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Administrivia

• HW3 due in less than 1 week
• Peer mentoring sessions on Monday, Tuesday & Wednesday next week

• Today’s plan:
• Attention & Transformers, Decision trees



Recap: Sequence prediction 
and recurrent neural networks



Language modelling
Language modelling is the task of predicting what word comes next:

More formally, let Xi be the random variable for the i-th word in the sentence, and let
xi be the value taken by the random variable. Then the goal is to compute

P (Xt+1|Xt = xt, . . . , X1 = x1).

A system that does this is known as a Language Model.

Slide adapted from CS224n by Chris Manning (Lecture 5)



A Markov model or Markov chain is a sequence of random variables with the Markov

property: a sequence of random variables X1, X2, · · · s.t.

P (Xt+1 | X1:t) = P (Xt+1 | Xt) (Markov property)

i.e. the next state only depends on the most recent state (notation X1:t denotes the
sequence X1, . . . , Xt). This is a bigram model.

We will consider the following setting:

• All Xt’s take value from the same discrete set {1, . . . , S}

• P (Xt+1 = s′ | Xt = s) = as,s′ , known as transition probability

• P (X1 = s) = πs

• ({πs}, {as,s′}) = (π,A) are parameters of the model

!-gram language model: A type of Markov model



Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.

Higher order Markov chains make it a bit more reasonable, e.g.

P (Xt+1 | Xt, . . . , X1) = P (Xt+1 | Xt, Xt−1) (second-order Markov assumption)

i.e. the current word only depends on the last two words. This is a trigram model, since we need
statistics of three words at a time to learn. In general, we can consider a n-th Markov model (or a
(n+ 1)-gram model):

P (Xt+1 | Xt, . . . , X1) = P (Xt+1 | Xt, Xt−1, . . . , Xt−n+2) (n-th order Markov assumption)

Learning higher order Markov chains is similar, but more expensive.

P (Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) = P (Xt+1 = xt+1 | Xt = xt, Xt−1 = xt−1, . . . , Xt−n+2 = xt−n+2)

=
P (Xt+1 = xt+1, Xt = xt, Xt−1 = xt−1, . . . , Xt−n+2 = xt−n+2)

P (Xt = xt, Xt−1 = xt−1, . . . , Xt−n+2 = xt−n+2)

≈
count(xt−n+2, . . . , xt−1, xt, xt+1) in the data

count(xt−n+2, . . . , xt−1, xt) in the data

Higher-order Markov models



Generating text with a n-gram Language Model

32

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than 
three words at a time if we want to model language well.

But increasing n worsens sparsity problem, 
and increases model size…

However, larger ! increases model size and requires too much data to learn

Slide adapted from CS224n by Chris Manning (Lecture 5)



A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors 

hidden layer

a zoo

output distribution 

35 Slide adapted from CS224n by Chris Manning (Lecture 5)



The problem with this architecture

• Uses a fixed window, which can be too small. 
• Enlarging this window will enlarge the size of 

the weight matrix !.
• The inputs #(") and #($) are multiplied by 

completely different weights in !.
No symmetry in how inputs are processed!

As with CNNs for images before, we need an 
architecture which has similar symmetries as the 
data.

In this case, can we have an architecture that 
can process any input length?

Slide adapted from CS224n by Chris Manning (Lecture 5)



Recurrent Neural Networks (RNN)

hidden states 

input sequence 
(any length)

…

…

…

Core idea: Apply the same 
weights % repeatedlyA family of neural architectures

37

outputs 
(optional)

Slide adapted from CS224n by Chris Manning (Lecture 5)



A Simple RNN Language Model

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings

a zoo

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state

38

Slide adapted from 
CS224n by Chris 
Manning (Lecture 5)



Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution         for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:

40 Slide adapted from CS224n by Chris Manning (Lecture 5)



Attention: Recap



The problem with recurrence

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

" " " "
1. Must always compress all 
necessary information into one 
hidden state representation

2. Cannot capture long-range 
dependencies in input (“vanishing 
gradients problem”)

W =

(

0.8 0.2

−0.6 0.9

)

W
5
=

(

−0.31 0.35

−1.06 −0.13

)

, W
10

=

(

−0.28 −0.16

0.47 −0.36

)

, W
50

=

(

0.01 0.00

−0.01 0.01

)

Suppose

Then

Inputs from sufficiently far away do not contribute to hidden state representation:



