ﬂda(iha f’m—\ - wo’JL

words / one-hot vectors
x® c RIVI

g = P(x®|the students opened their)

books

laptops

QA

U
h() h3) h4)
) ("])
1ol Wr |@| Wr |@®
1@ 1@ 1@
) ("])
— — —
W, W, 11
. 7.1 r—.—\ r—.—\
1| © 2| @ 3)| @ | @
e“le| ¢ ’le| ¢ lo| € eo
5) o) o))
7 I A

the students

2

2(2)

Note: this input sequence could be much
longer now!

/

opened their

2(3)

2@

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

Training an RNN Language Model

e Get a big corpus of text which is a sequence of words =) ... x(T)
e Feed into RNN-LM; compute output distribution Q(t) for every step t.
* j.e. predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution §(*), and the true next word y® (one-hot for z(*+1):

JD6) =CE@®,5") = - > ¢ log g = —logg)

ymt+1
weV

e Average this to get overall loss for entire training set:

1 — 1 —
J0) =72, 700) = 72 ~logda,
t=1

t=1

Slide adapted from CS224n by Chris Manning (Lecture 5)

Training an RNN Language Model

= negative log prob
of “students”

Loss — [J((9) J2) () J3)(6) J® ()
T T N N
Predicted ’Q(l) g(z) Q(3) ,g(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
() () () @
Wh\. Wh\. Wh\. Wh\. Wh\
1@ | @ | @ | @ :
() () () @
e 7 e N
W, W, W, W,
(1) 2)| © 3) © 4)| ©
e o e o e o e o
@) @) @) @)
= Tz & s
Corpus —> the students opened their exams
2(1) 2(2) (3) %)

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

Training an RNN Language Model

= negative log prob

of “opened”
Loss — JM(9) J2) () J3)(6) J® ()
T T N N
Predicted . ?)(1) g(z) g(3) 'g(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
o o o o
W, R el W, | @ Wy, | @ Wi, |1 ® Wi, R
1@ 1@ 1@ 1@ g
o (] o o
e 7 e N
W, W, W, W,
(1) 2)| © 3) © 4)| ©
e’lel ¢ le| ¢ lo| ¢ le
@) @) @) o
e & & o
Corpus =—> the students opened their exams
2(1) 2(2) (3) (4

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

Training an RNN Language Model

= negative log prob
of “their”

Loss —— J)(h) J2)(6) J3)(6) J1(6)

T T N N
Predicted ’Q(l) g(z) Q(3) ,g(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
@ () @ ()
Wi 1@ W, (@ Wh |@| Wr |@]| Wi
1@ 1@ 1@ 1@ -
@ () @ ()
N A = A
W, W, W, W,
(1) 2)| © 3| O 4) ©
e’lo| el “le|l e
© (@ @ o
Te T T8 Tz
. Slide adapted from
Corpus =—> the students opened their exams :
2(1) 2 (2) 2(3) 24 CS224n by Chris

Manning (Lecture 5)

Training an RNN Language Model

= negative log prob
of “exams”

Loss —— J)(h) J2)(6) J3)(6) J1(6)

T T N N
Predicted ’Q(l) g(z) Q(3) ,g(4)
prob dists A A
U U U U
h(0) hD h(2) h(3) h®)
@ () @ ()
Wi 1@ W, (@ Wh |@| Wr |@]| Wi
1@ 1@ 1@ 1@ -
@ () @ ()
N A = A
W, W, W, W,
(1) 2)| © 3| O 4) ©
e’lo| el “le|l e
© (@ @ o
Te T T8 Tz
. Slide adapted from
Corpus =—> the students opened their exams :
2(1) 2 (2) 2(3) 24 CS224n by Chris

Manning (Lecture 5)

Training an RNN Language Model

“Teacher forcing”

T
Loss — JW@) + JAG) + JOO) + JHO) +.. = JO)= %Zﬂﬂw)
T T N N t=1
Predicted e e e 5@
prob dists A A
U U U U
h(0) hD h(2) h3) h®)
0 P (@ (@ How to train this?
W, |@| W, @ Wr (@ Wh |@| W, Backprop + SGD
1@ | @ | @ | @ :
() () @ @
Y ! e e
e We We We
(1) 2)| © 3) © 4) ©
ol “le| “le| ° e
@) @) @) @)
T o & e
: Slide adapted from
Corpus —> the students opened their exams ,
2(1) 2 (2) 2(3) 24 CS224n by Chris

Manning (Lecture 5)

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

favorite season is spring
N N N

sample sample sample sample

© e §®) e

Y
N\ N N\

iU U U U
(1) h() h®) h“)

("

("

("

("

IHEAHEAHEAHE
o & (3

N

o)

Slide adapted from
CS224n by Chris

favorite season ' spring Manning (Lecture 5)

