Linear Algebra and Calculus Exercises: Part I

CSCI 567 Machine Learning

Spring 2024
Instructor: Vatsal Sharan

MULTIPLE-CHOICE QUESTIONS: one or more correct choices for each question.

1 Linear Algebra

Q1 Which identities are NOT correct for real-valued matrices A, B, and C ? Assume that inverses exist and multiplications are legal.
(a) $(A B)^{-1}=B^{-1} A^{-1}$
(b) $(I+A)^{-1}=I-A$
(c) $\operatorname{tr}(A B)=\operatorname{tr}(B A)(\operatorname{tr}(A)$ for a square matrix A is the sum of the diagonal entries of $A)$
(d) $(A B)^{\top}=A^{\top} B^{\top}$

Q2 Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are all D-dimensional vectors, and $X \in \mathbb{R}^{N \times D}$ is a matrix where the n-th row is \mathbf{x}_{n}^{\top}. Then which of the following identities are correct?
(a) $X^{\top} X=\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}$
(b) $X^{\top} X=\sum_{n=1}^{N} \mathbf{x}_{n}^{\top} \mathbf{x}_{n}$
(c) $X X^{\top}=\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}$
(d) $X X^{\top}=\sum_{n=1}^{N} \mathbf{x}_{n}^{\top} \mathbf{x}_{n}$

2 Calculus

Q1 Suppose $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is an arbitrary vector. Which one of the following functions is NOT convex:
(a) $f(\mathbf{x})=\sum_{i=1}^{n}\left|x_{i}\right|$
(b) $f(\mathbf{x})=\sum_{i=1}^{n} a_{i} x_{i}$
(c) $f(\mathbf{x})=\min _{i \in\{1, \ldots, n\}} a_{i} x_{i}$
(d) $f(\mathbf{x})=\sum_{i=1}^{n} \exp \left(x_{i}\right)$

Q2 Which of the following are correct chain rules $\left(g, g_{1}, \ldots, g_{d}\right.$ are functions from \mathbb{R} to $\left.\mathbb{R}\right)$?
(a) For a composite function $f(g(w)), \frac{\partial f}{\partial w}=\frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$.
(b) For a composite function $f(g(w)), \frac{\partial f}{\partial w}=\frac{\partial f}{\partial g}+\frac{\partial g}{\partial w}$.
(c) For a composite function $f\left(g_{1}(w), \ldots, g_{d}(w)\right), \frac{\partial f}{\partial w}=\left(\frac{\partial f}{\partial g_{1}} \frac{\partial g_{1}}{\partial w}, \ldots, \frac{\partial f}{\partial g_{d}} \frac{\partial g_{d}}{\partial w}\right)$.
(d) For a composite function $f\left(g_{1}(w), \ldots, g_{d}(w)\right), \frac{\partial f}{\partial w}=\sum_{i=1}^{d} \frac{\partial f}{\partial g_{i}} \frac{\partial g_{i}}{\partial w}$.

Q3 A function $f: \mathbb{R}^{n \times 1} \rightarrow \mathbb{R}$ is defined as $f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{x}$ for some $\mathbf{b} \in \mathbb{R}^{n \times 1}$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the derivative $\frac{\partial f}{\partial \mathbf{x}}$ (also called the gradient $\nabla f(\mathbf{x})$)?
(a) $\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x}+\mathbf{b}$
(b) $2 \mathbf{A}^{\top} \mathbf{x}+\mathbf{b}$
(c) $2 \mathbf{A x}+b$
(d) $2 \mathbf{A x}+\mathbf{x}$

Q4 A function $f: \mathbb{R}^{n \times 1} \rightarrow \mathbb{R}$ is defined as $f(\mathbf{w})=\ln \left(1+e^{-\mathbf{w}^{\top} \mathbf{x}}\right)$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$. What is the derivative $\frac{\partial f}{\partial \mathbf{w}}$?
(a) $-\frac{\mathbf{w}}{1+e^{\mathbf{w}^{\top} \mathbf{x}}}$
(b) $-\frac{\mathbf{x}}{1+e^{\mathbf{w}^{\top} \mathbf{x}}}$
(c) $-\frac{\mathbf{w}}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}}$
(d) $-\frac{\mathbf{x}}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}}$

Q5 For a differential function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, which of the following statements are correct?
(a) If \mathbf{x}^{\star} is a minimizer of f, then $\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}$.
(b) If \mathbf{x}^{\star} is a maximizer of f, then $\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}$.
(c) If $\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}$, then \mathbf{x}^{\star} is a minimizer of f.
(d) If $\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}$, then \mathbf{x}^{\star} is a maximizer of f.