A solution: Attention



Attention: Weighted averaging

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

pineapple
#

-0.3 0.8 0.2 2 1.5

0.04 0.14 0.07 0.46 0.29

0.04 * + 0.14 * + 0.07 * + 0.46 * + 0.29 * =

$(") $($) $(%) $(&) $(') #

%$(") $($) $(%) $(&) $(')



Self-attention

I
!(")

loved
!($)

their
!(%)

mango
!(&)

ice-cream
!(')

#(") #($) #(%) #(&) #(')

&(") &($) &(%) &(&) &(')

0.1 1 -0.2 0.8 1

0.12 0.28 0.09 0.23 0.28

0.12 * + 0.28 * + 0.09 * + 0.23 * + 0.28 * =

'(") '($) '(%) '(&) '(') %(")



Self-attention in matrix form
1. Transform each word embedding with weight matrices Q, K, V , each in Rd×d

qi = Qxi (queries)

ki = Kxi (keys)

vi = V xi (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

αij = q"
i kj

wij =
exp(αij)∑
j′ exp(αij′)

3. Compute output for each word as weighted sum of values

oi =
∑

j

wijvj



Multi headed self-attention

!(") !($) !(%) !(&) !(')

%(",") %(",$) %(",%) %(",&) %(",')

Attention head 1

%($,") %($,$) %($,%) %($,&) %($,')

Attention head 2

Concatenate both

%(",") %(",$) %(",%) %(",&) %(",')



Multi headed self-attention

• Input: List of vectors x1, . . . ,xT , each of size d

• Output: List of vectors h1, . . . ,hT , each of size d

• Formula: For each head i:

– Compute self attention output using Qi, Ki, V i

– Finally, concatenate results for all heads

• Parameters:

– For each head i, parameter matrices Qi, Ki, V i of size dattn × d

– # of heads n is hyperparameter, dattn = d/n



What do attention heads learn?

A Multiscale Visualization of Attention in the Transformer Model, Vig 2019



Transformers



Building a Transformer, stack things up!

To build a CNN, we stacked up convolution layers

You should think of different components (convolution, non-linearities, pooling, attention, softmax
etc.) as building block which can be composed to build a final model.



Building a Transformer, stack things up!

How should we stack different layers to build a Transformer?



Key ingredient: Attention layers

!(") !($) !(%) !(&) !(')

Multi-headed attention

%(") %($) %(%) %(&) %(')



What if we just stack attention layers?

Multi-headed attention

Multi-headed attention

!(") !($) !(%) !(&) !(')

%(") %($) %(%) %(&) %(')



Issue: Multiple attention layers are still just averaging

Multi-headed attention

Multi-headed attention

vs.Multi-headed attention

%(") %($) %(%) %(&) %(')

%(") %($) %(%) %(&) %(')

!(") !($) !(%) !(&) !(')

!(") !($) !(%) !(&) !(')



Solution: add non-linearities J

Multi-headed attention

!(") !($) !(%) !(&) !(')

%(") %($) %(%) %(&) %(')



Solution: add non-linearities J

Multi-headed attention

Feedforward network with one hidden layer (weight-sharing)

!(") !($) !(%) !(&) !(')

%(") %($) %(%) %(&) %(')



Multi-headed attention

Feedforward network

Multi-headed attention

Feedforward network

Multi-headed attention

Feedforward network

…

!(") !($) !(%) !(&) !(')

%(") %($) %(%) %(&) %(')



Building a Transformer: Bells and whistles

• Positional embeddings

• Residual connections

• Layer normalization

• Scaled dot product attention

• Tokenization



Positional embeddings

Issue with current architecture:
Embeddings do not take order into account

``Bob ate the salmon”
``The salmon ate Bob”

Lead to the same embedding for each word!

Fix: positional embeddings

- Learn different vector for each position
- Add this vector to word vector for that position



Residual connections

Feedforward network

!(") !($) !(%) !(&) !(')

Each feedforward layer
• Takes as input $ × & matrix ' ($ is number of tokens, & is dimensionality of embedding)
• Outputs $ × & matrix ( ($ is number of tokens, & is dimensionality of embedding)



Feedforward network

!(") !($) !(%) !(&) !(')

We add a residual connection: Output is now ' + (
• Add together the input to the layer to its previous output
• The feedforward layer now only has to compute what ( should be added to the 

input to have a useful embedding

Residual connections



Residual connections: Why do they help?

