Linear Algebra and Calculus Exercises: Part II

CSCI 567 Machine Learning

Spring 2024
Instructor: Vatsal Sharan

MULTIPLE-CHOICE QUESTIONS: one or more correct choices for each question.
Q1 Which of the following statements are true? PSD stands for positive semi-definite.
(a) $X X^{\top}$ is a PSD matrix if and only if X is PSD.
(b) If X and Y are PSD matrices, then so is $\lambda X+\mu Y$ for any $\lambda, \mu \in \mathbb{R}$.
(c) If $X-Y$ and $X+Y$ are PSD matrices, then so are X and Y.
(d) All eigenvalues of a symmetric PSD matrix are non-negative.

Q2 Suppose A and B are two positive definite matrices. Which matrix may NOT be positive definite?
(a) A^{-1}
(b) $A+B$
(c) $A A^{\top}$
(d) $A-B$

SHORT-ANSWER QUESTION. The following questions use linear algebra and calculus in ML formulations. They particularly test your knowledge of gradients of multivariate functions.

Q3 Consider the following optimization problem:

$$
\boldsymbol{w}_{*}=\arg \min _{\boldsymbol{w} \in \mathbb{R}^{d}}\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\boldsymbol{w}^{T} \boldsymbol{M} \boldsymbol{w}
$$

Here, $\boldsymbol{X} \in \mathbb{R}^{n \times d}, \boldsymbol{y} \in \mathbb{R}^{n}, \boldsymbol{M} \in \mathbb{R}^{d \times d}$ is a positive definite matrix and $\|\cdot\|_{2}$ stands for the ℓ_{2} norm. Find the closed form solution for \boldsymbol{w}_{*}. Proceed in a similar way as how we derived the general least-squares solution in class. (This optimization problem is a generalization of ℓ_{2} regularization, which we will see in class.)

Q4 Assume we have a training set $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$, where each outcome y_{i} is generated by a probabilistic model $\boldsymbol{w}_{*}^{\mathrm{T}} \boldsymbol{x}_{i}+\epsilon_{i}$ with ϵ_{i} being an independent Gaussian noise with zero-mean and variance σ^{2} for some $\sigma>0$. In other words, the probability of seeing any outcome $y \in \mathbb{R}$ given $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ is

$$
\operatorname{Pr}\left(y \mid \boldsymbol{x}_{i} ; \boldsymbol{w}_{*}, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-\left(y-\boldsymbol{w}_{*}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

Assume σ is fixed and given, find the maximum likelihood estimation for \boldsymbol{w}_{*}. In other words, first write down the probability of seeing the outcomes y_{1}, \ldots, y_{n} given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ as a function of the value of \boldsymbol{w}_{*}; then find the value of \boldsymbol{w}_{*} that maximizes this probability. You can assume $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is invertible, where \boldsymbol{X} is the data matrix with each row corresponding to the features of an example. You may find it helpful to review the steps we took in Lecture 2 to find the maximum likelihood solution for the logistic model.