Transformers

Q The problem with recurrence
w L S y \rf’ﬂm " WS

<

NV

1. Must always compress all

w necessary information into one
hidden state representation

2. Cannot capture long-range
dependencies in input (“vanishing
loved their mango ice-cream . ”
@) <3 NG 5 gradients problem”)

wiluerce 6% ’L(O M hidden states

Inputs from sufficiently far away do not contribute to hidden state representation:
0.8 0.2
Suppose W = (_0 6 0 9)

s (—031 035 0 (028 —016) 5o (001 0.00
Then W _<—1.06 —0.13)’ W _(0.47 —0.36)’ W _<—0.01 0.01)

A solution: Attention

Attention Is All You Need

L Ashish Vaswani* Noam Shazeer* Niki Parmar™ Jakob Uszkoreit*
\) 6 Google Brain Google Brain Google Research Google Research
Eﬁv\) avaswani@google.com noam@google.com nikip@google.com usz@google.com
wwe v
(0 Llion Jones* Aidan N. Gomez* f Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

Starting point: Averaging word representations

Adding together/averaging the
representations of all words in sentence will
give a representation of the sentence

VSQ«(]Lc'\ﬁ
//" \ e

[N N

/ loved their mango ice-cream
@D xr2 x3 x® x®)

Attention: Weighted averaging

e @ e® e® e®) q

[T

/ loved their mango ice-cream pineapple
ey X x3 @ £(5) q

Attention: Weighted averaging

e @ e® e® e®) q

[T

/ loved their mango ice-cream pineapple
ey X £3 @ £(5) q

Attention: Weighted averaging

e @ e® e® e®) q

[T

/ loved their mango ice-cream pineapple
ey X £3 @ £(5) q

Attention: Weighted averaging

0.04 * +0.14 * +0.07 * +0.46 * +0.29 * =
oD o e o) 20) >
0.04 0.14 0.07 0.46 0.29 < W . < - \ \
A T T T T OF'\' o\ . Ql\ wgﬂ.‘\?(%Te(l\
& S Z 2p(,:’/7e(a\>
y* °
e e@ e® e@® e®) q
/ loved their mango ice-cream pineapple

D £(2) 23 x® NG q

Self-attention

I

/ loved their mango ice-cream
x@D *r@ pre)) x® x(®)

Attention as soft lookup

Attention: match query q to keys
ki, k2, ..., k5 to get weights
between 0 and 1. Sum up values
corresponding to each key with
respective weight

keys values Weighted

Sum
k1 vl
k2 v2
query output
q k3 3 y—
k4 v4
k5 v5

Lookup: find query in database,
return value corresponding to its key

query
d

\

a

b

keys values

vl
v2
v3
output
v4 % v4

Slide adapted from
CS224n by Chris

Manning

Self-attention

0.12 * +0.28 * +0.09 * +0.23 * +0.28 * =
v(l) v(z) v(3) v(4) v(5) 0(9
0.12 0.28 0.09 0.23 0.28 < (s\
< “% 5
&SX‘?’ 0.1 1 -0.2 0.8 1 \Y softmay
(@
(D (2) k3 | 48] k®)
k k How b ﬂd P(Y
- e —— 6t Q)
(s) - K 1((\
q(1) q(Z) q(3) q(4) q(5) h, \ : \
s) - J
o =\l X
/ loved their mango ice-cream
x(D x(2)

e *@® SN

x(5)

Self-attention in matrix form

1. Transform each word embedding with weight matrices Q, K, V, each in Rdxd

q; = Qx; (queries)
kiz' = le (kCYS)

v, = Vax; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

a;; = q; k;
exp(a;;)

D i exp(aij)

wz-j =

3. Compute output for each word as weighted sum of values

0; = E w@-jvj
J

Multi headed self-attention

ﬁ Concatenate both ﬁ

_ o0

o012 o13) (14 0(1'5)j

/— Attention head 1 —\

(1,1) 1,2) 1,3) (1,4) (1,5)
0 0 0 0 0 Y,

ey e

/— Attention head 2 —\

X3

x® x()

Multi headed self-attention

Input: List of vectors x1, ..., 7, each of size d
Output: List of vectors hq, ..., hp, each of size d
Formula: For each head :

— Compute self attention output using Q,, K;, V;

— Finally, concatenate results for all heads
Parameters:

— For each head ¢, parameter matrices Q,, K;, V'; of size dy, X d

— # of heads n is hyperparameter, dy, = d/n

She

He

What do attention heads learn?

Gender-specific term Name
Layer:| 5 ~ - Layer:| 5 %
The The Later Later
girl girl
and and Alice Alice
the the came came
boy boy up up
walked walked to to
home home Bob Bob
She She She - She
Layer: 5 ¥ Layer: 5 §
The The Later Later
girl girl 3)
and and Alice Alice
the the came came
boy boy up up
walked walked to to
home home Bob Bob
He - He He - He

A Multiscale Visualization of Attention in the Transformer Model, Vig 2019