Without residual connections With residual connections

With residual connections:
• It makes it easier to copy information from before
• Helps in training deeper networks (avoids gradients from initial layers from becoming too small)
• Seems to make the optimization landscape better behaved

Visualizing the Loss Landscape of Neural Nets, Li et al., 2018



Layer normalization

Given some input )
• Normalize ) to have mean * and variance +

We add this layer norm operation in the Transformer blocks to make sure the values are not 
too large or too small.

Variations of this are also often used to train deep models (including non-Transformer 
architectures)



Putting things together: The Transformer architecture

“I loved their mango ice cream”
Architecture of the GPT model 
(figure from GPT paper)



Lots of variants, and extensions to other kinds of data...

Image data Protein structure prediction

Today’s discussion will cover more about Transformers and Large Language Models (LLMs)



Decision trees



Decision trees

• Introduction & definition

• Learning the parameters 

• Measures of uncertainty

• Recursively learning the tree & some variants



We have seen different ML models for classification/regression:

• linear models, nonlinear models induced by kernels, neural networks

Decision tree is another popular one:

• nonlinear in general

• works for both classification and regression; we focus on classification

• one key advantage is good interpretability

• ensembles of trees are very effective

Decision trees



Example
Many decisions are made based on some tree structure

Medical treatment Salary in a company



Tree terminology



Tree terminology

Input: x = (x1, x2)

Output: f(x) determined naturally by traversing the tree

• start from the root

• test at each node to decide which child to visit next

• finally the leaf gives the prediction f(x)

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as code.



Decision boundary



Parameters

Parameters to learn for a decision tree:

• The structure of the tree, such as the depth, #branches, #nodes, etc.
Some of these are considered as hyperparameters. The structure of a tree is
not fixed in advance, but learned from data.

• The test at each internal node:
Which feature(s) to test on? If the feature is continuous, what threshold
(θ1, θ2, . . .)?

• The value/prediction of the leaves (A, B, . . .)



Decision trees

• Introduction & definition

• Learning the parameters 

• Measures of uncertainty

• Recursively learning the tree & some variants



Learning the parameters (optimization?)
So how do we learn all these parameters?

Empirical risk minimization (ERM): find the parameters that minimize some loss.

However, doing exact ERM is too expensive for trees.

• for T nodes, there are roughly (#features)T possible decision trees (need to decide which
feature to use on each node).

• enumerating all these configurations to find the one that minimizes some loss is too computa-
tionally expensive.

• since most of the parameters are discrete (#branches, #nodes, feature at each node, etc.) can-

not really use gradient based approaches.

Instead, we turn to some greedy top-down approach.



A running example Russell & Norvig, AIMA

• predict whether a customer will wait to get a table at some restaurant

• 12 training examples

• 10 features (all discrete)



First step: How to build the root?
Which feature should we test at the root? Examples:

Which split is better?

• intuitively “patrons” is a better feature since it leads to “more certain” children

• how to quantify this intuition?



Decision trees

• Introduction & definition

• Learning the parameters 

• Measures of uncertainty

• Recursively learning the tree & some variants



The uncertainity of a node should be a function of the distribution of the classes within the node.

Example: a node with 2 positive and 4 negative examples can be summarized by a distribution P
with P (Y = +1) = 1/3 and P (Y = −1) = 2/3

One classic measure of the uncertainity of a distribution is its (Shannon) entropy:

H(P ) = −

C∑

k=1

P (Y = k) logP (Y = k)

Measure of uncertainty of a node



H(P ) = EY∼P

[

log

(

1

P (Y )

)]

=
C
∑

k=1

P (Y = k) log

(

1

P (Y = k)

)

= −

C
∑

k=1

P (Y = k) logP (Y = k)

• the base of log can be 2, e or 10

• always non-negative

• it’s the smallest codeword length to encode symbols drawn from P

• maximized if P is uniform (max = lnC): most uncertain case

• minimized if P focuses on one class (min = 0): most certain case

• e.g. P = (1, 0, . . . , 0)

• 0 log 0 is defined naturally as limz→0+ z log z = 0

Properties of entropy



Examples of computing entropy



Examples of computing entropy
Entropy in each child if root tests on “patrons”

So how good is choosing “patrons” overall?

Very naturally, we take the weighted average of entropy:

2

12
× 0 +

4

12
× 0 +

6

12
× 0.9 = 0.45



Suppose we split based on a discrete feature A, the uncertainty can be measured by the
conditional entropy:

H(Y | A)

=
∑

a

P (A = a)H(Y | A = a)

=
∑

a

P (A = a)

(

−
C
∑

k=1

P (Y | A = a) logP (Y | A = a)

)

=
∑

a

“fraction of examples at node A = a” × “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

Measure of uncertainty of a split



The conditional entropy is 2

12
× 1 + 2

12
× 1 + 4

12
× 1 + 4

12
× 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

Deciding the root



Decision trees

• Introduction & definition

• Learning the parameters 

• Measures of uncertainty

• Recursively learning the tree & some variants



Split each child in the same way.

