Linear Algebra and Calculus Exercises: Part I

CSCI 567 Machine Learning

Spring 2024

Instructor: Vatsal Sharan

MULTIPLE-CHOICE QUESTIONS: one or more correct choices for each question.

1 Linear Algebra

Q1 Which identities are NOT correct for real-valued matrices A, B, and C? Assume that inverses exist and multiplications are legal.

- (a) $(AB)^{-1} = B^{-1}A^{-1}$
- (b) $(I+A)^{-1} = I A$
- (c) tr(AB) = tr(BA) (tr(A) for a square matrix A is the sum of the diagonal entries of A)
- $(\mathbf{d}) \ (AB)^{\top} = A^{\top}B^{\top}$

Q2 Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are all *D*-dimensional vectors, and $X \in \mathbb{R}^{N \times D}$ is a matrix where the *n*-th row is \mathbf{x}_n^{\top} . Then which of the following identities are correct?

- (a) $X^{\top}X = \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\top}$
- (b) $X^{\top}X = \sum_{n=1}^{N} \mathbf{x}_n^{\top} \mathbf{x}_n$
- (c) $XX^{\top} = \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\top}$
- (d) $XX^{\top} = \sum_{n=1}^{N} \mathbf{x}_n^{\top} \mathbf{x}_n$

2 Calculus

Q1 Suppose $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is an arbitrary vector. Which one of the following functions is NOT convex:

- (a) $f(\mathbf{x}) = \sum_{i=1}^{n} |x_i|$
- (b) $f(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i$
- (c) $f(\mathbf{x}) = \min_{i \in \{1,\dots,n\}} a_i x_i$
- (d) $f(\mathbf{x}) = \sum_{i=1}^{n} \exp(x_i)$

Q2 Which of the following are correct chain rules $(g, g_1, \ldots, g_d \text{ are functions from } \mathbb{R} \text{ to } \mathbb{R})$?

- (a) For a composite function f(g(w)), $\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$.
- (b) For a composite function f(g(w)), $\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} + \frac{\partial g}{\partial w}$.
- (c) For a composite function $f(g_1(w), \ldots, g_d(w)), \frac{\partial f}{\partial w} = \left(\frac{\partial f}{\partial g_1} \frac{\partial g_1}{\partial w}, \ldots, \frac{\partial f}{\partial g_d} \frac{\partial g_d}{\partial w}\right).$
- (d) For a composite function $f(g_1(w), \ldots, g_d(w))$, $\frac{\partial f}{\partial w} = \sum_{i=1}^d \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$.

Q3 A function $f: \mathbb{R}^{n \times 1} \to \mathbb{R}$ is defined as $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}$ for some $\mathbf{b} \in \mathbb{R}^{n \times 1}$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the derivative $\frac{\partial f}{\partial \mathbf{x}}$ (also called the gradient $\nabla f(\mathbf{x})$)?

- (a) $(\mathbf{A} + \mathbf{A}^{\top})\mathbf{x} + \mathbf{b}$
- (b) $2\mathbf{A}^{\top}\mathbf{x} + \mathbf{b}$
- (c) $2\mathbf{A}\mathbf{x} + \mathbf{b}$
- (d) $2\mathbf{A}\mathbf{x} + \mathbf{x}$

Q4 A function $f: \mathbb{R}^{n \times 1} \to \mathbb{R}$ is defined as $f(\mathbf{w}) = \ln(1 + e^{-\mathbf{w}^{\top}\mathbf{x}})$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$. What is the derivative $\frac{\partial f}{\partial \mathbf{w}}$?

- (a) $-\frac{\mathbf{w}}{1+e^{\mathbf{w}^{\top}\mathbf{x}}}$
- (b) $-\frac{\mathbf{x}}{1+e^{\mathbf{w}^{\top}\mathbf{x}}}$
- (c) $-\frac{\mathbf{w}}{1+e^{-\mathbf{w}^{\top}\mathbf{x}}}$
- (d) $-\frac{\mathbf{x}}{1+e^{-\mathbf{w}^{\top}\mathbf{x}}}$

Q5 For a differential function $f: \mathbb{R}^n \to \mathbb{R}$, which of the following statements are correct?

- (a) If \mathbf{x}^* is a minimizer of f, then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- (b) If \mathbf{x}^* is a maximizer of f, then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- (c) If $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then \mathbf{x}^* is a minimizer of f.
- (d) If $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then \mathbf{x}^* is a maximizer of f.