• but no need to split children “none” and
“some”: they are pure already and will
be our leaves

• for “full”, repeat, focusing on those 6
examples:

Repeat recursively



Repeat recursively



Putting it together
DecisionTreeLearning(Examples)

• if Examples have the same class, return a leaf with this class

• else if Examples is empty, return a leaf with majority class of parent

• else

find the best feature A to split (e.g. based on conditional entropy)

Tree← a root with test on A

For each value a of A:

Child← DecisionTreeLearning(Examples with A = a)

add Child to Tree as a new branch

• return Tree



Popular decision tree algorithms (e.g. C4.5, CART, etc) are all based on this framework.

Variants:

• replace entropy by Gini impurity:

G(P ) =
C∑

k=1

P (Y = k)(1− P (Y = k))

meaning: how often a randomly chosen example would be incorrectly classified if we

predict according to another randomly picked example

• if a feature is continuous, we need to find a threshold that leads to minimum condi-
tional entropy or Gini impurity. Think about how to do it efficiently.

Variants



If the dataset has no contradiction (i.e. same x but different y), the training error of our decision tree algorithm
is always zero, and hence the model can overfit.

To prevent overfitting:

• restrict the depth or #nodes (e.g. stop building the tree when the depth reaches some threshold).

• do not split a node if the #examples at the node is smaller than some threshold.

• other approaches as well, all make use of a validation set to tune these hyperparameters

You’ll explore this in HW4.

Regularization



Ensemble methods



Acknowledgement

We borrow some of the content from Stanford’s CS229 
slides on Ensemble Methods, by Nandita Bhaskhar:

https://cs229.stanford.edu/lectures-spring2022/cs229-
boosting_slides.pdf

https://cs229.stanford.edu/lectures-spring2022/cs229-boosting_slides.pdf


Ensemble methods

• Bagging

• Random forests

• Boosting: Basics

• Adaboost

• Gradient boosting



Pros 

• Can handle large datasets 
• Can handle mixed predictors  

(continuous, discrete, qualitative) 
• Can ignore redundant variables 
• Can easily handle missing data 
• Easy to interpret if small

Cons

• Prediction performance is often poor 
(because it does not generalize well)

• Large trees are hard to interpret

Decision Trees Recap



Ensemble Methods for Decision Trees

Issue: A single decision tree is very unstable, small variations in the data can lead to 
very different trees (since differences can propagate along the hierarchy).

They are high variance models, which can overfit.

But they have many advantages (e.g. very fast, robust to data variations).

Q: How can we lower the variance?
A: Let’s learn multiple trees!

How to ensure they don’t all just learn the same thing??

Key idea: Combine multiple classifiers to form a learner with better performance than any 
of them individually (“wisdom of the crowd”)



Ensemble methods are quite powerful



Bagging

Bagging (Breiman, 1996)
Bootstrap Aggregating: lowers variance

Ingredients:
Bootstrap sampling: get different splits/subsets of the data
Aggregating: by averaging

Procedure:
→ Get multiple random splits/subsets of the data
→ Train a given procedure (e.g. decision tree) on each subset
→ Average the predictions of all trees to make predictions on test data

Leads to estimations with reduced variance.



Bagging

Collect T subsets each of some fixed size (say m) by sampling with replacement from
training data.

Let ft(x) be the classifier (such as a decision tree) obtained by training on the subset
t ∈ {1, . . . , T}. Then the aggregrated classifier fagg(x) is given by:

fagg(x) =

{

1

T

∑T
t=1

ft(x) for regression,

sign
(

1

T

∑T
t=1

ft(x)
)

= Majority Vote{ft(x)}Tt=1 for classification.

Why majority vote? “Wisdom of the crowd”



Bagging
Why majority vote? “Wisdom of the crowd”

Suppose I ask each of you: “Will the stock market go up tomorrow?”
Suppose each of you has a 60% chance of being correct, and all of you make 
independent predictions (probability of any 1 person being correct is independent of 
probability of any one else being correct).

What is Probability(Majority vote of 100 people being correct)? 

Let BinCDF(,, ., /) be the CDF at value , of the Binomial distribution corresponding to . trials 
and each trial having probability / of success

Probability(Majority vote of 100 people being correct) = 1 – BinCDF(50,100,0.6)
≈ 0.97



Bagging: example

Figure from ESL

( = 1 ( = 2

( = 3 ( = 4 ( = 5



• Reduces overfitting (i.e., variance)
• Can work with any type of classifier (here focus on trees)
• Easy to parallelize (can train multiple trees in parallel)
• But loses on interpretability to single decision tree (true for all ensemble methods..)

Bagging: summary



Ensemble methods

• Bagging

• Random forests

• Boosting: Basics

• Adaboost

• Gradient boosting



Issue with bagging: Bagged trees are still too correlated

Each is trained on large enough random sample of data and often end up not being 
sufficiently different.

How to decorrelate the trees further?

Simple technique:  When growing a tree on a bootstrapped (i.e. subsampled) dataset, 
before each split select ! ≤ # of the # input variables at random as candidates for 
splitting.

When ! = # → same as Bagging
When ! < # → Random forests

! is a hyperparameter, tuned via cross-validation

Random forests



Random forests are very popular!

Wikipedia: Random forests are frequently used as "blackbox" models in businesses, as they 
generate reasonable predictions across a wide range of data while requiring little 
configuration.

Issues:

• When you have large number of features, yet very small number of relevant features:
Prob(selecting a relevant feature among ! selected features) is very small

• Lacks expressive power compared to other ensemble methods we’ll see next..

Random forests



Ensemble methods

• Bagging

• Random forests

• Boosting: Basics

• Adaboost

• Gradient boosting



Boosting
Recall that the bagged/random forest classifier is given by

fagg(x) = sign

(

1

T

T
∑

t=1

ft(x)

)

where each {ft}Tt=1 belongs to the function class F (such as a decision tree), and is trained
in parallel.

Instead of training the {ft}Tt=1 in parallel, what if we sequentially learn which models to
use from the function class F so that they are together as accurate as possible?

More formally, what is the best classifier sign (h(x)), where

h(x) =
T
∑

t=1

βtft(x) for βt ≥ 0 and ft ∈ F .

Boosting is a way of doing this.



Boosting

• is a meta-algorithm, which takes a base algorithm (classification algorithm, regres-
sion algorithm, ranking algorithm, etc) as input and boosts its accuracy

• main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to form a highly
accurate predictor (e.g. 99% accuracy)

• works very well in practice (especially in combination with trees)

• has strong theoretical guarantees

We will continue to focus on binary classification.



Email spam detection:

• given a training set like:

– (“Want to make money fast? ...”, spam)

– (“Viterbi Research Gist ...”, not spam)

• first obtain a classifier by applying a base algorithm, which can be a rather sim-
ple/weak one, like decision stumps:

– e.g. contains the word “money” ⇒ spam

• reweigh the examples so that “difficult” ones get more attention

– e.g. spam that doesn’t contain the word “money”

• obtain another classifier by applying the same base algorithm:

– e.g. empty “to address” ⇒ spam

• repeat ...

• final classifier is the (weighted) majority vote of all weak classifiers

Boosting: example



A base algorithm A (also called weak learning algorithm/oracle) takes a training set S
weighted by D as input, and outputs classifier f ← A(S,D)

• this can be any off-the-shelf classification algorithm (e.g. decision trees, logistic
regression, neural nets, etc)

• many algorithms can deal with a weighted training set (e.g. for algorithm that mini-
mizes some loss, we can simply replace “total loss” by “weighted total loss”)

• even if it’s not obvious how to deal with weight directly, we can always resample
according to D to create a new unweighted dataset

Base algorithm



Boosting: Idea
The boosted predictor is of the form fboost(x) = sign(h(x)), where,

h(x) =
T
∑

t=1

βtft(x) for βt ≥ 0 and ft ∈ F .

The goal is to minimize "(h(x), y) for some loss function ".

Q: We know how to find the best predictor in F on some data, but how do we find the best weighted
combination h(x)?

A: Minimize the loss by a greedy approach, i.e. find βt, ft(x) one by one for t = 1, . . . , T .

Specifically, let ht(x) =
∑t

τ=1
βτfτ (x). Suppose we have found ht−1(x), how do we find βt, ft(x)?

Find the βt, ft(x) which minimizes the loss "(ht(x), y).

Different loss function " give different boosting algorithms.

"(h(x), y) =

{

(h(x)− y)2 → Least squares boosting,

exp(−h(x)y) → AdaBoost.


